
Panel

Architecture in an Agile World

Steven Fraser
Director

Cisco Research Center
Cisco Systems, San Jose

Ethan Hadar
VP Research

CA Labs, CA Inc
Haifa, Israel

Irit Hadar
Head, Software Architecture Laboratory

Management Information Systems
University of Haifa, Israel

Dennis Mancl
Distinguished Member of Technical Staff

Alcatel-Lucent
New Jersey

Grenville (Randy) Miller
Architect and Author

Microsoft
RTP, NC

Bill Opdyke
Distinguished Member of Technical Staff

Motorola
Schaumburg

Abstract
This panel will explore the apparent dichotomy of agile-
centric and architecture-centric approaches to software de-
velopment. The panel will address questions of interest that
include: How are architecture practices applied in a world
where ‘agile’ must co-exist with more traditional sequential
processes and the scale and scope of legacy systems? and –
What are the organization structures, tools, methods, and
education/training strategies that can be used to maximize
the delivered value and reduce the cost of system owner-
ship? This panel is intended to build on the outcomes of
OOPSLA 2009 workshop with the same title.

Categories & Subject Descriptors:
D.2.11 Software Architectures
K.0 Computing Milieux
K.4.3 Organizational Impacts

General Terms: Design

Keywords: Software architecture, agile development, design

1. Steven Fraser (panel impresario), sdfraser@acm.org

My premise is that the larger the system, the more neces-
sary the architecture. To enable economies of scale and
scope – an appropriate architecture is absolutely essential.
This is not only true in the software development phase, but
also in the application space. Today’s “now” world de-
mands inter-operability and rapid ease-of-use. In most ways
an “agile world” is no different from a “sequential world.”
The exception is that of the requisite feedback cycle of agil-
ity (a sequence has been iterated at least once) where the
benefit of single (or double) loop learning may be leve-
raged and learning is captured by “architecture.”

STEVEN FRASER is the Director of the Cisco Research Cen-
ter in San Jose California with responsibilities for de-
veloping and managing university research collaborations.
Prior to joining Cisco Research, Steven was a Senior Staff

member of Qualcomm’s Learning Center in San Diego
leading software learning programs and creating the corpo-
ration’s internal technical conference – the QTech Forum.
Steven also held a variety of technology and management
roles at BNR/Nortel. In 1994 he spent a year as a Visiting
Scientist at the SEI collaborating on the development of
team-based domain analysis (software reuse) techniques.
Fraser was the Corporate Support Chair for OOPSLA’08,
the Tutorial Chair for XP2008 and the Tutorial Co-Chair
for ICSE’09. Fraser holds a doctorate in EE from McGill
University in Montréal – and is a member of the ACM and
a senior member of the IEEE.

2. Ethan Hadar, ethan.hadar@ca.com

Dedicated architecture and design activities usually involve
some discussions about “how low should we get?” Whether
the design includes components, integrations, platform se-
lections, or non-functional requirements, the participants
are always eager to test, try, build and see that it works.
Architectural debates are over-detailed and abstraction is
not maintained.

While this may work with developing code in an agile ap-
proach, the effect on large-scale systems development
might have a different result. In large teams, or ones that
have service level agreements’ needs, the team is required
to first “slice and dice” the system into manageable parallel
assignments, and bound them by contracted integration
points. Lack of an architecture roadmap and clear under-
standing of where we need to go, will constitute a sponta-
neous and opportunistic architecture, instead of being dri-
ven by an architecture-centric approach. Thus, we might
finish the project, but not as intended. Can large compo-
nents be assembled in a structured agile manner, rather than
opportunistically? If the APIs will change as well as the
components’ responsibility due to lack of clear up-front
understanding – can we still provide a solid progression, on
a firm committed timeline bounded schedule, and with mi-
nimal correction iterations?

Architecting a set of deployable and testable components
with well-defined interfaces in an ambiguous environment

Copyright is held by the author/owner(s).
OOPSLA’09, October 25–29, 2009, Orlando, FL, USA.
ACM 978-1-60558-768-4/09/10.

841



requires architecture planning and related activities to be
agile. Some architectural decisions (frameworks, libraries,
platforms, etc.) are resistant to change while others may re-
quire frequent adjustment (such as components structure
and responsibility).

Our position is that it is important to maintain separation
between architecture layers (external integration, func-
tional, system and common components), as well as defin-
ing a reference (future) and implementation (next release)
architecture. The essence of an agile architectural approach
is to provide a connecting roadmap between architectures
in combination with a non-functional assessment of evolv-
ing needs.

