
JP2 – Collecting Dynamic Bytecode Metrics in JVMs

Aibek Sarimbekov
Walter Binder

University of Lugano, Switzerland
firstname.lastname@usi.ch

Andreas Sewe Mira Mezini
Technische Universität Darmstadt,

Germany
lastname@st.informatik.tu-

darmstadt.de

Alex Villazón ∗

Universidad Privada Boliviana
(UPB), Cochabamba, Bolivia

avillazon@upb.edu

Abstract
The collection of dynamic metrics is an important part of
performance analysis and workload characterization. We
demonstrate JP2, a new tool for collecting dynamic bytecode
metrics for standard Java Virtual Machines (JVMs). The ap-
plication of JP2 is a three-step process: First, an online step
instruments the application for profiling. Next, the resulting
profile is dumped in an appropriate format for later analysis.
Finally, the desired metrics are computed in an offline step.
JP2’s profiles capture both the inter-procedural and the intra-
procedural control flow in a callsite-aware calling-context
tree, where each node stores, amongst others, the execution
count for each basic block of code. JP2 uses portable byte-
code instrumentation techniques, is Open Source, and has
been tested with several production JVMs.

Categories and Subject Descriptors D.2.8 [Metrics]: Per-
formance measures

General Terms Experimentation, Measurement

Keywords Dynamic metrics, Java

1. Introduction
We demonstrate JP2, an open-source tool1 for portable exe-
cution profiling in standard Java Virtual Machines (JVMs).
Thanks to plugins that dump the collected profile in an ap-
propriate format, it is easy to set up an evaluation workflow
and compute a wide range of dynamic metrics. Recently, JP2
has successfully been used to characterize Scala workloads
and to compare their execution behavior with the DaCapo

∗ The work presented here was conducted while A. Villazón was visiting
University of Lugano, Switzerland.
1 See http://jp-profiler.origo.ethz.ch/.

Copyright is held by the author/owner(s).
SPLASH’11 Companion, October 22–27, 2011, Portland, Oregon, USA.
ACM 978-1-4503-0940-0/11/10.

benchmarks [5]; the results of this study are presented in a
complementary research paper at OOPSLA 2011 [12].

In terms of implementation, JP2 is a significant improve-
ment over the previous JP profiler [4]. In particular, it im-
proves the completeness and accuracy of profiles in the pres-
ence of native methods [11]. Moreover, JP2 adds awareness
of both individual callsites [11] and intra-procedural control
flow; it thus collects much richer profiles than its predeces-
sor. The collected profiles are complete in the sense that in-
vocations of native methods as well as callbacks from native
code into bytecode are all present in the profile. They are
also accurate in the sense that for all methods, whether rep-
resented by bytecode or by native code, their invocations are
counted. Additionally, for methods represented by bytecode,
accurate basic-block execution counts are part of the profile.

JP2 arranges the profiles for individual methods in a so-
called calling-context tree (CCT) [2], which represents the
overall program execution. While rich in information, the
resulting profile is therefore conceptually quite simple; the
CCT contains only two kinds of objects: nodes representing
the calling-contexts and arrays with basic-block execution
counts for each context.

2. Step 1: Instrumentation
JP2 applies instrumentation to any method with a bytecode
representation, including methods in the standard Java class
library. To this end, JP2 uses polymorphic bytecode instru-
mentation (PBI) [10] to avoid infinite recursions which oth-
erwise may occur when the instrumentation itself invokes
methods in the instrumented class library. PBI achieves this
using code duplication within method bodies; depending on
the control flow, the correct version of the code (either instru-
mented or original) is executed. A thread-local flag indicates
whether execution is at the level of the base program under
analysis or at the level of the inserted profiling code. Using
PBI requires no structural modifications of classfiles.

For profiling native methods, JP2 relies on native method
prefixing, a feature of the JVMTI2 introduced in Java 6,
and statically inserts a bytecode wrapper for each native

2 See http://download.oracle.com/javase/6/docs/technotes/

guides/jvmti/.

35



method [11]. This is the only use of static instrumenta-
tion; otherwise all classes get instrumented dynamically,
with classes already loaded during JVM bootstrapping being
redefined after the bootstrap. If native methods are not of in-
terest, this static instrumentation step becomes optional; all
that is required is a Java-6-compatible JVM.

3. Step 2: Profiling and Profile Dumping
Although JP2 collects platform-independent dynamic met-
rics like method invocations or basic-block execution counts,
it can also be used to collect platform-dependent metrics
such as elapsed CPU or wallclock time. Momentarily, how-
ever, the focus is on dynamic metrics that are independent of
both the specific JVM and underlying hardware architecture.

JP2 uses a plugin mechanism for dumping the collected
profiles and ships with four different plugins: One pair of
plugins uses a text-based output format. Another pair of plu-
gins uses XML-based formats to output either the entire
CCT or a dynamic call graph. This flexible plugin mecha-
nism enables the user of JP2 to compute dynamic metrics
offline, thus giving an opportunity first to collect the nec-
essary data, then define the metrics of interest, and finally
compute them (all from the same profile).

