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Abstract
Smartphone apps create and handle a large variety of “in-
stance” data that has to persist across runs, such as the cur-
rent navigation route, workout results, antivirus settings, or
game state. Due to the nature of the smartphone platform,
an app can be paused, sent into background, or killed at
any time. If the instance data is not saved and restored be-
tween runs, in addition to data loss, partially-saved or cor-
rupted data can crash the app upon resume or restart. While
smartphone platforms offer API support for data-saving and
data-retrieving operations, the use of this API is ad-hoc: left
to the programmer, rather than enforced by the compiler.
We have observed that several categories of bugs—including
data loss, failure to resume/restart or resuming/restarting in
the wrong state—are due to incorrect handling of instance
data and are easily triggered by just pressing the ‘Home’
or ‘Back’ buttons. To help address this problem, we have
constructed a tool chain for Android (the KREfinder static
analysis and the KREreproducer input generator) that helps
find and reproduce such incorrect handling. We have evalu-
ated our approach by running the static analysis on 324 apps,
of which 49 were further analyzed manually. Results indi-
cate that our approach is (i) effective, as it has discovered 49
bugs, including in popular Android apps, and (ii) efficient,
completing on average in 61 seconds per app. More gener-
ally, our approach helps determine whether an app saves too
much or too little state.

Categories and Subject Descriptors D.2.4 [Software Engi-
neering]: Software/Program Verification—Reliability, Vali-
dation; D.2.5 [Software Engineering]: Testing and Debugging—
testing tools

General Terms Reliability, Verification

Keywords Mobile applications, Software restart, Data loss,
Static analysis, Google Android, App testing

1. Introduction
The smartphone platform differs fundamentally from the
desktop or server platforms: once started, desktop/server
programs can expect to run “forever” as the OS will not
attempt to kill them when the user switches among pro-
grams. In contrast, on smartphone OSes such as Android [7]
or iOS [1], an app runs in a restricted mode once the user
switches away from it, i.e., the app goes into the back-
ground – this is for good reasons such as protecting privacy
and conserving resources. In fact, smartphone OSes fre-
quently and periodically kill background apps for these rea-
sons [1, 7, 10]. To help programmers preserve users’ work,
smartphone platforms offer API support for data-saving and
data-retrieving operations. Hence programmers should write
apps accordingly to deal with the possibility of apps be-
ing killed, saving any pertinent data and retrieving the data
once the app is restarted. Unfortunately, many apps are not
written this way: the use of the data save&retrieve API is
ad-hoc: completely left to the programmer, rather than en-
forced by the compiler. As a result, data created by apps
(such as workout data in a health&fitness app, scan set-
tings in an antivirus app, alarm settings in an alarm clock
app, or game state in a game app) can get lost when an
app is switched away from. We name KR data the data that
should be preserved across runs (kill-and-restart or pause-
and-resume cycles). Motivated by this observation, we have
investigated the consequences of incorrect KR data handling
in Android apps. We found that several categories of bugs—
loss of user’s work, loss of app or device settings— are due
to incorrect KR data handling; we call them KR errors. In
Section 2 we present KR error examples, the Android restart
model, and the programmer’s KR handling responsibilities.

To help address KR errors, we have constructed a static
analysis (KREfinder) that finds incorrect or inconsistent han-
dling of KR data. The analysis works on off-the-shelf An-
droid apps (APKs) without requiring access to the app’s
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source code. Constructing the analysis required surmount-
ing several challenges: identifying KR data, finding those
operations that change, save, or restore KR data; and ex-
pressing consistent save/restore operations for KR data in
a manner that can be rigorously defined and implemented in
a static analysis (Section 3). We have identified four main
types of errors. The analysis produces a report containing
potential bugs (error location and path exposing the error).
To help reproduce and fix the errors, we have constructed
the KREreproducer, which takes KREfinder’s report as in-
put and generates a sequence of inputs to guide the app to
the error point.

In Section 4 we describe our implementation; the im-
plementation and datasets are available as open-source.1

KREfinder extends the Flowdroid static analysis infrastruc-
ture [12] with support for tracking data and control flow
between arbitrary instructions, and built a KR error finder
that employs data flow and bidirectional control flow analy-
sis (Section 4.1). To help users reproduce the errors reported
by our static analysis, we have also constructed KRErepro-
ducer, an automated approach that, given a report, produces
a sequence of input events that lead to the app state where
the error manifests; from that point, the developer can kill-
and-restart (or pause-and-resume) the app to reproduce the
error (Section 4.2).

We provide an evaluation of our approach in Section 5.
We ran our analysis on 324 apps, and chose 49 of them for
further manual analysis. The apps cover a wide range of cat-
egories (from utilities to games to news), various sizes and
various levels of popularity. Experiments show that our ap-
proach is: (1) effective at finding potential KR data errors,
even in large and widely-popular apps, and with a low false-
positive rate; (2) effective at helping users investigate and re-
produce errors; (3) efficient, able to complete in 61 seconds
per app on average.

In summary, our contributions in this paper are:

1. Revealing and defining KR errors, a new class of errors
germane to smartphone apps.

2. A definition of KR data, i.e., data that should be saved
and restored across resume-and-restart cycles.

3. KREfinder, a static analysis for identifying KR data and
incorrect handling thereof.

4. KREreproducer, an input generator to facilitate reproduc-
ing errors.

5. An evaluation on a variety of Android apps, 324 in to-
tal; 49 apps using automatic as well as manual analysis,
and 291 using automatic analysis. The evaluation has re-
vealed 49 bugs in 37 apps, including 24 bugs in 18 very
popular apps (more than 100,000 installs).

1 http://spruce.cs.ucr.edu/kre/

2. Motivation
To motivate the importance of finding KR errors, we begin
with some examples of such errors. Next, we discuss restarts
and platform support for KR data handling in Android. Then,
we show a concrete example of incorrect KR data handling
and loss in the DateSlider open source app.

2.1 Examples of KR Errors
KR errors manifest in various ways. Consider Personal Work

Recorder, an app for recording workout timings. If the app
is restarted while a workout recording is in progress, the
current workout timing information is lost, which is directly
against the purpose of a workout-tracking app. The Zirco

browser can lose a previously-set bookmark upon restart. The
OpenSudoku and Scrambled Net games can lose their state.

Alarm Clock Plus, an alarm clock manager, upon restart
loses the alarm that has been set, which is particularly un-
desirable when using the alarm app for an important event.
The Dr.WebLight antivirus loses its custom scan option set-
ting. In another example that will confuse or irritate the user,
the Audalyzer app can prompt the user to read and accept its
license even though the user has previously accepted the li-
cense. Finally, device settings can be lost upon restart, from
the phone’s flashlight settings in Symantec Norton Snap, to
speaker phone settings in SpeakerProximity, to camera set-
ting in Motorola Camera, to Bluetooth settings in BTHF Pow-

erSave and FoxFi. Table 9 in Section 5 contains more sub-
stantial descriptions of the KR errors in the 49 manually-
examined apps.

2.2 App Lifecycle
Android has built-in support for data save/restore and notify-
ing apps of pause-and-resume or kill-and-restart operations.

In Android, apps are structured around “activities”; an
activity roughly corresponds to a separate screen in a tra-
ditional, desktop program with a GUI. Activities are created
by extending the Activity class and instantiating the subclass.
Activity instances follow a lifecycle [7], moving between
several states: Stopped, Paused, Resumed, etc., as explained
shortly. The Android Framework (aka AF, the main orches-
trator of app execution) automatically invokes certain on∗()

callbacks when the activity cycles among these states.
The lifecycle is illustrated in Figure 1. When the activity

is Created, the onCreate() callback is invoked; developers
can add custom initialization code here. The activity is not
yet visible. The activity can move to Started after it was
created or stopped; onStart() is invoked, and the activity
becomes visible. When the activity transitions to Resumed
(the usual operating state), onResume() is called. The activity
can become Paused when it is partially or fully covered,
e.g., by a dialog box or a drop-down menu; the onPause()

callback is invoked. When the activity becomes Stopped,
e.g., due to an incoming phone call, onStop() is invoked; the
activity can be restarted, e.g., after the phone call completes,
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and onRestart() is invoked. When the activity is about to
be Destroyed, e.g., because the user has pressed the ‘Back’
button, onDestroy() is invoked; after that, the activity is killed.

2.3 Restart Levels
When an app is paused, stopped, or killed, data loss may
occur. We now proceed to define several restart levels in
Android, based on the amount of app state that is affected by
restart; each restart level has one or more associated callback
methods, automatically invoked by the AF. We first discuss
the levels and then describe the restarts’ impact on data.

Restart levels. The levels, restart circumstances, and call-
backs are summarized in Table 1.

1. Pause activity. A foreground activity can become par-
tially covered (e.g., when the user swipes to activate the
drop-down menu or when a dialog box opens) or the dis-
play may be turned off; in such cases the AF invokes
onPause(). When the activity comes back into the fore-
ground, the AF invokes onResume()—note the smallest,
Paused/Resumed restart cycle in Figure 1. While “gener-
ally” a paused activity is kept in memory hence no data
is lost, the app can be killed while paused if the system
needs to reclaim memory [7].

2. Stop activity. A paused activity can be stopped for a var-
ious reasons, e.g., an incoming call, transitioning to an-
other activity, switching to another app, the user pressing
the ‘Home’ button. When the app is stopped, the AF in-
vokes onStop() rendering the activity invisible. When the
app is restarted, the onRestart() callback is invoked—note
the medium, Started/Stopped restart cycle in Figure 1.
Similar to paused activities, a stopped activity is gener-
ally kept in memory hence no data is lost, but it can still
be killed while stopped, to reclaim memory [7].