ETHAN HADAR is a SVP for Research at CA Labs, and Dis-
tinguished Engineer at CA Inc. His responsibilities include
leading strategic research and corporate guidance on Cloud
Computing, Architecture, domain specific modeling, and
ITIL, in collaboration with CA R&D groups, Customers,
CA’s Executives and academia. Ethan’s recent activities
include architecture implications in agile environments,
ITIL automations in cloud arena, and integration-oriented
domain specific languages and modeling (DSL/M). Prior to
joining CA, Ethan was the principal architect at Mercury
Interactive, now HP Software, where he developed new
methodologies in software engineering, service oriented ar-
chitectures, and object oriented technology. Ethan has nu-
merous patents and publications, and he served as a mem-
ber of the faculty at the Netanya Academic College and as
adjunct faculty at the Technion, Israel Institute of Technol-
ogy. He holds a Ph.D. from the Department of System
Analysis and Operations Research at the Technion.

3. Irit Hadar, hadari@mis.haifa.ac.il

Human aspects influence, and are influenced by, the con-
struction of architecture in different approaches. From the
human perspective, there is a spectrum of software devel-
opment activities, some of which do not require an archi-
tecture control, and some do. There is a major difference
between the architecture needs and impact in small teams,
developing small programs versus large-scale software sys-
tems, e.g. enterprise solutions. Realizing this difference, we
need to be able to identify the different cases, how exactly
they differ, and whether some similarities between them
exist. Thus, we need to ask: Is there a continuous spectrum
of solutions’ scale, where we can detect the area (or boun-
dary) in which the approach needs to be changed? Are there
architecture artifacts and activities that all methodologies
must maintain?

It is believed, justly I think, that agile methods have an im-
portant role in dealing with the difficulties and challenges
of software development that are related to our human na-
ture. These include, for example, psychological issues such
as cognitive overload when handling highly complex sys-
tems’ development and maintenance, or the desire to see

the code running as early as possible in the development
process; and social issues that stem from the necessity for
collaboration between developers, which are magnified in
complex and large systems’ development.

Most of the principles of Extreme Programming are
oriented towards making things simple for the human mind
as well as supporting collaboration and human communi-
cation. Let’s take the metaphor principle as an example.
The benefit of using metaphors in any science is making
abstract concepts more concrete and familiar, thus ease the
cognitive effort and support communication when discuss-
ing them. However, using metaphors can only get you so
far. At some point the metaphor no longer spans the entire
essence of the concept it replaces. At this point we need, in
our case, an expert architect that is able to elevate the dis-
cussion to the abstraction level required, in order to achieve
a true quality solution. The challenges we face in this ex-
ample are to identify this point, and find a way to handle
the architecture differently and appropriately from this
point onwards.

IRIT HADAR is a faculty member at the Department of Man-
agement Information Systems at the University of Hai-
fa. She is the head of the Software Architecture Laboratory
at CRI (Caesarea Rothschild Institute for Interdisciplinary
Applications of Computer Science). Her main research area
is cognitive aspects of software architecture, design and
analysis. In particular, she focuses on cognitive processes,
difficulties and conflicts in software development, applying
cognitive psychology theories as analysis frameworks; vis-
ual models in software development and their influence on
developers’ perceptions; and the influence of different as-
pects of software engineering – economic, social and cog-
nitive aspects – on the final quality of the developed soft-
ware.

4. Dennis Mancl, mancl@alcatel-lucent.com

Every system has an architecture. It may be a much disor-
ganized architecture, but it is an architecture nonetheless.
In an agile world, it is just as important to invest in archi-
tectural planning as before.

There are four major reasons why you need a documented
architecture: An early architectural description is useful for
the search in the search for external that you might reuse –
a good way to reduce development effort and the cost of
your final product. A documented architecture makes more
complete product testing possible. For a long-lived soft-
ware product, an architecture description helps new devel-
opment team members to learn about the structure of the
software, reducing errors and development churn. There
may be modules in your software product can be reused in
another context, and an architecture description is neces-
sary to describe where the modules will work reliably.