4. Step 3: Metrics Computation
During the live demonstration, JP2 will be applied to sev-
eral Java and Scala applications, producing detailed profiles.
These profiles will be dumped in an XML representation
suitable for easy analysis with off-the-shelf tools. We will
show several small XQuery scripts [6] that compute vari-
ous dynamic bytecode metrics of interest, such as method
and basic block hotness, callsite polymorphism, and others.
The tool demonstration will present all necessary steps for
setting up, running, and customizing JP2. Hence, the partic-
ipants will be able to immediately start using JP2 for their
own workload characterization tasks.

5. Related Tools
Dufour et al. [7] presented *J, a tool for collecting dynamic
metrics, which relies on the obsolete JVMPI profiling inter-
face.3 It introduces high overhead and is thus not applicable
to large-scale, real-world workloads. Other related tools use
sampling techniques that compromise completeness and ac-
curacy of the collected profiles [3, 13]. Finally, many pro-
filers rely on modifications of a particular JVM, such as the
Jikes RVM [1] or the Sable VM [8], and are therefore avail-
able only for a limited set of environments, such as the pro-
filing framework for multicores devised by Ha et al. [9]. In
contrast, JP2 is a tool for collecting complete and accurate
dynamic metrics in any standard JVM; moreover, its use in-
curs only an acceptable overhead [11].

3 See http://download.oracle.com/javase/1.4.2/docs/guide/

jvmpi/.

References
[1] B. Alpern, D. Attanasio, A. Cocchi, D. Lieber, S. Smith,

T. Ngo, and J. J. Barton. Implementing Jalapeño in Java. In
Proceedings of the Conference on Object-Oriented Program-
ming, Systems, Languages, and Applications, 1999.

[2] G. Ammons, T. Ball, and J. R. Larus. Exploiting hardware
performance counters with flow and context sensitive profil-
ing. In Proceedings of the Conference on Programming Lan-
guage Design and Implementation, 1997.

[3] M. Arnold and B. G. Ryder. A framework for reducing the
cost of instrumented code. In Proceedings of the Confer-
ence on Programming Language Design and Implementation,
2001.

[4] W. Binder, J. Hulaas, P. Moret, and A. Villazón. Platform-
independent profiling in a virtual execution environment. Soft-
ware: Practice and Experience, 39(1):47–79, 2009.

[5] S. M. Blackburn, R. Garner, C. Hoffman, A. M. Khan, K. S.
McKinley, R. Bentzur, A. Diwan, D. Feinberg, D. Frampton,
S. Z. Guyer, M. Hirzel, A. Hosking, M. Jump, H. Lee, J. E. B.
Moss, A. Phansalkar, D. Stefanović, T. VanDrunen, D. von
Dincklage, and B. Wiedermann. The DaCapo benchmarks:
Java benchmarking development and analysis. In Proceedings
of the Conference on Object-Oriented Programing, Systems,
Languages, and Applications, pages 169–190, 2006.

[6] S. Boag, D. Chamberlin, M. F. Fernández, D. Florescu, J. Ro-
bie, and J. Siméon, editors. XQuery 1.0: An XML Query Lan-
guage. World Wide Web Consortium, 2nd edition, 2010.

[7] B. Dufour, L. Hendren, and C. Verbrugge. *J: a tool for dy-
namic analysis of Java programs. In Companion of the Confer-
ence on Object-Oriented Programming, Systems, Languages,
and Applications, 2003.

[8] E. M. Gagnon and L. J. Hendren. SableVM: A research
framework for the efficient execution of Java bytecode. In
In Proceedings of the Java Virtual Machine Research and
Technology Symposium, 2000.

[9] J. Ha, M. Arnold, S. M. Blackburn, and K. S. McKinley. A
concurrent dynamic analysis framework for multicore hard-
ware. In Proceedings of the Conference on Object-Oriented
Programming, Systems, Languages, and Applications, 2009.

[10] P. Moret, W. Binder, and E. Tanter. Polymorphic bytecode in-
strumentation. In Proceedings of the International Conference
on Aspect-Oriented Software Development, 2011.

[11] A. Sarimbekov, P. Moret, W. Binder, A. Sewe, and M. Mezini.
Complete and platform-independent calling context profiling
for the Java virtual machine. In Proceedings of the Workshop
on Bytecode Semantics, Verification, Analysis and Transfor-
mation, 2011.

[12] A. Sewe, M. Mezini, A. Sarimbekov, and W. Binder. Dacapo
con Scala: Design and analysis of a Scala benchmark suite for
the Java virtual machine. In Proceedings of the Conference
on Object-Oriented Programming, Systems, Languages, and
Applications, 2011.

[13] J. Whaley. A portable sampling-based profiler for Java Virtual
Machines. In Proceedings of the ACM 2000 Conference on
Java Grande, 2000.

36




