
Instance Modeling Assisted by an Optional Meta Level

Riccardo Solmi
Whole Factory, Italy

solmi.riccardo@gmail.com

Abstract
We believe that programming is mainly a linguistic process
concerning the development of the language abstractions
better suited to deal with a given problem domain. The
main responsibility of a linguistic system is to capture and
incorporate the knowledge of domain experts, while trying
to minimize the meta level efforts, thus allowing users to
concentrate on modeling activities.

While a meta level is necessary in order to write instances,
it is possible to define a generic meta level capable of
representing any specific entity.

We introduce an instance modeling language, Entities,
combining a rich graphical notation, an optionally typed struc-
ture, and composability with other domain specific languages.
The visual expressivity is comparable to a mindmapping tool,
and makes it best suited for knowledge representation do-
mains.

The optional typing enables an exploratory, bottom up
approach to metamodeling. The composability with strictly
typed languages makes modeling a much more flexible
experience.

Categories and Subject Descriptors D.2.1 [Software Engi-
neering]: Requirements/Specifications – Elicitation methods
(e.g., rapid prototyping), Languages, Tools; D.2.2 [Software
Engineering]: Design Tools and Techniques – Evolutionary
prototyping; D.2.6 [Software Engineering]: Programming
Environments – Graphical environments, Interactive environ-
ments; D.2.13 [Software Engineering]: Reusable Software
– Domain engineering; D.3.2 [Programming Languages]:
Language Classifications – Specialized application languages

General Terms Design, Human Factors, Languages

Keywords Bottom up metamodeling, End user program-
ming, Domain-specific modeling, Domain-specific languages,
Language Workbenches, Whole Platform

1. Introduction
Domain specificity can be reached in every aspect of the
definition of a domain specific language: structure, notation,
persistence, tooling, and other semantics. Having a specific
definition for an aspect may be regarded either as an ad-
vantage or as a limitation depending on the usage scenarios
considered. For instance, a generic implementation of a per-
sistence may speed up the modeling process and may even
avoid the need of defining a specific persistence if it is not a
user requirement. While a specific notation is regarded as a
more attractive choice for a domain expert, the cross language
uniformity granted by a generic one may turn out to be more
effective for some activities of a language designer.

A few domain specific modeling tools enable multiple
definitions for some aspects of a language and even provide
generic implementations for them.

The metamodel is, in general, a notable exception because,
in a model driven approach, it has a central role even at the
implementation level. A metamodel tailored to the specific ab-
stractions and structure of a given domain has many benefits
including granted conformity of an instance to its metamodel.
Unfortunately, there are scenarios in which it is better to
trade conformity off for flexibility and allow invalid model
instances.

In order to implement our solution in the form of a domain
specific language called Entities, we used the graphical
and projective language workbench tool that is part of the
open source project Whole Platform [1] Additional infor-
mation on the Whole Platform and a comparative evaluation
with other alternative tools can be found in [2].

In the sections that follow, we present an overview of the
available approaches to domain specific modeling in order
to motivate the need of a different solution, then we present
the new language Entities to perform flexible instance
modeling together with an example, and finally we outline
other usage scenarios.

2. Approaches that Need Meta Modeling
There are multiple approaches to domain specific modeling
that sooner or later require explicit meta modeling tasks.
This assumes that there is a reasonable meta model for each

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.

DSM’16, October 30, 2016, Amsterdam, Netherlands
c© 2016 ACM. 978-1-4503-4894-2/16/10...$15.00

http://dx.doi.org/10.1145/3023147.3023156

53

domain, and that there is always someone with language
design skills.

2.1 Meta Modeling First
There are several useful approaches to define a language
starting by modeling its meta level.

The Whole Platform, for instance, provides multiple do-
main languages to address the different aspects of a language
definition. Luckily, an explicit meta modeling activity can
be limited to just one aspect of the language definition, the
others can be derived, postponed, or omitted by relying on
generic implementations.

The language designer simply defines either the meta-
model, or a grammar, or a translational semantics, in order to
get an instanceable language for the domain expert.

2.2 Continuous Cycling through Meta Levels
By adding interpreting or dynamic compiling support to
the meta modeling languages you may get a form of live
programming called live language development in [3]. A live
programming approach allows a language designer to edit the
meta level definitions of a language while playing with its
instances. The improvement in speed is remarkable, but, to
take full advantage of it, it is necessary to provide a migration
facility for the model instances.

