
Escape Analysis for Object Oriented Languages. Application to

JavaTM

Bruno BLANCHET

INRIA Rocquencourt

Domaine de Voluceau - BP 105

78153 Le Chesnay Cedex, France
Bruno.Blanchet@inria.fr

ABSTRACT

Escape analysis [27, 14, 5] is a static analysis that determines
whether the lifetime of data exceeds its static scope.

The main originality of our escape analysis is that it deter-
mines precisely the effect of assignments, which is necessary
to apply it to object oriented languages with promising re-
sults, whereas previous work [27, 14, 51 applied it to func-
tional languages and were very imprecise on assignments.
Our implementation analyses the full JavaTM Language.

We have applied our analysis to stack allocation and syn-
chronization elimination. We manage to stack allocate 13%
to 95% of data, eliminate more than 20% of synchronizations
on most programs (94% and 99% on two examples) and get
up to 44% speedup (21% on average). Our detailed experi-
mental study on large programs shows that the improvement
comes more from the decrease of the garbage collection and
allocation times than from improvements on data locality
[7], contrary to what happened for ML [5].

1 INTRODUCTION

Object-oriented languages such as C++ and Java often use
a garbage collector (GC) to make memory management eas-
ier for the programmer. A GC is even necessary for the Java
programming language, since Java has been designed to be
safe, so it cannot rely on the programmer to deallocate ob-
jects when they are useless. However, garbage collecting
data is time consuming, especially with a mark and sweep
collector as in the JDK. Therefore stack allocation may be
an interesting alternative. However, it is only possible to
stack allocate data if its lifetime does not exceed its static
scope. The goal of escape analysis is precisely to determine
which objects can be stack allocated.

Escape analysis is an abstract interpretation-based analysis
[lo, ll] which we have already applied to functional lan-
guages [5]. However, object-oriented languages have specific

Permission to make digital or hard copies.of all or part of this work for
personal or classroom use is granted without fee provided that

copies are not made or distributed for profit or commercial advant
-age and that copies bear this notice and the full citation On the first Page.

To copy otherwise, to republish, to post on servers or to
redistribute to lists, requires prior specific permission andlor a fee.

OOPSLA ‘99 t l/99 ,Denver, CO, USA
0 1999 ACM l-581 13-238.7/99/0010...$5.00

features, which make the analysis completely different from
the functional version:

Object-oriented languages use dynamic calls, so be-
fore analyzing the code, we must first determine which
methods may actually be called at each call point;

Object-oriented languages make an intensive use of as-
signments, which must therefore be precisely analyzed,
which much complicates our task;

Object-oriented languages use subtyping, which must
be taken into account for the representation of escape
information, since it is computed from the types.

Escape analysis has two applications: an object o which does
not escape from method m (i.e. whose lifetime is included
in m runtime) can be stack allocated in m. Our analysis
has been designed such that o is also local to the thread of
m, so we need not perform synchronizations when calling a
synchronized method on object o. This second application
is more specific to Java.

1.1 Related Work

Escape analysis on lists has been introduced by Park and
Goldberg (271 for functional languages, and Deutsch [14] has
much improved the complexity of their analysis, reducing it
to C3(nlog2 n), with exactly the same results for first-order
expressions (there is an unavoidable loss of precision in the
higher-order case). He has also suggested several extensions.
In [5], we gave a complete implementation of escape analysis
on the Cam1 Special Light compiler (an implementation of
ML) with some extensions, and a proof of correctness as well
as experimental data.

Mohnen [25, 261 describes a similar analysis, but the ana-
lyzed language is restricted to first order and does not handle
imperative operations. Hughes [20] already introduces inte-
ger levels to represent the escaping part of data. He does
not perform stack allocation, but keeps in memory the ad-
dresses of data to be deallocated in order to avoid using the
GC. The work closest to Hughes’ is [21] by Inoue, Seki and
Yagi, who only free the top of lists, but give experimental
results.

McDowell [24] gives experimental evidence that there are
many opportunities for stack allocation in Java programs,

20

and suggests it would be interesting, but does not actually
allocate data on the stack. [28] gives an analysis algorithm
that can be applied to stack allocation in object oriented
languages, but it is much more costly than ours, and no
implementation is mentioned. [15] applies an escape analy-
sis to stack allocation in Java, but considers that an object
escapes as soon as it is stored in another object. Our anal-
ysis is therefore much more precise. [6] uses escape analysis
for synchronization elimination, but our algorithm is more
precise on assignments since we can detect objects that are
transitively reachable only from local variables. [2] investi-
gates other analyses to eliminate synchronizations, when a
monitor is always protected from concurrent access by an-
other monitor, or when the monitored object is thread local.
These analyses eliminate fewer synchronizations than ours
on the benchmarks. [9] uses an escape analysis based on
connection graphs. They are similar to alias graphs and
points-to graphs but can be easier summarized to avoid re-
computing the escape information when a method is called
in different escape contexts. This analysis is applied to stack
allocation and synchronization elimination. It is however
more costly than ours.