3. Destroy activity. A stopped activity is destroyed—and
all its data will be disposed of—when the AF invokes
onDestroy(). This happens for example when the app is
killed or the user presses the ‘Back’ button.

Interestingly, an operation that might appear lightweight –
changing the phone’s orientation between vertical and hori-
zontal – is actually quite heavyweight, as the activity is de-
stroyed and recreated, undergoing six transitions: Resumed
→ Paused → Stopped → (destroyed) → Stopped → Paused
→ Resumed.

2.4 KR Data Handling and Loss
App process model and killing. In Android, an app runs
as a Linux process. For separation reasons, each app has
its own UID, hence UID’s differ across apps and PID’s dif-
fer across app runs—by “app killing” we mean that the un-
derlying Linux process is killed. When a process is killed,
all the in-memory state (hence unsaved data) is lost. The
killing happens swiftly, to keep the UI responsive, so the
system can eschew invoking activity-stop (onStop), activity-

destroy (onDestroy), or save-data (onSaveInstanceState) call-
backs. Therefore, apps can lose data if developers choose to
place KR saves in such methods that might never be called.

KR Data Handling. To prevent such losses, AF pro-
vides two main support mechanisms: (1) automatically sav-
ing&restoring GUI data only; (2) manually saving&restoring
arbitrary data via on∗() callbacks. Table 2 lists the callbacks
that are guaranteed to be invoked when the app is killed,
versus callbacks that are not guaranteed; we explain these
callbacks in detail next.

Automatic save&restore. A callback named onSaveInstance

State() is provided by the AF, giving developers a chance
to save KR data before the activity is killed. The default
implementation of onSaveInstanceState() saves GUI state, e.g.,
the contents of an editable text field, meaning that certain
parts the GUI state are saved and restored “for free”, but
other parts are the user’s responsibility. 2 Unfortunately,
onSaveInstanceState() is not guaranteed to be called before an
activity is paused or stopped.3

Manual save&restore. To prevent data losses, the Android
documentation advises developers to manually save data4

and offers an API for storing data into files, databases, and
key-value sets [11]. However, the use of (let alone correct
use of ) the data save and restore API is not enforced stati-
cally, hence KR data handling is ad-hoc and prone to errors.

Hence it is natural to expect that developers use onSaveInst

anceState(), onStop(), onDestroy(), or onPause(), to save state.
Unfortunately, relying on these callbacks might be problem-
atic.

First, onSaveInstanceState() is not guaranteed to be called,
as mentioned priorly, and neither is onStop() [7]. Second,
onStop() and onDestroy() are “killable”: per the Android docu-
mentation “after that method returns, the process hosting the
activity may be killed by the system at any time without an-
other line of its code being executed.” [7].5 Since onStop() is
killable, onDestroy() might never be invoked. Hence the only
“sure bet” for developers saving the KR data is in onPause().

2 Per the official Android documentation: “Although the default implemen-
tation of onSaveInstanceState() saves useful information about your ac-
tivity’s UI, you still might need to override it to save additional information.
For example, you might need to save member values that changed during
the activity’s life (which might correlate to values restored in the UI, but the
members that hold those UI values are not restored, by default)” [6].
3 Idem, “There’s no guarantee that onSaveInstanceState() will be
called before your activity is destroyed [...] If the system calls
onSaveInstanceState(), it does so before onStop() and possibly before
onPause()” [6].
4 Idem, “Most Android apps need to save data, even if only to save informa-
tion about the app state during onPause() so the user’s progress is not lost.
Most non-trivial apps also need to save user settings, and some apps must
manage large amounts of information in files and databases” [11].
5 onPause() is killable in pre-3.0 versions of Android. However, since only
2% of Android devices run such older versions [8] we consider onPause()
to be de facto non-killable. Note though that onStop() can be eschewed
due to memory pressure [7].
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Level Cause Kill Callback Restart Callback
1: Pause activity Activity becomes (partially) covered; Turn off screen onPause() onResume()

2: Stop activity Switch to another app; Start a new activity in the
same app; Receive a phone call; Press ‘Home’ button

onStop() onRestart()

3: Destroy activity Press ‘Back’ button; Kill app onDestroy() onCreate()

Table 1: Android restart levels.

Created 

Started Resumed Paused Stopped 

Killed/exit 💀 

Destroyed 

New process 

onC
reate() 

onS
tart() 

onResume() 

onPause()   

onResume() 

onStop()   onDestroy()   

onSaveInstanceState() 

onRestart() 

Figure 1: Android activity lifecycle (adapted from [7, 34]).

Guaranteed Not Guaranteed
onPause() onStop(), onDestroy(), onSaveInstanceState()

Table 2: Callbacks invocation guarantees upon app kill.

Third, developers might be confused whether onPause()

is appropriate for saving data or not; per the Android docu-
mentation “Generally, you should not use onPause() to store
user changes (such as personal information entered into a
form) to permanent storage. The only time you should per-
sist user changes to permanent storage within onPause() is
when you’re certain users expect the changes to be auto-
saved (such as when drafting an email)” [9].

The caveats of over-saving the state. Note that one poten-
tial approach for avoiding state loss might be to “over-save”:
checkpoint and reinstate all the process state, e.g., as done
in process migration [29]. However, over-saving might lead
to at least two kinds of issues. First, on∗() methods are sup-
posed to be, as Google puts it, “speedy” to avoid UI slug-
gishness [7]. Android might throw an “Application Not Re-
sponding” (ANR) exception when the app lingers in a call-
back. So an over-save might be abruptly terminated in the
middle, after it has saved irrelevant fields but before it had a
chance to save relevant fields, resulting in new KR errors.

Second, as with any serialization, care must be taken
when saving and restoring pointers, IDs, or handles that dif-
fer across executions. An example would be a file descriptor,

(a) Before restart (b) After restart

Figure 2: Dateslider KR error: the selected date, “11. March
2016”, shown on the bottom, is lost upon restart.

e.g., fileDescriptor 42 before restart would be valid, but after
restart the process might not have a fileDescriptor 42, or de-
scriptor 42 could point to another open file, etc. To address
these issues a modified platform, such as OS or VM support
for migration, might be necessary.

2.5 Example: DateSlider KR Error
We now present a concrete example of a KR error in the
Dateslider app, which illustrates the KR data loss upon restart
and shows the source code bug responsible for it. Dateslider

is a simple app that allows the user to select a date and time.
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1 public abstract class DateSlider extends Dialog {
2 protected Calendar mTime;
3 ......
4 public void onCreate(Bundle savedInstanceState) {
5 super.onCreate(savedInstanceState );
6 if ( savedInstanceState!=null) {
7 long time = savedInstanceState.getLong(
8 ”time”, mTime.getTimeInMillis());
9 mTime.setTimeInMillis(time);

10 }
11 ......
12 }
13 ......
14 public void updateCalendar(Calendar calendar) {
15 mTime.setTimeInMillis(calendar . getTimeInMillis ());
16 }
17 ......
18 public Bundle onSaveInstanceState() {
19 Bundle savedInstanceState =
20 super.onSaveInstanceState ();
21 if ( savedInstanceState==null)
22 savedInstanceState = new Bundle();
23 savedInstanceState .putLong(”time”,
24 mTime.getTimeInMillis());
25 return savedInstanceState ;
26 }
27 protected void onDestroy() {
28 ...
29 }} ...

Figure 3: Source code excerpt from DateSlider.

The app contains a KR error: if the app is restarted, the user’s
selection is not saved.

In Figure 2 we show two screen shots: on the left, we
have the app screen after the user has selected a date (11.
March 2016); the user naturally expects that the selection
will survive a resume or restart. However, due to a KR bug,
when the app restarts, the selection is lost—we show this in
Figure 2 on the right.

We now explain the cause of this bug. Figure 3 shows a
source code excerpt from DateSlider. The activity (screen)
DateSlider class has a KR field mTime. The field is updated in
method updateCalendar() and saved in onSaveInstanceState().
When the app restarts, method onCreate() checks for the
existence of saved data and imports it if present. Since
onSaveInstanceState() is not guaranteed to be invoked (Sec-
tion 2.4), the field mTime is not guaranteed to be saved, which
leads to a KR error.

We now show how our analysis finds this error. First, we
identify line 15 as a KR data change, line 23 as a KR data
save, and the end of onDestroy(), line 29, as an exit. Second,
we trace data-flow from the change to the save and identify
line 15 (mTime.setTimeInMillis (...) ) as the data change to be
saved. Third, we trace control-flow from the change to exit.
As onSaveInstanceState() will not be called when the app
is force-stopped, there is a flow to the end of onDestroy()

without saving the data change. In other words, the change
in line 15 might get lost, which we report as a potential KR

error. Our analysis, described next, identifies KR data that is
improperly handled, which helps uncover KR errors.

3. Approach
The high-level view of our approach is presented in Fig-
ure 4: it consists of two main components, KREfinder and
KREreproducer. Given an Android app (APK file) as input,
KREfinder performs a suite of static analyses (data and con-
trol flow) to find potential KR errors, and report their loca-
tion and KR error path as a summary. The summaries are
in a format suitable for KREreproducer, that automatically
generates a sequence of directed transitions (input event se-
quences) that land the app in the potential-error state. At this
point, the app can be paused-and-resumed (or killed-and-
restarted, respectively) so the error can be confirmed. The
analyses consist of several phases, which we will describe
shortly:

1. Identify KR data.
2. Find changes (writes) to KR data, saves/restore opera-

tions, and exits.
3. Construct the data flow from KR changes to KR saves

and identify potential errors.
4. Construct the control flow from KR changes to exits and

identify potential errors.
5. Generate directed transitions (input sequences) for repro-

ducing and verifying the errors.