This approach can allow a language designer and a domain
expert to work side by side, in a sort of pair programming,
where the former try to keep pace with the needs of the latter.

2.3 Instance Modeling First
There are multiple approaches to enable instance modeling
before performing any explicit meta modeling activity.

For instance, it has been proposed to introduce a graphical
drawing language [5] [6] [10] [11] or a text editing language
[8], or an instance model manipulation language [4] [7].
Either way, by using additional constructs to mark parts of the
instance model with meta hints or by tracing user interactions,
it is possible to derive at least a partial metamodel suitable
for writing and validating the given model instances.

Note that the domain expert, at the beginning of the
process, uses a tool to write some examples that are used
by the language designer to produce the real language. Only
later, and usually with a different tool, the domain expert can
write the desired instances.

In [9] the examples are made an integral part of the
definition of a language on par with the metamodel and they
are the driving force of the entire language development
process.

3. Standalone Instance Modeling
We think that there are many domains for which it makes
little sense to explicitly define a specific metamodel. For
instance, the presence of a generic metamodel inside of the
mind mapping tools is not perceived as a limitation and it

Figure 1. Nested tables (JSON specific notation)

Figure 2. Nested typed tables (Generic Table notation)

has not prevented the spread of mind mapping templates, that
represent a sort of domain language.

Mind maps are a clear example that the amount of speci-
ficity that can be provided by their notation greatly exceeds
the structural constraints imposed by a specific metamodel.
Furthermore, the latter can be reintroduced via tooling.

We also noted that a generic notation with just small
graphical adjustments is enough to convey a domain specific
feeling. Especially if the domain does not have its own well
recognized specific notation.

See in Figure 1 an example of contact information written
with the JSON [12] specific metamodel and notation (that
are both generic with respect to the Contacts domain). See
also the same example written in Figure 2 with a specific
Contacts language and showed with the generic Table
notation of the Whole Platform.

In both examples, the notation feels specific enough and
the additional specificity provided by the use of a content
specific metamodel in Figure 2 is mainly noticeable in user
interactions.

These considerations have led us to define the Entities
language as described in the remaining subsections.

3.1 Generic Virtual Entities
The Entities metamodel defines two complementary
groups of entities: one for modeling an arbitrary instance and
the other for modeling the corresponding metamodel. The

54

Figure 3. Entities metamodel: instances (simplified)

Entities metamodel fragment shown in Figure 3 defines
just one generic entity, named Entity, that is able to repre-
sent the content and type information of any model instance.
The body contains either a value or a recursively defined col-
lection of children entities. The foreign type relations enable
an Entity to be attached to any foreign language entity and,
in turn, any foreign entity can become a child of Entity.
The Type of an instance is either the URI of a foreign entity
type or an explicit or implicit type name; implicit types are
used by default to overcome missing type name information.

The goal of representing the structure of any instance
model can also be reached in other ways. For instance the
JSON [12] data format language is able to represent the field
names of a record structure at the instance level without
the need of any type information. Entities in order to
discriminate a record structure from a collection needs to
use the type information and stores the field names in the
type declarations.

To better understand the structure of an instance of
Entities we used in Figure 4 an AST like notation to
visualize an example of a specific instance of the Contacts
metamodel and the corresponding generic instance encoded
with Entities.

The Entities metamodel fragment shown in Figure 5
defines a MetaScope that associates a model instance to the
meta declarations used to define its metamodel. The entity
types include values, collections and records. An additional
union type is used to support polymorphic type hierarchies in
a way suitable for an implicit, instance driven, definition of
the metamodel.

The goal of achieving a reasonable level of domain speci-
ficity, despite the generic structure, is met by adding a no-
tation feature in the EntityTypes. Typically, generic meta-
models, such as the ones of mindmapping languages, add the
notation properties directly to the instance level and avoid
introducing any type information.

Figure 4. Specific vs generic AST of instances

Figure 5. Entities metamodel: types (excerpt)

Our choice of defining a metamodel even if we are focused
on just one instance model reflects our additional goal of
minimizing the differences with the regular definition of a
domain specific language.

3.2 Generic Virtual Notation
An additional customizable generic notation has been de-
signed starting from the existing Table and Tree generic
notations of the Whole Platform. The customization is per-
formed by a declarative styling language.

