
VeriTaS: Verification of Type System Specifications

Mechanizing Domain Knowledge about Progress and Preservation Proofs

Sylvia Grewe

TU Darmstadt, Germany

grewe@cs.tu-darmstadt.de

Abstract

Developing a type system with a soundness proof is hard.

The VeriTaS project aims at simplifying the development of

sound type systems through automation of soundness proofs

and through automated derivation of efficient type checkers

from sound type system specifications.

Within the VertiTaS project, I focus on developing an

interface for the verification of progress and preservation

proofs which shall automate standard parts of such proofs. To

achieve this, I propose to identify recurring proof strategies

in progress and preservation proofs from the literature, to

develop a format for abstractly representing these proof

strategies, and to mechanize them by connecting them to

existing theorem provers.

Categories and Subject Descriptors F.3.1 [Logics and

Meanings of Programs]: Specifying and Verifying and Rea-

soning about Programs; I.2.3 [Artificial intelligence]: De-

duction and Theorem Proving

Keywords Type systems, type soundness, theorem proving

1. Motivation

Nowadays, researchers frequently develop type systems for

programming languages, for example for domain-specific

languages (DSLs) or for core calculi of general-purpose

programming languages. Typically, most researchers in the

area of programming languages agree that such type system

developments should be accompanied by full soundness

proofs. They also agree that one should use a theorem prover

such as Isabelle [9], Coq [8], Twelf [1], etc. to derive the

soundness proofs, since mistakes in pen-and-paper proofs

are very common. Numerous solutions to the POPLMARK

challenge [3] demonstrated that one can, in principle, use

many different existing theorem provers for mechanizing the

soundness proofs of type systems.

Despite these demonstrations, many researchers still resort

to pen-and-paper formalizations and proofs of their type sys-

tems. Concrete concerns about using an existing verification

tool which I gathered from these researchers include:

1. “It takes too long to develop a full proof using tool X.”

2. “I do not want to print the formalization in the language

of tool X in my paper. I want to present type system

specifications in a notation that is common in the area of

programming languages.”

3. “I already have to develop an implementation in a general-

purpose language of my type system anyway, because

I want to be able to test, debug, and benchmark my

type system - I do not want to develop a mechanized

formalization in tool X in addition to that.”

Here, concern 1 seems to be the main concern, while the

other two seem to weigh slightly less heavy.

How can we make it more attractive for programming

language researchers to mechanize soundness proofs of type

systems? In particular, how can we reduce the effort of

mechanizing these proofs?

2. Problem

One standard way from literature for formalizing type sound-

ness is via progress and preservation theorems. Past research,

notably the work by Wright and Felleisen [12], led to a uni-

fied structure of progress and preservation proofs, which one

can study in detail in Pierce’s TAPL [10]. This “unified struc-

ture” seems to be so well understood that some researchers do

not even bother to completely spell it out in their publications.

However, to the best of my knowledge, no one has attempted

to formalize or mechanize this abstract domain knowledge

about progress and preservation proofs.

I propose to mechanize this domain knowledge and to use

it in combination with existing automated proof techniques,

with the aim of reducing the effort of mechanizing standard

progress and preservation proofs. Concretely, I focus on the

following research questions:

(a) What are recurring strategies in progress and in preser-

vation proofs? I will call such strategies domain-specific

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.

SPLASH Companion’16, October 30 – November 4, 2016, Amsterdam,
Netherlands
ACM. 978-1-4503-4437-1/16/10...$15.00
http://dx.doi.org/10.1145/2984043.2984046

12

proof strategies, where the domain in my case are progress

and preservation proofs.

(b) What is a useful format for abstractly representing

domain-specific proof strategies? To be useful, the format

should allow for representing a proof strategy such that it

is applicable to several concrete progress and preservation

proofs. Additionally, the format should be understand-

able by programming languages researchers who develop

soundness proofs of type systems, i.e. by domain experts.

If necessary, domain experts should be able to use the for-

mat to define their own domain-specific proof strategies.

(c) How can one mechanize a domain-specific proof strategy

and its application in concrete progress and preservation

proofs? How can the mechanized strategies interact with

existing theorem proving techniques? And in particular,

how can one mechanize these strategies so that program-

ming language researchers are more willing to use the

resulting implementation for mechanizing progress and

preservation proofs?