3.1 Identifying KR Data
Finding KR data is challenging because this data is app-
specific, from time-of-day in DateSlider to workout data in
Personal Work Recorder to bookmarks in Zirco Browser. By
analyzing dozens of open source apps that use KR data, we
gained a key insight: KR data is a subset of fields in the
application-defined classes.

To be classified as candidate KR data, fields need to be
mutable (constant or final fields are excluded, since their
values cannot change) and be modified, i.e., the field must
be changed, directly or through an alias, in at least one
instruction. Fields that are not modified are not considered
potential KR data—when app execution does not modify a
field, the value of that field is the same across resume or
restart cycles.

3.2 Finding KR Data Changes, Saves/Restores, and
Exits

Finding KR Data Changes. With the KR data fields at
hand, we proceed to finding if, and how they change. We
define data changes as assignment statements where a KR
field (or alias thereof) is written to. However, we ignore as-
signments in initialization or destruction methods, because
such assignments are actually initializing or storing vari-
ables, e.g., loading data from persistent storage into fields
or writing field values into persistent storage. In Android, an
activity is initialized in onCreate(), onStart() and onRestart(),
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Find KR data, KR changes, KR saves, KR restores and exits 
  

Track data and control flow from changed KR data to KR saves, exits 
  

Track data and control flow between KR changes and KR restores   

Report 
potential bugs 
and their 
location 

Flow 
summary 

Error 
location 

Data-flow 
analysis 

APK 

Changed 
KR data 

Exit 

 
 
 

Construct input 
sequence to reach 
error location 

KR save  
Control-flow 

analysis 
Directed 
transitions 

Redexer 
Gator 

✔ 

User 
verifies 
error 

✖ 

KR data 

KR 
restore 

KREfinder KREreproducer 

Figure 4: Overview of our approach.

and destructed in onDestroy(). Hence, if a field assignment
statement appears in these callback methods, we do not iden-
tify it as a change statement. We follow method invocation
transitively in the call graph: the callee methods (directly or
indirectly called by these callbacks) are also treated as ini-
tialization or destruction, respectively. Finally, the construc-
tion methods of an object or class are also treated similarly.
For example, init () and clinit () initialize an instance and
class respectively. Once we eliminate the changes made in
initialization and destruction methods, we are left with the
genuine field changes that help us identify KR data.

Finding KR Data Saves and Restores. We identify data
saves and restores as those call instructions to certain An-
droid API methods that save data to persistent storage and
restore data from persistent storage, respectively. However,
as there are thousands of API methods in the AF, manually
enumerating these methods is not feasible. We thus analyzed
the Android API documentation and constructed rules to
identify the API calls of interest, which are listed in Table 3
and Table 4. In the tables, ∗ matches any number of char-
acters. For example, to find data saves, we check whether
the method name starts with put when the class name is
android.os.Bundle; to find data restores, we check whether
the method name starts with query when the class name is
android.database. sqlite .SQLiteDatabase; in other classes, we
look for operations whose prefix is save or restore , respec-
tively.

Finding Exits. The exit of an Android app or activity is
different from that of a desktop application since Android
apps are event-driven and do not have a main() method. We
have identified three types of exit statements.

First, the end of onDestroy() method—this is the most
common exit. According to the Android documentation, this
callback method is the final call an activity receives before it
is destroyed. This can happen either because the activity is
finishing (its finish () method was invoked), or because the

Class Method
Android.content. SharedPreferences put∗
Android.content. SharedPreferences$Editor put∗
Android.os.Bundle put∗
Android.database. sqlite .SQLiteDatabase insert ∗
Android.database. sqlite .SQLiteDatabase replace∗
Android.database. sqlite .SQLiteDatabase update∗
∗OutputStream, ∗Writer write∗
∗ save∗

Table 3: Data save methods.

Class Method
Android.content. SharedPreferences get∗
Android.os.Bundle get∗
Android.database. sqlite .SQLiteDatabase query∗
Android.database. sqlite .SQLiteDatabase rawQuery∗
∗InputStream, ∗Reader read∗
∗ restore ∗

Table 4: Data restore methods.

system is temporarily destroying this instance of the activ-
ity for cleanup or resource conservation purposes. Second, a
java . lang .System.exit () call; this call terminates the currently-
running Java Virtual Machine. Third, the end of onStop().
This method is called when the activity is no longer visi-
ble to the user (going from foreground to the background),
because another activity is resuming, hence forcing the cur-
rent foreground activity into the background. Note that an
activity can be terminated without calling onDestroy() if the
user force-stops the app from the app management interface.
Fourth, our implementation has the option to set the end
of onPause() as an exit; we have not used this option since
exiting directly after onPause() is rare, as explained in Sec-
tion 2.4.
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Resumed 
 

krfield = ... 

Killed/exit 💀 

onDestroy() { 
...  
save (krfield)
}   

KR write 

N
ot

 c
al

le
d 

onPause() { 
...  
} 

onStop() { 
...  
} 

Figure 5: Type 1 loss.

3.3 Defining and Finding KR Errors
KR data saves and restores are critical, as their absence (or
presence on paths that are not reached at runtime), can lead
to KR errors. While developers generally do write code to
handle KR data, the handling can be inconsistent—missing
KR saves, KR restores, or both—leading to KR errors. We
identify potential errors using data-flow and control-flow
analysis.

Notation. We use the following notation: D is the set of
KR data fields, i.e., a subset of the mutable fields, as de-
scribed in Section 3.1. C is the set of field-changing instruc-
tions c1, c2, . . ., i.e., all those bytecode instructions that mu-
tate a field (or alias thereof). S are field-saving instructions,
i.e., those instructions s1, s2, . . . invoking the save methods
listed in Table 3; similarly, R are the field-restoring instruc-
tions r1, r2, . . . that invoke the restore methods listed in Ta-
ble 4. G is the set of methods that are guaranteed to be called
when the app is winding down, e.g., onPause(); U is the set of
methods that are not guaranteed to be called, as per Table 2.

Intricacies of Android/Java static analysis. Since our
analysis operates on real-world Android apps, it is natural
to see aliasing (our analysis is context-, flow-, field-, object-
sensitive thanks to FlowDroid, see Section 4.1). Therefore,
since fields d can be manipulated either directly or through
aliases, in the reminder of the paper, by “a field d” we mean
“d or an alias thereof”. Similarly, by “a change c” (or “a save
s”) we mean changes (or saves) made directly or through an
alias. Alias-based changes and saves complicate the analysis
as they might introduce additional Gen or Kill dataflow facts
on, say, field d, even though the analyzed expression does
not contain d.

We divide KR error reports into four loss types. We now
define these types and discuss how our approach identifies
them; the type and direction for each of these dataflow anal-
yses are shown in Table 5. For Type-1, Type-3, Type-4 and
the first stage of Type 2 errors, we essentially use a reaching
definitions analysis [4] implemented on top of Flowdroid to
compute the possible data flows between restores, changes,
and saves.

Type 1. Definition: A KR field has only one save operation
that is placed in methods that are not guaranteed to be called
by the AF, hence the KR field value might be lost. This is
shown in Figure 5 where a field krfield is modified while
the app is running (i.e., in the Resumed state), and its save

Type 1 May Forward
Type 2

First stage Must Forward
Second stage Must Backward

Type 3 May Forward
Type 4 May Forward

Table 5: Dataflow analyses for each error type.
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krfield = ... 

Killed/exit 💀 
onPause() { 
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if (pred)
   ...
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   save(krfield)
 
}   

KR write 
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onStop() { 
...  
} 

onDestroy() { 
...  
} 

Figure 6: Type 2 loss.

operation is placed in onDestroy; if the app is killed after
onStop(), we have an exit without save, hence krfield is lost.
Identification: we say KR field d has a potential loss Type-1
if d is changed by at least one instruction c, has at least one
save (that is, a KR field d’s change c flows to a save s), but
all saves S are in methods from set U (not guaranteed to be
called).

Type 2. Definition: A KR field has at least one save oper-
ation, but there exists a path from a data change instruction
to an activity or app exit AND the path does not contain any
save operation for the data; hence the KR field value might
be lost. This is shown in Figure 6 where krfield is modified
while the app is running and its save operation is placed in
onPause(), which is invoked, but due to branch condition pred

being true, control flow will follow the then branch, hence
again we have an exit without save, and krfield is lost. Iden-
tification: we say KR field d has a potential loss Type-2 if d
is changed by at least one instruction c, has at least one save
s where s is in a method guaranteed to be called g following
the write to d, but s is not reachable on all paths from c —
meaning there exists a path where the change will be lost.

We discover Type-2 errors using a two-stage analysis. In
the first stage we use a must-forward analysis to find those
changes c to KR fields d that flow into saves s=save(d′); note
that the save methods are not necessarily invoked on d – a
save could be invoked on field d′ (where d′ 6= d) and the
save is still OK as long as d flows (is copied) into d′.