The specific notation defined for the Entities language
is the same customizable generic notation available for every

55

Figure 6. Tree with a composite table

Figure 7. Full typed tree with a composite list

language, just applied to the virtual entities. In this way
the transformation of a model fragment from its specific
representation to the generic one, based on Entities, or
viceversa, keeps the same familiar notation.

Each entity can choose the visibility of a header contain-
ing its type information. In Figure 1 the headers are all hid-
den; in Figure 2 and Figure 6 just Contact, Address, and
PhoneNumbers are shown. The green language qualifiers
shown in Figure 7 represent existing types of foreign lan-
guages.

Each entity has an embedding style that can make it
appear as a standalone node (see Contact, Address, and
PhoneNumbers in Figure 6) or as a content that blends with
its context (all entities in Figure 1 and Figure 2).

Each feature of a SimpleTyped entity can be either
hidden or shown inside of the corresponding cell (see
firstName, lastName, and company in all example fig-
ures) or in a separate branch (see address, phoneNumber in
Figure 6 and Figure 7).

A CompositeTyped entity (such as PhoneNumbers) can
display its children either in a table (see Figure 2 and Figure 6)
or in a list (see Figure 1 and Figure 7). Finally, also the
visibility of table headers (light gray background color in the
figures) can be changed.

3.3 Generic Virtual Tooling
The structure of the instance level, when modeled using the
Entities language, can be regarded as a virtualization of
the underling modeling framework to the domain level as
seen in Figure 4. We are able to specify the same structural
constraints but they are no longer enforced by the frame-
work, rather, they need to be enforced or validated at the
domain level. The tooling for the Entities language has
been designed to hide the presence of an instance specific
metamodel and to let the user concentrate himself on the
instance modeling activities.

We think that the tooling should be able to operate with
three different, user selectable, strategies: learning, recov-
ering, and enforcing. In the learning mode, the modeling
activities are unrestricted, the instance is assumed to be valid
and the metamodel is automatically restructured in order to
be able to validate the instance. In the recovering mode, in-
stance modeling is still unrestricted, but the metamodel is
used to validate the instance and any inconsistency is anno-
tated in the model in order to help the user solve problems.
In the enforcing mode, the instance modeling activities are
restricted to those allowed by the metamodel in order to keep
the instance valid.

4. Additional Use Cases
4.1 Dealing with Meta Errors
When a persistence stream is deserialized into a model
instance, each entity description is mapped to an entity
instance of the declared language. A deserialization exception
occurs whenever a referenced language or entity is not
available or an instance description does not conform to the
definition available. The Entities language can be used
as a fine grained replacement for the entities that are not
deserializable. The resulting model is complete: it makes
use of specific language entities wherever possible, and uses
adaptive entities of the Entities language to recover from
exceptions.

In case of a missing language or language version, the
overall model is still viewable, editable and can be saved
back without loss of information. Of course, the notation and
the modeling services available on the adaptive entities are
limited.

The user may perform recovering activities both at in-
stance and meta levels. For instance, if a missing language
becomes available or is defined, the adaptive entities can be
replaced back to the corresponding specific entities even at
runtime. In the same way, the user may fix, interactively in the
editor, the errors in the instances in order to regain conformity
with their declared metamodels.

4.2 Explorable Evolution
The instance modeling activities are routed and bound by
existing metamodels and, in general, this is desirable. When
a user feels that a given instance is not able to properly

56

Figure 8. Instance driven evolution of Contacts

incorporate a piece of information, it can reshape the instance
with an adaptive entity to overcome either a structural or
a compositional limitation of the existing metamodels. In
order to make the experience as smooth as possible, it is
important that the transformation that replaces an arbitrary
specific fragment with the corresponding adaptive fragment
of the Entities language is also able to translate the specific
metamodel information into a set of meta constraints for the
resulting adaptive fragment. In this way, the only perceived
difference between the original specific entity and the new
adaptive entity is the desired adaptation introduced by the
user. From this point on, the evolution of the instance model
is no longer bound by the original metamodels and may
continue by means of the facilities provided for standalone
instance modeling. In Figure 8 there is an instance of the
Contacts language in which the specific Address entity has
been replaced by an adaptive entity, named Address1, with
an additional feature (notes), a removed feature (state) and
a renamed feature (street). Note that the meta data shown
in the right part of the Figure 8 can be derived from the user
interactions made on the model shown in the left part of the
same figure.

