

GME: The Generic Modeling Environment

James Davis
Institute for Software Integrated Systems,

Vanderbilt University
Box 1829, Station B, Nashville, TN 37235

(615) 343-7530

james.davis@vanderbilt.edu

Categories and Subject Descriptors
D.2.6 [Programming Environments]: Graphical Environments,
Integrated Environments

General Terms
Design, Languages.

Keywords
Model Integrated Computing, domain specific visual languages,
system synthesis, abstract system models.

1. INTRODUCTION
The Generic Modeling Environment (GME) is an architecture
developed for producing domain-specific design environments.
These domain specific environments are used to capture
specifications in a natural language for the end user and to
automatically generate or configure target applications in a given
domain (i.e. in a particular engineering field). Well known
examples include Matlab/Simulink for signal processing and
LabView for instrumentation. One of the common characteristics
of many domain specific tools include a visual specification
interface. The advantages of visual environments have been
demonstrated in many different domains. However, the high cost
of development restricts their use. Fields with small markets do
not typically justify the high cost of developing a customized
visual interface. GME is presented as a solution to this problem,
as it is a configurable, graphical modeling environment. GME
supports a variety of general modeling principles in the generic
tool. These general modeling principles are then utilized in
creating the domain specific language. By making GME easily
configurable for a wide variety of domains, cost issues are
primarily related to the development of the generic environment.
GME is based on over fifteen years of research in Model
Integrated Computing (MIC) at the Institute for Software
Integrated Systems at Vanderbilt University. MIC focuses on the
development of domain specific languages and domain specific
environments. GME is the architecture used to realize domain
specific languages and domain specific modeling environments.
GME is configured using metamodels to specify the modeling
language of the target domain. Metamodels capture the syntax,
semantics, and presentation of the domain specific language.
What objects exist in the language, how they may be related, and

how they are presented are all captured in the metamodels.
Visualization of the different objects and relationships in the
language are limited to the set of presentation idioms that GME
supports. However, many of these limitations are of the visual
editor – the core component of GME could handle other
presentation methods. In practice, the set of visual idioms GME
supports are sufficient for realizing a large set of domain specific
languages.
GME metamodels are based on the Unified Modeling Language
(UML). UML class diagrams are used to capture the syntax of the
domain specific language. Presentation/visualization information
is captured using a combination of stereotypes and predefined
attributes of the UML classes and associations. The Object
Constraint Language (OCL) is used to compose constraints to
impose the static semantics of the target language. The
metamodels are used to automatically configure GME for the
specified target domain. It is interesting to note that GME
metamodels are constructed using GME. In effect, metamodels
define the set of all possible models that can be constructed in the
target modeling paradigm or language.
Once models are constructed in GME, a process known as model
interpretation is used to process the models and to generate
applications, data for COTS tools, or configuration for third party
tools. The model interpreter is a small application component that
is written to work on the domain models. It must be generic in
nature to ensure that all models that are legal in the domain
specific language can be handled. While developing a model
interpreter may be time consuming, it is developed once, usually
by an engineer versed in MIC, and is then employed many times
by domain experts using the domain specific environment.
GME utilizes many object oriented features. In addition to the
heavy reliance on UML in the metamodeling framework, features
such as inheritance are available in GME as a domain modeling
tool. Once an object is created in GME, it effectively becomes a
type. It can be subtyped and instantiated at will. Whenever
modifications occur to the base type, the modifications are
automatically enforced on any subtypes or instances.

2. GME ARCHITECTURE
GME has a modular, component-based architecture depicted in

Figure 1. Currently SQL, XML and a fast, proprietary binary file
format are supported as a thin storage layer for model persistence.
The Core component implements the two fundamental building
blocks of a modeling environment: objects and relations. Among
its services are distributed, multi-user access (i.e. locking) and
undo/redo.

Copyright is held by the author/owner(s).
OOPSLA’03, October 26–30, 2003, Anaheim, California, USA.
ACM 1-58113-751-6/03/0010.

82

Two component
GModel. The G
GModel implem
paradigm. The
GMeta compone
The GModel co
COM interfaces
The user inter
architecture: the
Manager, Interp
model interpret
events, such
“Attribute Chan
receive some o
invoked by the
extremely usefu
When a particul
can be support
example for an
the metamodelin
The Constraint
an add-on at the
also invoked a
present in the g
constraint, the o
aborted. For les
issues a warning
The GME Edit
architecture. An
same access righ
GME Core. Any
Editor, can also
This architectu
environment eas
component is be
GME architectu
different compo
GME.

Model Interpreters can be developed using the GME COM
interfaces or using a high level C++ interface. The high level
interpreter interface is referred to as the Builder Object Network
(BON). The BON is a set of C++ classes that hide the complexity
of the COM interface from the user. Additionally, the BON can
be extended to domain specific classes for use in developing the
modeling interpreter. The metamodels can be used to
automatically generate the extension to the BON. This not only
enables the model interpreter developer to utilize the same classes
as specified in the metamodel, but also reduces the time and effort
necessary to produce an interpreter. Many of the generated BON
extensions were required to be manually created in the past.

3. Example DSDE
Figure 2 shows an example GME domain: a system on a
chip/platform design environment. This domain is an integrated,
extensible, simulation environment. Data flow models, such as
those shown, are used to specify the processing of the application.
Other models represent the hardware available. Through the

e
Figure 1: GME architectur

s use the services of the Core: the GMeta and the
Meta exposes the modeling paradigm, while the
ents the GME modeling concepts for the given
architecture is reflective: the GModel uses the
nt extensively through its public COM interfaces.
mponent publishes its services through a set of

 as well.
acts with the components at the top of the
 GME Editor, the Model Browser, the Constraint
reters and Add-ons. Add-ons are event-driven

ers. The GModel component exposes a set of
as “Object Deleted,” “Connection Created,”
ged,” etc. External components can register to
r all of these events. They are automatically
 GModel when the events occur. Add-ons are
l for extending the capabilities of the GME Editor.
ar domain calls for some special operations, these
ed without modifying the GME itself. A good
add-on is the OCL syntax checker integrated into
g environment.
Manager can be considered as an interpreter and
 same time. The user can start it explicitly and it is
utomatically when event-driven constraints are
iven paradigm. Depending on the priority of a
peration that caused a constraint violation will be
s serious violations, the Constraint Manager only
.
or component has no special privileges in this
y other component (translator, add-on) has the
ts and uses the same set of COM interfaces to the
 operation that can be accomplished through the

 be done programmatically through the interfaces.
re is very flexible and makes the whole
ily extensible and customizable. A GME Editor
ing developed in Eclipse. One advantage of the
re is the ability to extend the architecture with
nents to enhance the versatility and usability of

model interpreters, simulations can be generated to evaluate
possible system configurations for performance and power
characteristics. The same set of models are used to configure
many different types of simulators, thus reducing the designer’s
effort of producing the simulations.

4. REFE
[1] Sztipa

Compu

[2] Ledecz
Enviro

[3] The G
http://w

[4] Ledecz
Metho
System
Simula

83
Figure 2: Example modeling environment
RENCES
novits J., Karsai G.: “Model-Integrated Computing”,
ter, pp. 110-112, April, 1997.

i A., et.al.: “Composing Domain-Specific Design
nments”, Computer, pp. 44-51, November, 2001.

ME User’s Manual, available from
ww.isis.vanderbilt.edu/projects/gme.

i A., Davis J., Neema S., Agrawal A.: “Modeling
dology for Integrated Simulation of Embedded
s”, ACM Transactions on Modeling and Computer
tion, January 2003