Agile development processes must include tasks and arti-
facts to support some amount of architecture planning and

842



evolution. In an agile world, there may be many small and
short-lived systems where it is reasonable to just “let the
architecture emerge” during the development process. Ex-
ploratory software and throw-away prototypes can get by
with little architectural planning. But for most real product
software, some form of lightweight architecture documen-
tation and ongoing architecture evolution activities need to
be parts of the development lifecycle.

DENNIS MANCL is a Distinguished Member of Technical
Staff at Alcatel-Lucent in Murray Hill, NJ. His interests
range from software requirements practices to legacy code
transformation techniques. Dennis has been an internal
consultant on OO design within Alcatel-Lucent and AT&T,
with considerable experience in assisting software project
teams with design patterns, requirements modeling, and
reengineering existing software.

5. Granville Miller, Randy.Miller@microsoft.com

Architecture is a necessary component of software system
development. This is, of course, evident for mid-sized to
large systems but also necessary for smaller systems. Ward
Cunningham defined architecture as “the moment in the
development of a system when you have to step back, look
at, and structure the system for further development”. The
story that Ward uses to support his definition describes a
system created by a single developer. In circumstances
where there are hundreds of developers, there are many of
these moments. If nothing is done when these moments call
for action, the resulting systems will be poorly architected.
Systems that are poorly architected or without architecture
fall apart rather rapidly as they collapse under the weight of
their own functionality.

If architecture is so necessary, why are we debating its me-
rit in the agile community? Many software professionals
confuse architecture with “Big Design Up Front” (BDUF).
Many a software development project failed to produce an-
ything as “an architecture” consumed all of its development
time. Moreover, many of these architectures were found to
be invalid as the development team learned new things in
the course of development. The fact is, architectures do not
need to be developed completely before the project begins.
Instead, they are living elements that change with the
project.

A good architect keeps their developers from “painting
themselves into a corner” as they build the system. Archi-
tects do this through experience and earned respect. The
modern software (solutions) architect is a vital part of the
project, delivering functionality. Agile processes are aids to
the architect as they force the team to make hard decisions
and surface risks. But the agile architect knows when to
follow a process and when to adapt the process to fit the
needs of a project. Ultimately, they know that the delivery
of a maintainable system is the mark of a successful
project, not strict adherence to any process.

GRANVILLE MILLER is an architect working on high-risk
projects for Microsoft. He is the co-author of Advanced
Use Case Modeling and A Practical Guide to Extreme Pro-
gramming. He brings 22 years of software development
experience in the delivery of software applications. He has
been actively promoting modeling, software development
technology, and software process for over a decade in vari-
ous public forums. He has an Advanced Certification in
UML 2.0.

6. Bill Opdyke, opdyke@acm.org

Is there really a dichotomy between agile-centric and ar-
chitecture-centric approaches to software development?
My experience has been that the dichotomy is more fiction
than fact. Sure, I’ve sometimes seen software engineers
practice a form of anarchy and seek to justify it by labeling
it agility, while others live in a world of arcane abstrac-
tions, produce few usable results and justify their work by
labeling it architecture. However, more often I’ve had the
pleasure to work with outstanding agilistas and outstanding
architects, and I’ve seen a common passion and focus
(among these agilistas and architects) on providing value to
end users, accommodating change, collaborating with other
team members and helping make innovation happen.

When it comes to interworking with legacy products (and
legacy processes), outstanding architects have much to of-
fer to agile projects. I’ve seen agile projects struggle to
communicate their progress and effectively collaborate
with companion projects that are based on more traditional
development processes. The outstanding architects I’ve
worked with have been skilled in abstracting, adapting and
communicating – important skills required to translate be-
tween different development cultures and to achieve colla-
boration.

Correspondingly, I’ve seen how outstanding agilistas can
bring the architecture and development roles closer to-
gether in ways that build shared accountability and shared
purpose, and enable the overall project to accommodate
change in ways that provide both near and longer-term val-
ue. I’ve spent a couple decades applying and training
people in structures, tools and strategies related to archi-
tecture and to agile methods – and will share some of my
insights in these areas at the workshop and panel discus-
sion. In summary: outstanding architects and outstanding
architects have much in common, and have much to gain
from collaborating with each other.

BILL OPDYKE has spent much of his career in system and
software architecture roles at Bell Labs/AT&T/Lucent and
more recently at Motorola – on projects that successfully
applied agile techniques – before they were called “agile”.
His doctoral research led to the foundational thesis on re-
factoring, an important element of agile software develop-
ment. Bill has taught agile and architecture related con-
cepts in both academia and industry.

843