The second stage bears some similarity with very busy
expressions (VBE) analysis [4], with two differences, as ex-
plained next. Recall that an expression e is very busy at point
p if for all paths starting at p and ending at the end of the pro-
gram, an evaluation of e appears before any redefinition of e.
So for finding Type-2 errors, one strategy would be to con-
sider changes c (of KR fields d) as the program points p, and
saves s as expression uses e; then declare a Type-2 error if c
is not very busy (not saved on all paths to the exit). Our anal-
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Killed/exit 💀 

onResume() { 
...  
restore(krfield)
}   

KR restore 

onPause() { 
...  
} 

onStop() { 
...  
} 

onDestroy() { 
...  
} 

Restart (new process) 

No save 

Figure 7: Type 4 loss.

ysis extends the aforementioned strategy in two directions,
to deal with the intricacies of Android static analysis: (1)
aliasing-based accesses, changes and saves, as discussed ear-
lier in this section; and (2) unlike VBE for which all meth-
ods are “equal”, our analysis has to discard those saves s
placed in methods u that are not guaranteed to be called.
This second-stage analysis is must-backward (as VBE is).

Type 3. Definition: A KR field has no save and restore op-
erations. If there exists a statement that changes the field,
the changed value will be lost, but a KR error does not nec-
essarily occur (e.g., when the post-restart application state
is not data- or control-dependent upon this field). Identifica-
tion: there is no dataflow from the change c to either a save
s or a restore r.

Type 4. Definition: this loss occurs when a KR field does
not have a save operation, but has a restore operation, e.g.,
when the developer forgot to invoke a save method. If the
KR field is restored and then changed, we infer that it should
have been saved. This is shown in Figure 7 where krfield is
restored after restart, in the onRestore() method, but krfield

is never saved prior to restart. Identification: the restore r
is performed in a method guaranteed to be called upon app
start, e.g., onStart() or onResume(), and there exists dataflow
from the restore r to a change c.

Termination: We now discuss why the data-flow analy-
ses we have presented, which find the four types of errors,
terminate. For Type 1, Type 3, and Type 4, they terminate
by virtue of reaching definitions termination [4]. For the first
stage of Type 2 errors, the analysis is performed by calling
Flowdroid data-flow analysis functions which again termi-
nate [12]. For the second stage of Type 2 errors, our VBE
variant terminates because the dataflow analysis uses mono-
tonic transfer functions on a finite lattice. The lattice has
just two elements: true and false (i.e., whether the field has
changed or not). The initial state is true. Then, all of the sub-
sequent flow functions either leave it as true or modify it to
false, hence the flow functions are monotonic. As the height
of the lattice is finite (i.e., 1), the algorithm therefore termi-
nates [26].

3.4 Reporting and Reproducing Potential Bugs
After finding the potential losses, we produce error sum-
maries, i.e.,

1. Error type, KR field name, location (i.e., the method and
change instruction for that KR field).

2. A summary of the control flow path that leads to the error.

Given these summaries, we can move to reproducing and
confirming the errors. For this, we use a suite of static anal-
yses (provided by other tools) to construct directed transi-
tions, i.e., sequences of GUI events and method callbacks
that must be invoked to drive the execution to the error loca-
tion. Once the app is in the error location, we can go through
pause-and-resume (or kill-and-restart) cycles to confirm the
error. This suite relies mostly on third-party tools, so we de-
scribe it in the implementation part (Section 4.2).

4. Implementation
We now briefly describe our static analysis implementation,
as well as the implementations associated with error repro-
duction and error report verification.

4.1 Static Analysis with KREfinder

KREfinder is based on Flowdroid [12] (an open-source static
analysis tool for Android apps) version 1.0. The analysis is
context-, flow-, and object-sensitive; the points-to analysis is
Andersen [5] (Flowdroid defaults).

Limitations. KREfinder inherits Flowdroid’s soundness
goals: sound up to reflective/native calls. Also, while Flow-
droid conservatively handles Android-specific, heavily-used
constructs, such as Intents and Broadcasts via overapproxi-
mation, it does not handle implicit flows, hence KREfinder
does not handle implicit flows either.

We now provide a brief description of Flowdroid and
our extensions to it that constitute KREfinder. Flowdroid’s
main goal is static taint analysis, i.e., determining whether a
tainted “source” reaches a security-sensitive “sink”. We have
extended Flowdroid in two main directions — fine-grained
flow tracking and scalability — to fit our requirements, and
then added several new implementation modules for finding
KR errors.

First, Flowdroid only supports marking methods as sinks
and sources, not arbitrary instructions. This hinders the pro-
cess of finding KR errors, since finding such errors requires
the ability to trace dataflow between instructions (including
call statements, assignment statements, exit statements, and
return statements). We thus extended Flowdroid to be able
to trace flow between arbitrary instructions.

Second, Flowdroid requires large amounts of memory for
large apps—while scalability can be improved by setting
certain command-line arguments, increasing scalability will
reduce precision. We discovered that the large memory foot-
print is due to Flowdroid simultaneously tracking multiple
pairs of sinks and sources. Hence we came up with an in-
tuitive, yet crucial modification: instead of tracking multiple
sink-source pairs simultaneously, we changed Flowdroid to
trace flow from one source only at a time, and run Flow-
droid multiple times with different sources. This change of
flow tracking strategy has improved scalability significantly.
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====== path ======
Lorg/hermit/audalyzer/Audalyzer;→

onCreate(Landroid/os/Bundle;)V
−##→ Lorg/hermit/audalyzer/Audalyzer;→

onOptionsItemSelected(Landroid/view/MenuItem;)Z
−−> Lorg/hermit/audalyzer/Audalyzer;→ showAbout()V
−−> Lorg/hermit/android/core/MainActivity;→ showAbout()V
−−> Lorg/hermit/android/core/MainActivity;→ createMessageBox()V
−−> Lorg/hermit/android/core/AppUtils;→ getVersionString()

Ljava/lang/String ;
−−> Lorg/hermit/audalyzer/Audalyzer;→ showFirstEula()V
−−> Lorg/hermit/android/core/MainActivity;→ showFirstEula()V
−−> Lorg/hermit/android/core/OneTimeDialog;→ showFirst()V
−−> Lorg/hermit/android/core/OneTimeDialog;→ isAccepted()Z

Figure 8: Directed path transitioning to the method getVer-
sionString(), as produced by Redexer.

Figure 9: Our toolset, based on output from Redexer and
Gator, reveals the Disclaimer menu item as the GUI element
to invoke to reach this view.

After these extensions, we implemented the Section 3
algorithms as several new modules on top of Flowdroid,
yielding KREfinder, a static analysis that reveals potential
KR errors. Each error report includes the change statement
and its location (method name, class name, package name,
save statement and restore statement), as well as summaries
of data- and control-flow (from change to save or exit).

4.2 Verifying and Reproducing KR Errors
After KREfinder completes, producing a set of potential bug
reports, our KREreproducer helps reproduce and verify the
errors. KREreproducer uses a combination of new and ex-
tended tools, consisting of mainly two steps: First, creat-
ing a directed transition to the error point on legal app ex-
ecution paths. Second, forcing the app to exit, to mimic an
actual scenario, either pause-and-resume or kill-and-restart,
and observe the results.

4.2.1 Example: Reproducing Audalyzer’s KR Error
We start with an example, the Audalyzer app, to demonstrate
how we verify the potential bug reports produced by the
static analysis. Audalyzer is an audio analyzer. When the app
is first opened, an End User License Agreement (EULA) is
displayed; the user accepts it by pressing the ‘Accept’ button,
and the app sets the isAccepted field to true. This ensures that
the EULA confirmation will never pop up again. But if the
app exits just after the user presses ‘Accept’, the isAccepted

field value change might be lost, as it is not saved on all exit
paths.

KREfinder reported this error, indicating that isAccepted

was changed in the isAccepted() method of the org/hermit/

android/core/OneTimeDialog class. Hence, to reproduce the
error we need to trigger input events in such a way that we
execute this method and then exit the app at the point after
the change.

To do so, KREreproducer uses the Redexer binary rewrit-
ing infrastructure [25] to generate a directed path transition.
Given the Audalyzer.apk and the target method isAccepted(),
Redexer produces a sequence of callbacks and associated
method calls such that calling the sequence will lead to
isAccepted() being invoked. Figure 8 shows the correspond-
ing output of Redexer for this scenario: the types of call-
backs that need to be generated to end up in the isAccepted()

method.
Note, however, that just generating the sequence of call-

backs is not enough. We need to identify the associated
GUI elements that, when exercised by the user, trigger
those callbacks. To do so, KREreproducer uses another
tool, Gator [33], which, given an APK file, produces the
necessary GUI element-callback mapping used in the pro-
gram. Coupling Gator’s and Redexer’s outputs we can iden-
tify which GUI elements we need to exercise to reach the
point of interest in the execution path for invoking the de-
sired method. Figure 9 shows one of the outputs of Gator
after we filter out results. From Figure 8 we see that the
first GUI callback event was onOptionsItemSelected in the
org/hermit/audalyzer/Audalyzer class. Figure 9 shows the out-
put of our toolset, revealing that the associated GUI ele-
ment is a menu item with the title ‘Disclaimer’. That is, we
need to first invoke the application menu and select the ‘Dis-
claimer’ item. We then automate GUI interactions based on
these results, using the A3E [13] app exploration tool: given
the sequence of GUI element names, A3E exercises the se-
quence and “lands” the app at the error point, with no user
intervention.

After reaching the error point at runtime, we killed Au-

dalyzer, i.e., forced the app onto an exit path. Finally, we
restarted the app to verify whether the changes made in
‘isAccepted’ were persistent, i.e., the value of the isAccepted

field was still true (it was not—this is precisely the prob-
lem). We now describe the general techniques for achieving
directed transition and exiting.

