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1. INTRODUCTION 
The Generic Modeling Environment (GME) is an architecture 
developed for producing domain-specific design environments.  
These domain specific environments are used to capture 
specifications in a natural language for the end user and to 
automatically generate or configure target applications in a given 
domain (i.e. in a particular engineering field). Well known 
examples include Matlab/Simulink for signal processing and 
LabView for instrumentation.   One of the common characteristics 
of many domain specific tools include a visual specification 
interface.  The advantages of visual environments have been 
demonstrated in many different domains.  However, the high cost 
of development restricts their use. Fields with small markets do 
not typically justify the high cost of developing a customized 
visual interface.  GME is presented as a solution to this problem, 
as it is a configurable, graphical modeling environment. GME 
supports a variety of general modeling principles in the generic 
tool.  These general modeling principles are then utilized in 
creating the domain specific language. By making GME easily 
configurable for a wide variety of domains, cost issues are 
primarily related to the development of the generic environment.    
GME is based on over fifteen years of research in Model 
Integrated Computing (MIC) at the Institute for Software 
Integrated Systems at Vanderbilt University.  MIC focuses on the 
development of domain specific languages and domain specific 
environments.   GME is the architecture used to realize domain 
specific languages and domain specific modeling environments.  
GME is configured using metamodels to specify the modeling 
language of the target domain.  Metamodels capture the syntax, 
semantics, and presentation of the domain specific language.  
What objects exist in the language, how they may be related, and 

how they are presented are all captured in the metamodels.  
Visualization of the different objects and relationships in the 
language are limited to the set of presentation idioms that GME 
supports.  However, many of these limitations are of the visual 
editor – the core component of GME could handle other 
presentation methods.  In practice, the set of visual idioms GME 
supports are sufficient for realizing a large set of domain specific 
languages. 
GME metamodels are based on the Unified Modeling Language 
(UML).  UML class diagrams are used to capture the syntax of the 
domain specific language.  Presentation/visualization information 
is captured using a combination of stereotypes and predefined 
attributes of the UML classes and associations.  The Object 
Constraint Language (OCL) is used to compose constraints to 
impose the static semantics of the target language.  The 
metamodels are used to automatically configure GME for the 
specified target domain. It is interesting to note that GME 
metamodels are constructed using GME.  In effect, metamodels 
define the set of all possible models that can be constructed in the 
target modeling paradigm or language. 
Once models are constructed in GME, a process known as model 
interpretation is used to process the models and to generate 
applications, data for COTS tools, or configuration for third party 
tools.  The model interpreter is a small application component that 
is written to work on the domain models.  It must be generic in 
nature to ensure that all models that are legal in the domain 
specific language can be handled.  While developing a model 
interpreter may be time consuming, it is developed once, usually 
by an engineer versed in  MIC, and is then employed many times 
by domain experts using the domain specific environment. 
GME utilizes many object oriented features.  In addition to the 
heavy reliance on UML in the metamodeling framework, features 
such as inheritance are available in GME as a domain modeling 
tool.  Once an object is created in GME, it effectively becomes a 
type.  It can be subtyped and instantiated at will.  Whenever 
modifications occur to the base type, the modifications are 
automatically enforced on any subtypes or instances. 

2. GME ARCHITECTURE 
GME has a modular, component-based architecture depicted in 

Figure 1.  Currently SQL, XML and a fast, proprietary binary file 
format are supported as a thin storage layer for model persistence. 
The Core component implements the two fundamental building 
blocks of a modeling environment: objects and relations. Among 
its services are distributed, multi-user access (i.e. locking) and 
undo/redo. 
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Model Interpreters can be developed using the GME COM 
interfaces or using a high level C++ interface.  The high level 
interpreter interface is referred to as the Builder Object Network 
(BON).  The BON is a set of C++ classes that hide the complexity 
of the COM interface from the user.  Additionally, the BON can 
be extended to domain specific classes for use in developing the 
modeling interpreter.  The metamodels can be used to 
automatically generate the extension to the BON.  This not only 
enables the model interpreter developer to utilize the same classes 
as specified in the metamodel, but also reduces the time and effort 
necessary to produce an interpreter.  Many of the generated BON 
extensions were required to be manually created in the past. 

3. Example DSDE 
Figure 2 shows an example GME domain: a system on a 
chip/platform design environment.  This domain is an integrated, 
extensible, simulation environment.  Data flow models, such as 
those shown, are used to specify the processing of the application.  
Other models represent the hardware available.  Through the 
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Figure 2: Example modeling environment
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