Several existing verification tools provide formats for speci-

fying abstract proof strategies. For example, Coq [8] provides

the ltac language for defining custom proof tactics and proof

search methods. Isabelle [9] allows for implementing cus-

tomized proof tactics in ML within theory files. Additionally,

there is an implementation of proof planning [11] within

Isabelle, the IsaPlanner [4]. IsaPlanner includes implemen-

tations of various general-purpose plans such as rippling [2],

which is a powerful technique for automating the proofs

of certain induction steps. However, the usage of such lan-

guages and techniques typically requires rather deep knowl-

edge about the internals of a theorem prover and about verifi-

cation techniques. It is not obvious how one would encode

a domain-specific proof strategy so that domain experts can

easily understand the strategies and encode their own ones.

3. Approach

3.1 Identifying Domain-Specific Proof Strategies

To identify proof strategies that are domain-specific to

progress and preservation proofs, I will study the respec-

tive proofs in the established literature and in publications

such as TAPL [10]. My goal is to identify the most common

techniques used, which may include induction schemes, tem-

plates for auxiliary lemmas, and common proof techniques

for verifying individual induction cases.

Candidate techniques that I already identified are, for in-

stance, structural induction on the syntax of the programming

language in question, induction on typing derivations, case

distinction on rules of the dynamic semantics, inversion lem-

mas, and lemmas which ”propagate” progress or preservation

along to auxiliary functions used in the static and dynamic

semantics of the language. An example for such a propaga-

tion lemma is the well-known substitution lemma from the

soundness proof of the standard type system for the simply-

typed lambda calculus (e.g. TAPL [10]), which ”propagates”

the preservation property onto the substitution function.

This first part of my research project shall generate an

informal list of domain-specific proof strategies, which can

by itself already serve as a guide for other researchers who

develop progress and preservation proofs.

3.2 Representing Domain-Specific Proof Strategies

In the second part of my research project, I will develop a

format which allows for representing domain-specific proof

strategies abstractly, that is, without concrete knowledge

about the typing rules or the small-step rewrite rules of

the dynamic semantics. The format shall, on the one hand,

allow for representing domain-specific proof strategies so

that they are applicable to different concrete type systems

and dynamic semantics. On the other hand, the format shall

remain comprehensible for domain experts, i.e. researchers

who understand the structure of progress and preservation

proofs.

To meet these criteria, I propose to represent domain-

specific proof strategies as open proof tree templates: As

described for example by Richardson and Bundy [11], one

can represent a proof via a proof tree, whose root is the

theorem to be proven and whose nodes represent subgoals

arising from intermediate proof steps such as induction or

case distinction or represent auxiliary lemmas. The edges

from a parent node to its children represent a proof strategy

such that a proof of the parent node follows from proofs of

the child nodes. Verified nodes and verified edges represent

subgoals or proof steps that have been verified by a theorem

prover. A proof tree is closed if all its leaves are verified

nodes and if all its edges are verified. A proof tree is open if

it contains any unverified leaves or edges.

A proof tree template shall abstract over concrete domain-

specific concepts in a proof tree. In the domain of progress

and preservation proofs, such concepts are, for instance, typ-

ing rules or rewrite rules from the dynamic semantics. The

abstraction of a domain-specific concept shall preserve any

abstract information about the concrete concept which is nec-

essary for an abstract representation of the domain-specific

strategy. For example, for a typing rule, such information may

include whether the rule is an introduction or an elimination

rule, the number of premises, an abstract representation of

the typing rule’s conclusion, etc. One of the main challenges

of this part of my project will be to identify which abstract

information about the domain-specific concepts involved in

progress and preservation proofs is required for abstractly

representing domain-specific proof strategies.

Representing domain-specific proof strategies as templates

of open proof trees shall enable domain experts to understand

the strategies and to develop their own domain-specific

proof strategies if needed: The templates shall employ the

terminology of progress and preservation proofs and abstract

over concepts that are familiar to domain experts.

13

3.3 Mechanizing Domain-Specific Proof Strategies

I propose to mechanize domain-specific proof strategies

within an infrastructure that can address all three concerns

of programming language researchers from Section 1. Con-

cretely, I propose to design an interface for the mechanization

of soundness proofs of type systems in the form of an ex-

tensible library within the VeriTaS project [5]. The library

shall be implemented within a general-purpose programming

language: This way, programming language researchers are

able to verify a type system specification by solely interacting

with the library, in a programming language which they are

likely to know already. Furthermore, library users will be

able to extend the library based on their custom needs. For

example, a user could add pretty-printing in LATEX or add

functionality for executing certain type system specifications.