4.2.2 Directed Transition to the Error Point
The directed transitions generated by KREreproducer will
guide app execution to error points. While generating inputs
to direct execution to a certain program point is of course
undecidable in the general case, the GUI-oriented, event-
based nature and shallow stack of Android apps make it
easier in practice to reach a certain point in a certain method.

Generating the directed transition path. Based on KRE-
finder’s output, we identify the methods we are interested in.
Next, KREreproducer uses Redexer to generate a sequence
of events, starting from the app’s home screen that will pro-
vide a directed transition to the method specified.
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Creating sets of valid “View-Events” pair. Given the
aforementioned sequence of events, KREreproducer maps
the events with required View elements. To do this, KREre-
producer uses Gator which conducts static reference anal-
ysis to create a one-to-one mapping from View elements
to their associated callbacks; we now have a sequence of
callbacks ready to be fired.

(Optional) Automated exploration. With the event and
callback sequences at hand, the developer can use the A3E
explorer to automatically guide the app into the desired state;
alternatively, the user may attempt to fire the events manu-
ally by exercising the corresponding UI elements.

4.2.3 App Resume/Restart and Monitoring
Once the app is in a potential-error state (it has made changes
to KR data but the changes are not saved) we need to drive
the app down an exit path, which varies depending on the
desired restart level. We triggered restarts at the three levels
defined in Section 2.2/Table 1, i.e.:

1. Pausing the app by popping up a dialog-themed activity,
which invokes onPause().

2. Stopping the app by pressing the ‘Home’ button, which
invokes onStop().

3. Kill (finish) the app by pressing the ‘Back’ button, which
invokes onDestroy().

After the app exits, we restart it. Upon restart, one of the
error categories described in Section 5.2.1 will materialize,
or the app might even crash outright.

To get a hold of the error details, we track individual
app fields (KR data) that the static analysis has identified
as potentially being lost, as follows: we insert calls to log
field values before and after the exits, using the apktool [2].
To dump GUI states (so we can compare the before-restart
and after-restart GUI states and find differences) we use
Redexer to rewrite the app to dump GUI states before exits
and after resume/restart. Finally, we monitor app execution
for crashes via the logcat Android system log utility.

To conclude, we have constructed an end-to-end system
that, given an Android app as input, will automate KR error
discovery, location, and reproduction.

5. Evaluation
We have evaluated our approach along two main dimensions.
First, effectiveness: can the approach run on popular, off-
the-shelf apps? and is the approach effective at finding po-
tential bugs? Second, efficiency: does the analysis complete
in a reasonable amount of time? and is the process burden-
some for users?

5.1 Methodology
App datasets. We downloaded and examined 334 apps
from Google Play (play.google.com), AppsApk (www.
appsapk.com), and Google Code (code.google.com). We

Criteria # apps Tag
Initial set 334
Can be analyzed with Flowdroid 324 SA-324

Have potential errors 114
Decompilable 109
Decompilable&have potential errors 49
Have true positives 37 TP-37

Table 6: Datasets construction.

chose these apps using several criteria which we believe are
necessary for making meaningful observations. In particu-
lar, the 334 applications: (a) cover different categories, e.g.,
Utilities, Email & SMS, Games, Health & Fitness, Wall-
papers, Photography, Weather, News, Education, Browser,
Map, Call & Contacts; (b) have variety in terms of size,
from 3KB to 26MB; and (c) have variety in terms of pop-
ularity, e.g., many apps have over 1 million installs while
Facebook has over 1 billion installs.

From these 334 apps, we constructed two datasets of
324 apps and 37 apps, respectively (SA-324 and TP-37), as
shown in Table 6 and explained below. Of the 334 apps, 324
could be successfully analyzed with Flowdroid; we name
this dataset SA-324. Among these 324 apps, our static anal-
ysis reported potential errors in 114. Next, we attempted to
decompile the 324 apps using the Dare [30] and Dex2jar [15]
decompilers; from 324 apps, only 109 could be decompiled
successfully.6 Out of the 109 apps that could be decompiled,
the static analysis reported potential errors in 49. With the
decompiled source code for the 49 apps at hand, we manu-
ally analyzed the source code to discern false positives from
true positives. We found that 37 apps had true positives—
these constitute the TP-37 dataset. Our evaluation hence-
forth proceeds on the SA-324 and TP-37 datasets.

5.2 Effectiveness
SA-324. The app characteristics and overall results for the
324 apps are presented in Table 7. The largest app in the
dataset, Facebook, was about 23 MB in size, while the me-
dian app size was 168 KB. The analysis found potential er-
rors in 114 out of 324 apps, hence the average 0.8 reports
for the entire dataset. Across those 114 apps with potential
errors, there were 2.3 error reports per app, on average.
TP-37. Table 8 shows app characteristics and analysis
results for the apps in TP-37. For each app we provide
the name, version, size, popularity (number of installs per
Google Play or downloads per Google Code), static analysis
time, the number of true positives and the number of false
positives.

The true positives were confirmed using the error repro-
duction process described in Section 4.2. While the number

6 Decompilation can fail due to several reasons, e.g., apps use obfuscation,
or the decompiler is brittle.
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Size (KB) Time (sec.) Reports
min max average median min max average median min max average median

3 23,112 377 168 1 2,184 61 22 0 6 0.8 0

Table 7: App characteristics and analysis results for dataset SA-324.

App Name Version Size Installs Time True Positives False Positives
(KB) (sec.)

1. Dr.WebAnti-virusLight v.9 1,464 50,000,000–100,000,000 60 1 3
2. Motorola Camera 3.1.5 2,529 10,000,000–50,000,000 948 1 2
3. Alarm Clock Plus 4.7.1 2,200 5,000,000–10,000,000 76 1 2
4. FoxFi 2.17 388 5,000,000–10,000,000 31 2 1
5. Souvey Musical Pro 6.0.7 776 5,000,000–10,000,000 75 3 1
6. OI File Manager 2.0.2 927 5,000,000–10,000,000 54 1 1
7. OpenSudoku 1.1.5 219 1,000,000–5,000,000 102 1 1
8. Open WordSearch 2.3.4 680 1,000,000–5,000,000 75 1 0
9. NPR News 2.1 543 1,000,000–5,000,000 36 1 0
10. Painless Power Toggles 5.0.03 624 1,000,000–5,000,000 37 3 3
11. Symantec Norton Snap 1.0.1.62 1,606 1,000,000–5,000,000 30 1 1
12. Alarm Klock 1.9 340 500,000–1,000,000 44 1 1
13. MOBILedit! PC Suite 1.1.19 133 500,000–1,000,000 19 2 1

14. ScrambledNet 3.4 259 500,000–1,000,000 1,569 1 1
15. Phone Copier 3.0.2 662 100,000–500,000 156 1 0
16. Dock4Droid 3.5 268 100,000-500,000 84 1 1
17. MiniFetion 2.8 129 100,000–500,000 121 1 0
18. Scrollable News 2.0.0 760 100,000–500,000 165 1 1
19. Zirco Browser 0.3.2 210 50,000–100,000 71 1 3
20. Brightness Profiles 1.3 25 50,000–100,000 20 1 1
21. Speaker Proxmty donate 0.3.5b 117 12,300 25 1 1
22. AndDaaven Siddur 0.2.6 645 10,000–50,000 8 1 0
23. Droidstack 1.0.11a 224 10,000–50,000 47 1 2
24. Open Live View 1.0.2.2 440 10,000-50,000 79 1 1
25. SSH Tunnel 2.0.3 618 10,000–50,000 77 3 0
26. BTHF PowerSave 1.0 77 10,000–50,000 23 3 0
27. DiskDigger Pro 1.0 978 10,000–50,000 64 1 1
28. ServDroid.Web 0.1 156 10,000–50,000 26 1 0
29. DateSlider 1.2 54 10,000 37 1 2
30. Copter GCS 8 284 8,300 24 3 2
31. CalenMob 1.0.3 484 5,000-10,000 105 1 1
32. AndroidToken 2 01 104 4,000 111 1 4
33. BlueNET 0.1 108 4,200 17 1 2
34. VPN Connections v04 395 3,000 19 1 1
35. BikeRoute 1.0.3.7 446 3,000 137 1 2
36. KITCard Reader 0.9 33 1,000–5,000 11 1 0
37. Personal Work Recorder 0.0.4 73 500 28 1 2

Table 8: App characteristics and analysis results for dataset TP-37.

of false positives can be further reduced by improving the
precision of the static analysis (Section 5.2.2), we found the
process of triaging to be quite efficient, 5–15 minutes per er-

ror report and reproduced bug, as explained in detail in Sec-
tion 5.3; hence even for apps with a high positive rate, e.g.,
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App Error description KR field(s) lost Restart
kind