5. Conclusions
Although the Entities language has been in development
for several years, it is only in recent months that we were able
to understand the changes needed to make the solution viable.
First, we changed the Entities metamodel in order to move
field names and styling information from the instances to
the meta level. Secondly, we introduced a new notation that
combines our earlier generic notations, based on tables and
trees, by means of a customizable style.

The styled notation, even alone, allows to achieve reason-
able levels of specificity for many domains including data
formats and knowledge organization and visualization.

Standalone instance modeling is really promising, not only
does it add flexibility, but it also extends the applicability of
domain specific modeling to people and domains that once
were difficult to reach.

References
[1] Riccardo Solmi. Whole Platform. PhD thesis, University of

Bologna, March 2005. UBLCS 2005-07.

[2] Sebastian Erdweg, Tijs van der Storm, Markus Völter, Lau-
rence Tratt, Remi Bosman, William R. Cook, Albert Gerrit-
sen, Angelo Hulshout, Steven Kelly, Alex Loh, Gabriël D. P.
Konat, Pedro J. Molina, Martin Palatnik, Risto Pohjonen, Eu-
gen Schindler, Klemens Schindler, Riccardo Solmi, Vlad A.
Vergu, Eelco Visser, Kevin van der Vlist, Guido Wachsmuth,
and Jimi van der Woning. Evaluating and comparing language
workbenches: Existing results and benchmarks for the future.
Computer Languages, Systems & Structures, 44:24–47, 2015.

[3] Gabriël Konat, Sebastian Erdweg, and Eelco Visser. Towards
live language development. In Proceedings of the 2nd Interna-
tional Workshop on Live Programming, LIVE ’16, 2016.

[4] Athanasios Zolotas, Nicholas Matragkas, Sam Devlin, Dim-
itrios S Kolovos, and Richard F Paige. Type inference using
concrete syntax properties in flexible model-driven engineering.
Flexible Model Driven Engineering Proceedings (FlexMDE
2015), page 22, 2015.

[5] Jesús J. López-Fernández, Jesús Sánchez Cuadrado, Esther
Guerra, and Juan Lara. Example-driven meta-model develop-
ment. Softw. Syst. Model., 14(4):1323–1347, October 2015.

[6] Athanasios Zolotas, Dimitris S Kolovos, Nicholas Drivalos
Matragkas, and Richard F Paige. Assigning semantics to
graphical concrete syntaxes. XM@ MoDELS, 1239:12–21,
2014.

[7] Bastian Roth, Matthias Jahn, and Stefan Jablonski. Rapid
design of meta models. International Journal on Advances in
Software, 7:31–43, 2014.

[8] Bastian Roth, Matthias Jahn, and Stefan Jablonski. On the
way of bottom-up designing textual domain-specific modelling
languages. In Proceedings of the 2013 ACM Workshop on
Domain-specific Modeling, DSM ’13, pages 51–56, New York,
NY, USA, 2013. ACM.

[9] Kacper Bak, Dina Zayan, Krzysztof Czarnecki, MichałAn-
tkiewicz, Zinovy Diskin, Andrzej Wasowski, and Derek Ray-
side. Example-driven modeling: Model = abstractions + ex-
amples. In Proceedings of the 2013 International Conference
on Software Engineering, ICSE ’13, pages 1273–1276, Piscat-
away, NJ, USA, 2013. IEEE Press.

[10] Jesús Sánchez-Cuadrado, Juan De Lara, and Esther Guerra.
Bottom-up meta-modelling: An interactive approach. In Pro-
ceedings of the 15th International Conference on Model Driven
Engineering Languages and Systems, MODELS’12, pages 3–
19, Berlin, Heidelberg, 2012. Springer-Verlag.

[11] Hyun Cho, Jeff Gray, and Eugene Syriani. Creating visual
domain-specific modeling languages from end-user demon-
stration. In Proceedings of the 4th International Workshop on
Modeling in Software Engineering, MiSE ’12, pages 22–28,
Piscataway, NJ, USA, 2012. IEEE Press.

[12] The JSON Data Interchange Format. ECMA International,
first edition edition, October 2013.

57

	Introduction
	Approaches that Need Meta Modeling
	Meta Modeling First
	Continuous Cycling through Meta Levels
	Instance Modeling First

	Standalone Instance Modeling
	Generic Virtual Entities
	Generic Virtual Notation
	Generic Virtual Tooling

	Additional Use Cases
	Dealing with Meta Errors
	Explorable Evolution

	Conclusions