VeriTaS shall comprise an internal domain-specific lan-

guage for specifying syntax, dynamic semantics and type

systems of programming languages and for proving proper-

ties on these specifications. It shall include an implementation

of proof trees and domain-specific strategies as suggested in

Section 3.2, together with an API for interacting with proof

trees. Such an API includes for example functionality for

triggering the automatic generation of closed or open proof

trees, for inspecting proof trees, for manually calling specific

proof strategies on inner nodes, for triggering the verification

of leaves and edges, and for replacing nodes entirely with

custom intermediate proof steps if necessary. VeriTaS shall

interact with existing theorem provers such as Vampire [7]

and Isabelle [9] for verifying edges and leaves of proof trees.

VeriTaS shall provide extension points for adding spec-

ification constructs, as well as additional functionality that

addresses concerns 2 and 3 from Section 1. However, imple-

menting the corresponding functionality shall not be the main

focus of my research project.

An ideal candidate language for implementing the VeriTaS

library is Scala: The Scala language is widely known and

used in the programming languages community. Scala is well-

suited for implementing expressive internal DSLs. Scala also

provides numerous language features which will facilitate

the design of extension points for the library, such as object

orientation and generics. Finally, building the VeriTaS library

in Scala will allow us to (re)use existing Scala code that

connects to different verification tools. For example, the

libisabelle1 library allows for interacting with Isabelle via

Scala, as successfully demonstrated by Hupel et al. [6].

4. Evaluation

I will focus on evaluating whether the domain-specific strate-

gies decrease the user effort for proving progress and preser-

vation, compared to using existing verification tools.

I plan to evaluate this by preparing different case studies

consisting of type system specifications. I will formalize these

1 https://github.com/larsrh/libisabelle

specifications along with progress and preservation proofs

once in VeriTaS, and once in Isabelle, using the Isar proof

language. I will compare the number of individual user inter-

actions against each other. That is, in VeriTaS, every manual

modification of a proof tree will count as a user interaction, in

Isabelle every proof command that modifies the subgoals, to-

gether with every lemma specification. Furthermore, provided

I can find suitable candidates, I plan to conduct a small study

where I will ask other programming language researchers or

students to conduct progress and preservation proofs using

VeriTaS and to rate their experience.

Acknowledgments

I thank my supervisors Mira Mezini and Sebastian Erdweg

and my fellow PhD students Oliver Bracevac, Manuel Weiel,

and Lars Hupel for helpful discussions. This work is sup-

ported by the European Research Council, grant No. 321217.

References

[1] The Twelf project. http://twelf.org/, 2014.

[2] Alan Bundy et al. Rippling: A heuristic for guiding inductive

proofs. Artif. Intell., 62(2):185–253, 1993.

[3] Brian E. Aydemir et al. Mechanized Metatheory for the Masses:

The POPLMARK Challenge. In Proceedings of International

Conference on Theorem Proving in Higher Order Logics

(TPHOL), pages 50–65. Springer-Verlag, 2005.

[4] L. Dixon and J. D. Fleuriot. Isaplanner: A prototype proof

planner in isabelle. In Proceedings of International Conference

on Automated Deduction (CADE), pages 279–283, 2003.

[5] S. Grewe, S. Erdweg, P. Wittmann, and M. Mezini. Type

systems for the masses: Deriving soundness proofs and efficient

checkers. In Proceedings of International Symposium on New

Ideas, New Paradigms, and Reflections on Programming &

Software (ONWARD), pages 137–150. ACM, 2015.

[6] L. Hupel and V. Kuncak. Translating Scala Programs to Is-

abelle/HOL - System description. In Proceedings of Inter-

national Joint Conference on Automated Reasoning (IJCAR),

2016.

[7] L. Kovács and A. Voronkov. First-order theorem proving

and Vampire. In Proceedings of International Conference

on Computer Aided Verification (CAV), pages 1–35. Springer,

2013.

[8] The Coq development team. The Coq proof assistant reference

manual. LogiCal Project, 2004. URL http://coq.inria.

fr. Version 8.0.

[9] T. Nipkow, M. Wenzel, and L. C. Paulson. Isabelle/HOL: A

Proof Assistant for Higher-order Logic. Springer, 2002.

[10] B. C. Pierce. Types and programming languages. MIT press,

2002.

[11] J. Richardson and A. Bundy. Proof planning methods as

schemas. J. Symbolic Computation, 11:1–000, 1999.

[12] A. K. Wright and M. Felleisen. A syntactic approach to type

soundness. Information and Computation, 115(1):38–94, 1994.

14

https://github.com/larsrh/libisabelle
http://twelf.org/
http://coq.inria.fr
http://coq.inria.fr

	Motivation
	Problem
	Approach
	Identifying Domain-Specific Proof Strategies
	Representing Domain-Specific Proof Strategies
	Mechanizing Domain-Specific Proof Strategies

	Evaluation