1. Alarm Clock Plus The user sets the alarm; after restart the alarm is not set any longer mSelectedId 3
2. Alarm Klock The user changes the time of an alarm; after restart the alarm time change is gone time 2
3. AndDaaven The user navigates through a set of prayer lines. The last position is lost after

restart
currentOffset 3

4. Android Token Users selects an existing token for a one-time password. After restart the selection
is lost

mSelectedTokenId 3

5. BikeRoute A list of routes was populated. Upon restart, the current selected route is lost id 3
6. BlueNET The user turns the gateway server on. The server is turned off after restart state 3
7. Brightness Profiles Brightness level is lost after restart appBrightness 3
8. BTHF PowerSave The user changes the states of the master switch service, bluetooth module and

outgoing calls. After restart, the changes are lost
switchOffBTAfterCall

Ended, enabled,
processOutgoingCalls

3

9. CalenMob The user sets the working date to a future date. After restart, the working date
resets to current date

AgendaStart 3

10.Copter GCS This app is a Ground Control Station for the arduCopter and arduPirate Un-
manned Aerial Vehicles. The user changes a set of states in Mode Selection and
Readouts, e.g., Gyro X, Accel Y, then saves them. After restart, the state changes
are lost

spinners , sb, temp 3

11.DateSlider The chosen date is lost after restart mTime 3
12.DiskDigger Pro The user sets the percentage to start scanning from; percentage is lost after restart ”long c” 3
13.Dock4Droid This is a home screen dock app. Users can stick their favorite apps as launcher

icons in the dock and open them directly from the dock. To do so users have to
go to the ‘settings’ menu add apps to the dock. After restart the last-added app is
missing from the dock

name 3

14.Dr.WebAnti-virusLight The custom scan check box setting is lost after restart java . lang . String [] g 3
15.Droidstack This is a Stack Exchange client app. Upon selecting a stack exchange post, the

title is not preserved after restart
title 3

16.FoxFi The user enters email and serial number. After restart the entered data is lost aM, aS 2
17.KITCard Reader This is a magnetic card reader app. After restart the last-fetched balance is lost lastBalance 3
18.MiniFetion User composes an SMS message and pauses; after resuming the message is lost. mMessage 1
19.MOBILedit! PC Suite After install, if the application is allowed to connect to a local WiFi, a restart does

not retain the WiFi settings
protocolVersion ,
mAllowRemote

3

20.Motorola Camera The user switches from image mode to video mode, then stops and resumes. The
camera returns to image mode again

mMode 2

21.NPR News While navigating through stories, if a user selects a story, and the app restarts, the
selected story was not loaded after a restart

timestampFirst 3

22.OI File Manager After selecting a file and restarting, the last-opened path is lost mPath 3
23.Open Live View This is a smart watch app. Recent changes to the connected device list are lost

after restart
valueList 3

24.OpenSudoku Game state (user-filled numbers) lost after restart mValue 3
25.Open WordSearch The user fills a new word and then restarts. The new word is gone. storeId 2
26.Personal Work

Recorder

If restarting while the app is recording a workout session, the workout start time
is lost

start at 3

27.Painless Power Toggles The appearance of notification widgets is lost after restart icon, flags ,
bigContentView

3

28.Phone Copier After restart, the email address entered by the user is lost mEmail 3
29.Scrambled Net The game state is lost after a restart gameState 3
30.Scrollable News The user selects a color. The selection is lost after a restart selectedPosition 2
31.ServDroid.web The user changes the status and then restarts. The new status is gone. mSettings 2
32.Souvey Musical Pro This is a musical toolkit including instruments (piano, drums, autoharp), tools

(metronome, pitch pipe) and a game. The user changes the settings of Metronome
and then stops the app. After resuming, the changes are lost.

bpm, beats, notes 2

33.SpeakerProximity do-

nate

The app automatically turns the speaker phone on and off based on input from
the proximity sensor. After restart the sound settings are lost

value2 3

34.SSH Tunnel SSH connection profile (local and remote port numbers, server addresses) is lost
upon restart

localPort ,
remotePort, hostIp

3

35.Symantec Norton Snap User turns on the flashlight, then stops the app; after resuming, flashlight is off ”boolean d” 2
36.VPN Connections The user changes IPSec ID, but the ID lost upon restart ipSecId 3
37.Zirco Browser Bookmark lost after restart mDbHelper 3

Table 9: Description of reproduced bugs for dataset TP-37.
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AndroidToken, we believe that the error reproduction burden
is acceptable.

In Table 9 we provide a detailed description of the 49
bugs we reproduced: app name, a brief description of the
error, the name of the lost KR field(s) and the restart kind
(1, 2, or 3, defined at the beginning of Section 4.2.3). As we
can see, the error manifestations vary depending on the app.
E.g., the alarm time gets lost after it is set in Alarm Clock

Plus; the Personal Work Recorder app fails to keep track of
the workout start time; the Zirco browser loses the bookmark
the user has just set.

Many of the errors we present in Table 9 can be found in
the apps’ reviews on Google Play and Google Code, e.g.:

Brightness Profiles: “When application window disap-
pears brightness returns to previous level”; “As soon as
you exit to home screen brightness level jumps back up
to phone’s minimum level”; “the lowest brightness level
doesn’t stay dim, even w/auto-brite off”; “Randomly sets
back to 100% and auto brightness after using camera” [18].

SSH Tunnel: “Enable ssh tunnel. connects fine. when
wireless connection is lost and reconnected ssh tunnel does
not reconnect”; “ssh tunnel is turned disabled/unchecked.
Auto connect and reconnect are still checked” [17].

Souvey Musical Pro: “This app is great, but there is one
thing that has been frustrating me with it: if the metronome
is stopped and the phone locks, when I unlock it again the
metronome has gone back to 40 bpm. Any chance of a fix?”;
“On Droid 2, the metronome is frustrating. I use it when I
practice but if I ever stop it, and turn off the screen, it resets
to 40bpm and 4/4 time.” [19].

Scrambled Net: “1. Play Game, get near end, just about
ready to solve difficult problem; 2. Boss calls; 3. Go back to
game later; 4. Game not (always) ‘paused’, need to start new
(swear).” [16]

5.2.1 KR Error Manifestation Categories
Based on the reproduced errors, we now categorize KR er-
rors according to their manifestations.

Losing GUI state. While Android supports saving GUI
state across restarts via the default implementation of
onSaveInstanceState (Section 2.4), GUI state loss can still oc-
cur for two main reasons: onSaveInstanceState() is not in-
voked, or the app has a custom GUI that is not managed by
the AF. Examples of unsaved GUI state include the app “for-
getting” the custom scan setting in Dr.WebAnti-virusLight.

Losing user’s progress. In many cases, KR errors lead to
losing user’s work (e.g., the message draft is lost when the
user composes a message in MiniFetion, the Zirco Browser

app “forgets” to save a bookmark before restart), play
(e.g., game state is lost in OpenSudoku and Scrambled-

Net), or workout data (the workout timing in Personal Work

Recorder).
Losing device settings. Many KR errors lead to device

setting being lost: the phone’s flashlight setting is lost in
Symantec Norton Snap; the speaker phone setting is lost

App Size Installs Time Reports
Name (KB) (sec.)
Facebook 23,112 1,000,000,000–

5,000,000,000

35 0

UC Browser 13,429 100,000,000–
500,000,000

21 0

Media Mogul 5,617 1,587 12 0

Alarm Clock

Plus

2,245 5,000,000–
10,000,000

76 3

Symantec

Norton Snap

1,606 1,000,000–
5,000,000

30 2

Table 10: Top-5 largest apps.

in SpeakerProximity; the camera setting is lost in Motorola

Camera; the Bluetooth settings are lost in BTHF PowerSave

and FoxFi.

5.2.2 False Positives
As with any static analysis, our approach is prone to scala-
bility issues and false positives. We have identified four main
sources of false positives.

First, many false positives are potential loss type 3 (Sec-
tion 3.3). We include them to preserve our soundness guar-
antees, but in practice we found them to be benign. That is,
a type 3 potential loss does not lead to post-restart errors
due to lack of dependencies from the unsaved fields to post-
restart code. A further control and data dependency analysis
could be used to reduce the false positive rate; we leave this
to future work.

The second source is flow imprecision. Flowdroid’s
“dummy main” function that models how callbacks will be
invoked has limited precision: it assumes callbacks can be
invoked in any order (hence potentially introducing spuri-
ous data flow), but in practice the order is constrained. This
imprecision could be alleviated by incorporating ideas from
other static analyzers such as Gator [33].

Third, an app may offer GUI options for saving data, e.g.,
a ‘Save’ button. Our static analysis does not identify these,
and assumes the data will not be saved; e.g., the app Alarm

Clock Xtreme had one such false positive.
Fourth, imprecision in Soot’s alias analysis (the alias

analysis used by Flowdroid) leads to false positives.

5.3 Efficiency
We ran our static analysis on an 8-core Intel Xeon i7-4770
(8MB Cache, 3.4 GHz) with 32GB of RAM. The system ran
Ubuntu 14.04.1, Linux kernel version 3.13.0-32-generic.

Static analysis efficiency. SA-324. Running the static
analysis on the entire dataset took 6 hours. The “Time”
column in Table 7 shows running time statistics: the mean
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App Name Size Installs Time Reports
(KB) (sec.)

Painless Power

Toggles

624 1,000,000–
5,000,000

36 6

Copter GCS 284 8,300 24 5

AndroidToken 104 4,000 111 5

Dr.WebAnti-

virusLight

1,464 50,000,000–
100,000,000

60 4

TheElements 441 1,500 40 4

Table 11: Top-5 apps in terms of error reports.

App Name Size Installs Time Reports
(KB) (sec.)

ScrambledNet

3.3

247 500,000–
1,000,000

1,569 3

Motorola

Camera

2,529 10,000,000–
50,000,000

948 3

Yuchdroid 328 2,350 670 1

EmWeather 607 1,000 456 0

Audalyzer 196 1,000 256 4

Table 12: Top-5 apps with highest analysis time.

App Size Installs Time Reports
Name (KB) (sec.)
Facebook 23,112 1,000,000,000–

5,000,000,000

35 0

UC

Browser

13,429 100,000,000–
500,000,000

21 0

Dr.WebAnti-

virusLight

1,464 50,000,000–
100,000,000

60 4

Yahoo

weather

391 10,000,000–
50,000,000

10 0

Alarm

Clock Plus

2,245 5,000,000–
10,000,000

76 3

Table 13: Top-5 most downloaded apps.

analysis time is 61 seconds while the median is 22 seconds,
which shows that our analysis is practical.

TP-37. Table 8’s “Time” column shows the individual
running time for the 37 apps with true positives. While
times ranges from 8 to 1,569 seconds, the analysis typically
completes in less than 5 minutes.

Input generation efficiency. The input generation stage
took less than a minute for the examined apps; we omit
individual numbers for brevity.

Error report triaging (manual effort) efficiency. While we
did not precisely measure the time it took to triage the error
reports in the manually-analyzed apps, the first author, as
well as the second author, were consistently able to triage
each error report as follows. Ruling out a report as a false
positive takes less than 5 minutes. Understanding and repro-
ducing a bug takes about 10-15 minutes; of course, in case
of multiple error reports, the cost for triaging subsequent re-
ports is lower due to the initial learning curve. Note that the
apps were unfamiliar to the triagers, so we expect the time
to further reduce when developers run our analysis on apps
they are familiar with.

Top-5 apps. We now present the results of running the
analysis for top-5 apps according to several criteria. The
characteristics and results for the largest apps are presented
in Table 10: while analysis time depends on many factors
(aliasing, size of control flow graph, etc.) note how our ap-
proach can handle substantial APKs. The top-5 apps in terms
of errors are shown in Table 11; this shows the precision of
our analysis, as we believe that triaging 4–6 reports is quite
manageable. The apps with the highest analysis time are
shown in Table 12; we believe that even the longest times,
e.g., 1,569 or 948 seconds for ScrambledNet 3.3 and Motorola

Camera respectively, are acceptable. The most popular apps,
all exceeding 5 million installs, are shown in Table 13; this
illustrates the applicability of our analysis on popular apps.

Summary. We are now in a position to answer the ques-
tions set forth at the beginning of this section. Our approach
is effective: it handles sizable off-the-shelf apps without re-
quiring access to the source code; has uncovered dozens of
errors in popular apps; and has a low false-positive rate.
Our approach is efficient: the static analysis part typically
completes in 61 seconds; input generation takes less than a
minute as well, which allows users to examine reports as
well as reproduce and locate errors efficiently. The manual
analysis process typically takes 5–15 minutes per error re-
port, which suggests that the analysis is effective at finding,
triaging and reproducing errors.

6. Related Work
Resume and restart errors. Zaeem et al. [37] have devel-
oped an app testing tool named QUANTUM. QUANTUM
uses a library of “interaction features” (common patterns
of users interacting with apps), to test apps by construct-
ing parsimonious test cases from GUI models and interac-
tion features; QUANTUM compares GUI state before and
after features are exercised. Their features include screen ro-
tation (which involves a stop/restart per Section 2.3), killing
and restarting the app, pausing and resuming the app, and
pressing the ‘Back’ button. They tested 6 apps and found 22
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bugs, including kill&restart as well as pause&resume bugs.
QUANTUM and our approach differ most fundamentally in
the traditional testing vs. static analysis way. Specifically: we
use a sound static analysis whereas QUANTUM is dynamic;
by comparing GUI states they find only those manifesta-
tions of KR errors that are reflected in the GUI, whereas our
approach can find those and more subtle losses that might
not be visible in the GUI; our approach is fully automatic
whereas QUANTUM requires a GUI model to be manually
constructed and manually validated by the user; we focus ex-
clusively on resume-and-restart errors, whereas their focus
is on generating parsimonious testing suites from a library
of user interaction features; we focus on batch-analyzing
dozens or hundreds of apps without requiring access to app
source code. Our Directed Transitions generator produces
event sequences, rather than test cases as QUANTUM does,
with the goal of hitting a certain program point (rather than
achieving coverage as does QUANTUM).

Adamsen et al. [3] use a somewhat similar approach
to QUANTUM: given a test suite, they inject “neutral”
event sequences including pause-resume, pause-stop-restart,
pause-stop-destroy-create (in addition to other audio or tele-
phony neutral sequences) and see if the supposedly neutral
sequence lead to test failures. Their approach has found 22
critical bugs (e.g., crash or user setting lost) in 4 apps. Our
approach differs from Adamsen et al.’s in a similar way as it
differs from QUANTUM: Adamsen et al.’s approach is dy-
namic and relies on availability of test suites, looking for test
suite failures in general, whereas we have constructed: (1) a
static analysis meant to batch-analyze apps specifically for
resume-and-restart errors without access to test suites and
(2) a Directed Transitions generator meant to hit a certain
program point and help debug a single error, rather than dis-
cover multiple unknown errors as Adamsen et al.’s approach
does.

Finding smartphone-specific bugs. AppDoctor [23] tries
to find bugs by injecting various events into an app’s exe-
cution; one such event is “Rotate”. They mention the prob-
lem of apps having to handle restarts at any moment, but
their approach does not focus on this problem, as we do, and
instead their goal is to find bugs by rapid firing of events.
They found two bugs (in OpenSudoku and Google Trans-
late) where rapid event firing catches the app in an incon-
sistent state, but the bugs are due to rapid event interleaving
rather than state loss upon restart.

Most of the smartphone-specific analysis and verification
work so far has focused on other kinds of bugs. Hsiao et
al. [21] as well as Maiya et al. [28] have used dynamic
analysis to find races in Android apps. Pathak et al. have
used dynamic analysis to find energy bugs [31]. Hu et al.
have used dynamic analysis to find when apps attempt to
deviate from the Activity state machine [22]. Caiipa [27]
uses contextual fuzzing (e.g., fuzzing network parameters or
GPS locations) to discover bugs in mobile apps.

Our work differs in two key regards. First, we focus on a
new class of bugs—KR errors. Second, we use static analy-
sis which is sound but incomplete (prone to false positives)
whereas dynamic analysis is unsound (prone to false nega-
tives) but complete.

Finding persistency bugs in traditional applications. Prior
efforts on persistent data consistency have looked at finding
file system [36] or database errors [14]. Yang et al. em-
ploy model checking to find errors in filesystem code [36].
Gunawi et al. [20] use checkers based on declarative spec-
ifications to check the integrity of, and repair files systems.
Subramanian et al. [35] studied the impact of disk data cor-
ruption on database integrity.

These techniques though, are not directly applicable in
the context of KR data handling on Android due to the sig-
nificant difference in domains, applications, and consistency
properties checked by theirs and our approaches.

Directed testing. While automated testing approaches for
Android abound (Ravindranath et al. [32] provide a compre-
hensive survey), most of them do not aim to “hit” a particular
state or program point. Collider [24] uses symbolic execu-
tion to reach a target instruction, hence it can generate a pre-
cise path condition for reaching the target. While in Collider
UI models were built manually, they could be constructed
automatically using third-party tools. Collider requires ac-
cess to the application source code; it is unclear how well the
symbolic execution scales to very large apps. Our directed
transition method is less precise—it could potentially fail for
complicated path conditions, though we have not seen such
failures on our dataset. In general, we aim at a different de-
sign point: a scalable approach that can be applied efficiently
to large popular apps from Google Play via a fully automatic
tool-chain and without requiring the source code.

7. Conclusions and Future Work
We reveal a new class of errors, “KR errors,” germane to the
smartphone platform: loss of state when an app is paused,
stopped, or killed. We construct a novel static analysis and
tool, KREfinder, that combines data- and control-flow anal-
yses to automatically find potential KR errors in Android
apps. The error reports are passed to another tool we con-
structed, KREreproducer, which generates input sequences
to help users verify the report. Experiments with analyzing
324 Android apps and reproducing bugs in 37 apps have re-
vealed that our approach is effective at finding as well as
reproducing errors, and runs efficiently on sizable apps.

We believe that our technique—finding which data sur-
vives a restart—opens a more general research direction, ex-
ploring the trade-off between over-saving and under-saving;
with our technique, app developers/users know exactly what
data survives a restart, and whether a restart will lose state
or can clean up the state.

878



Acknowledgments
We thank Gogul Balakrishnan and the anonymous referees
for comments on this work. This work was supported in part
by a Google Research Award. Research was sponsored by
the Army Research Laboratory and was accomplished under
Cooperative Agreement Number W911NF-13-2-0045 (ARL
Cyber Security CRA). The views and conclusions contained
in this document are those of the authors and should not
be interpreted as representing the official policies, either
expressed or implied, of the Army Research Laboratory or
the U.S. Government. The U.S. Government is authorized to
reproduce and distribute reprints for Government purposes
notwithstanding any copyright notation here on.

References
[1] Uiapplicationdelegate protocol reference, March

2016. https://developer.apple.com/

library/ios/documentation/UIKit/Reference/

UIApplicationDelegate_Protocol/index.html#//

apple_ref/doc/uid/TP40006786.

[2] android-apktool: A tool for reverse engineering android
apk files, March 2016. https://code.google.com/p/

android-apktool/.

[3] C. Q. Adamsen, G. Mezzetti, and A. Møller. Systematic
execution of android test suites in adverse conditions. In
Proceedings of the 2015 International Symposium on Soft-
ware Testing and Analysis, ISSTA 2015, pages 83–93, New
York, NY, USA, 2015. ACM. ISBN 978-1-4503-3620-8.
doi: 10.1145/2771783.2771786. URL http://doi.acm.

org/10.1145/2771783.2771786.

[4] A. V. Aho, M. S. Lam, R. Sethi, and J. D. Ullman. Compilers:
Principles, Techniques, and Tools (2Nd Edition). Addison-
Wesley Longman Publishing Co., Inc., Boston, MA, USA,
2006. ISBN 0321486811.

[5] L. O. Andersen. Program Analysis and Specialization for the
C Programming Language. PhD thesis, DIKU, University of
Copenhagen, May 1994. (DIKU report 94/19).

[6] Android Open Source Project. Activities, March
2016. https://developer.android.com/guide/

components/activities.html.

[7] Android Open Source Project. Managing the activity
lifecycle, July 2016. http://developer.android.com/

training/basics/activity-lifecycle/.

[8] Android Open Source Project. Platform versions, July
2016. https://developer.android.com/about/

dashboards/index.html.

[9] Android Open Source Project. Pausing and resuming an
activity, March 2016. https://developer.android.com/
training/basics/activity-lifecycle/pausing.

html.

[10] Android Open Source Project. Processes and application life
cycle, March 2016. https://developer.android.com/

guide/topics/processes/process-lifecycle.html.

[11] Android Open Source Project. Saving data, March
2016. https://developer.android.com/training/

basics/data-storage/index.html.

[12] S. Arzt, S. Rasthofer, C. Fritz, E. Bodden, A. Bartel, J. Klein,
Y. Le Traon, D. Octeau, and P. McDaniel. Flowdroid: Pre-
cise context, flow, field, object-sensitive and lifecycle-aware
taint analysis for android apps. In Proceedings of the 35th
ACM SIGPLAN Conference on Programming Language De-
sign and Implementation, PLDI ’14, pages 259–269, New
York, NY, USA, 2014. ACM. ISBN 978-1-4503-2784-8.
doi: 10.1145/2594291.2594299. URL http://doi.acm.

org/10.1145/2594291.2594299.

[13] T. Azim and I. Neamtiu. Targeted and depth-first explo-
ration for systematic testing of android apps. In Proceed-
ings of the 2013 ACM SIGPLAN International Conference
on Object Oriented Programming Systems Languages &#38;
Applications, OOPSLA ’13, pages 641–660, New York, NY,
USA, 2013. ACM. ISBN 978-1-4503-2374-1. doi: 10.

1145/2509136.2509549. URL http://doi.acm.org/

10.1145/2509136.2509549.

[14] P. Bohannon, R. Rastogi, S. Seshadri, A. Silberschatz, and
S. Sudarshan. Detection and recovery techniques for database
corruption. Knowledge and Data Engineering, IEEE Trans-
actions on, 15(5):1120–1136, Sept 2003.

[15] Google Code. Dex2jar. https://code.google.com/p/

dex2jar/.

[16] Google Code. Scramblednet issue 54: Scramblednet loses
game state, March 2016. https://code.google.com/p/

moonblink/issues/detail?id=54.

[17] Google Code. Ssh tunnel issue 165: Auto connect and auto re-
connect not working, March 2016. https://code.google.
com/p/sshtunnel/issues/detail?id=165.

[18] Google Play reviewers. Brightness profiles, March 2016.
https://play.google.com/store/apps/details?id=

com.angrydoughnuts.android.brightprof.

[19] Google Play reviewers. Souvey musical pro, March 2016.
https://play.google.com/store/apps/details?id=

com.angrydoughnuts.android.brightprof.

[20] H. S. Gunawi, A. Rajimwale, A. C. Arpaci-Dusseau, and R. H.
Arpaci-Dusseau. Sqck: A declarative file system checker. In
Proceedings of the 8th USENIX Conference on Operating Sys-
tems Design and Implementation, OSDI’08, pages 131–146,
Berkeley, CA, USA, 2008. USENIX Association. URL http:

//dl.acm.org/citation.cfm?id=1855741.1855751.

[21] C.-H. Hsiao, J. Yu, S. Narayanasamy, Z. Kong, C. L. Pereira,
G. A. Pokam, P. M. Chen, and J. Flinn. Race detection
for event-driven mobile applications. In Proceedings of the
35th ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI ’14, pages 326–336, New
York, NY, USA, 2014. ACM. ISBN 978-1-4503-2784-8.
doi: 10.1145/2594291.2594330. URL http://doi.acm.

org/10.1145/2594291.2594330.

[22] C. Hu and I. Neamtiu. Automating gui testing for android
applications. In Proceedings of the 6th International Work-
shop on Automation of Software Test, AST ’11, pages 77–
83, New York, NY, USA, 2011. ACM. ISBN 978-1-4503-

879

https://developer.apple.com/library/ios/documentation/UIKit/Reference/UIApplicationDelegate_Protocol/index.html#//apple_ref/doc/uid/TP40006786
https://developer.apple.com/library/ios/documentation/UIKit/Reference/UIApplicationDelegate_Protocol/index.html#//apple_ref/doc/uid/TP40006786
https://developer.apple.com/library/ios/documentation/UIKit/Reference/UIApplicationDelegate_Protocol/index.html#//apple_ref/doc/uid/TP40006786
https://developer.apple.com/library/ios/documentation/UIKit/Reference/UIApplicationDelegate_Protocol/index.html#//apple_ref/doc/uid/TP40006786
https://code.google.com/p/android-apktool/
https://code.google.com/p/android-apktool/
http://dx.doi.org/10.1145/2771783.2771786
http://doi.acm.org/10.1145/2771783.2771786
http://doi.acm.org/10.1145/2771783.2771786
https://developer.android.com/guide/components/activities.html
https://developer.android.com/guide/components/activities.html
http://developer.android.com/training/basics/activity-lifecycle/
http://developer.android.com/training/basics/activity-lifecycle/
https://developer.android.com/about/dashboards/index.html
https://developer.android.com/about/dashboards/index.html
https://developer.android.com/training/basics/activity-lifecycle/pausing.html
https://developer.android.com/training/basics/activity-lifecycle/pausing.html
https://developer.android.com/training/basics/activity-lifecycle/pausing.html
https://developer.android.com/guide/topics/processes/process-lifecycle.html
https://developer.android.com/guide/topics/processes/process-lifecycle.html
https://developer.android.com/training/basics/data-storage/index.html
https://developer.android.com/training/basics/data-storage/index.html
http://dx.doi.org/10.1145/2594291.2594299
http://doi.acm.org/10.1145/2594291.2594299
http://doi.acm.org/10.1145/2594291.2594299
http://dx.doi.org/10.1145/2509136.2509549
http://dx.doi.org/10.1145/2509136.2509549
http://doi.acm.org/10.1145/2509136.2509549
http://doi.acm.org/10.1145/2509136.2509549
https://code.google.com/p/dex2jar/
https://code.google.com/p/dex2jar/
https://code.google.com/p/moonblink/issues/detail?id=54
https://code.google.com/p/moonblink/issues/detail?id=54
https://code.google.com/p/sshtunnel/issues/detail?id=165
https://code.google.com/p/sshtunnel/issues/detail?id=165
https://play.google.com/store/apps/details?id=com.angrydoughnuts.android.brightprof
https://play.google.com/store/apps/details?id=com.angrydoughnuts.android.brightprof
https://play.google.com/store/apps/details?id=com.angrydoughnuts.android.brightprof
https://play.google.com/store/apps/details?id=com.angrydoughnuts.android.brightprof
http://dl.acm.org/citation.cfm?id=1855741.1855751
http://dl.acm.org/citation.cfm?id=1855741.1855751
http://dx.doi.org/10.1145/2594291.2594330
http://doi.acm.org/10.1145/2594291.2594330
http://doi.acm.org/10.1145/2594291.2594330


0592-1. doi: 10.1145/1982595.1982612. URL http:

//doi.acm.org/10.1145/1982595.1982612.

[23] G. Hu, X. Yuan, Y. Tang, and J. Yang. Efficiently, effectively
detecting mobile app bugs with appdoctor. In Proceedings
of the Ninth European Conference on Computer Systems, Eu-
roSys ’14, pages 18:1–18:15, 2014.

[24] C. S. Jensen, M. R. Prasad, and A. Møller. Automated testing
with targeted event sequence generation. In Proceedings of
the 2013 International Symposium on Software Testing and
Analysis, ISSTA 2013, pages 67–77, 2013.

[25] Jinseong Jeon and Kristopher Micinski and Jeffrey S. Fos-
ter. Redexer. http://www.cs.umd.edu/projects/PL/

redexer/index.html.

[26] J. B. Kam and J. D. Ullman. Monotone data flow analysis
frameworks. Acta Informatica, 7(3):305–317, 1977. ISSN
1432-0525. doi: 10.1007/BF00290339. URL http://dx.

doi.org/10.1007/BF00290339.

[27] C.-J. M. Liang, N. D. Lane, N. Brouwers, L. Zhang, B. F.
Karlsson, H. Liu, Y. Liu, J. Tang, X. Shan, R. Chandra, and
F. Zhao. Caiipa: Automated large-scale mobile app testing
through contextual fuzzing. In Proceedings of the 20th Annual
International Conference on Mobile Computing and Network-
ing, MobiCom ’14, pages 519–530, 2014.

[28] P. Maiya, A. Kanade, and R. Majumdar. Race detection for
android applications. In Proceedings of the 35th ACM SIG-
PLAN Conference on Programming Language Design and
Implementation, PLDI ’14, pages 316–325, New York, NY,
USA, 2014. ACM. ISBN 978-1-4503-2784-8. doi: 10.

1145/2594291.2594311. URL http://doi.acm.org/

10.1145/2594291.2594311.
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