Alias analysis [13], reference counting [18, 191, storage use
analysis [29] which is similar to [12, 17, 22, 301 can be applied
to stack allocation though at a much higher cost.

Another allocation optimization has been suggested in
[l, 3, 311: region allocation. All objects are allocated in
heap regions whose size is not known statically in general,
but for which we know when they can be deallocated. Re-
gions can therefore be deallocated without GC. This analysis
solves a more general problem than ours, but at the cost of
an increased complexity. In fact, on many programs, op-
portunities for stack allocation outnumber opportunities for
region allocation, as noticed in [3].

[16] uses annotated types to describe escape information.
The results are not as precise as ours and it only gives in-
ference rules and no algorithm to compute annotated types.

1.2 Overview

In Section 2, we define our escape analysis for Java, and
state its correctness theorem. We have done a correctness
proof, but we shall not detail it here, as we have chosen to
focus on the experimental side in this paper.

Section 3 describes the implementation details of our anal-
ysis. It is based on TurboJ, a Java to C compiler designed
by the Silicomp Research Institute. It benefits from several
extensions: we use inlining to increase the number of stack
allocation opportunities. We reuse the space when possible
if an allocation occurs in a loop. Our analysis is intermodu-
lar, and supports separate compilation of libraries (although
precision is improved if we perform global analysis, because
we have more precise information on the call graph).

Section 4 is devoted to the experimental study of the
speedups. The programs benefit both from improvements
on data locality and from a decrease of the GC workload.
But the most important improvements come from the GC.
For our benchmarks, we get up to 44% speedup (21% on
average) and our analysis can be applied to the largest ap-
plications thanks to its very good measured efficiency.

N Var
Class
Name
SimpleType
Ref rrSpe
rrSPe
MethodQpe
Method
Field

putf iel

Number of a local variable ({0...65535})
Name of a class
Name .of a field or a method
Simple type (we restrict ourselves to int)
Reference type (Class or array of Type)
Type (SimpleType U RefQpe)
Method type (Qpe’ x (Type U {void}))
Method (Class x Name x MethodTuve)
Field (Ciais x Name x Type)
<Field> iastore

v1 ’

getf ield <Field>
putstatic <Field>
getstatic <Field>
neu < Class>
anewarray < RefQpe>
newarray < SimpleType>
invokevirtual <Method>
instanceof < RefType>
checkcast <Ref!Qpe>
goto <Address>

(other jumps similar)

iaload
aaload
aastore
areturn
ireturn
aconstmull

dup
iload <NVar>
istore < NVar>
aload <NVar>
astore < NVar>

Figure 1: Java bytecode syntax

1.3 Notations

Let s* be the set of lists whose elements are in S. The empty
list is 1. The list of elements pr, ,pn is [PI,. . . ,pn]. The
list 1 at the head of which pl has been concatenated is pl : 1.
The ith element of 1 is Z(i). The function which maps 2 to
f(z) is {z r-) f(z)}. The extension of f which maps x to
y is f[x I-) y]; if f was already defined at x, the new value
replaces the old one. In a lattice, the join is U and the meet
is n.

2 ESCAPE ANALYSIS

2.1 Syntax of the analyzed language

Our analysis applies to the Java bytecode. For each method,
the bytecode is a sequence of instructions. These instruc-
tions will be represented by mnemonics from The Java Vir-
tual Machine Specification [23]. For our study, we will re-
strict ourselves to a small but representative subset of the
Java bytecodes, which is listed on Figure 1.

For simplicity, we do not consider jsr and ret bytecodes
and exceptions here, since they raise specific problems, with
no connection with escape analysis. Our implementation
correctly handles these bytecodes.

2.2 Our analysis

An object is said to escape from method m if its lifetime
exceeds the runtime of method m, as illustrated by the fol-
lowing example.

21

all objects here are useless after the end of run

LimVect l/l\

result of runii

class LimVect I
int count = 0;
Object [I el;

LimVect (int n) { el = new Object Cnl ; 1

void put(Object o) C eI[count++] = o;)

Object get(int n) C return elCn1; 1

static Object run0 <
LimVect local = new LimVect (4) ;
local .put (new Integer (1)) ;
return local. get (0) ;

1

Figure 2: Code and structure of objects for Example
2.1

Example 2.1 Let us consider the simple vector class de-
fined on Figure 2 (its bytecode will be studied in the fol-
lowing). In this example, the LimVect object local and
the Object array local. el are useless at the end of run.
The LimVect object can be stack allocated. The Object ar-
ray could be stack allocated if the LimVect constructor had
been inlined in run.

The escaping part of an object will be represented by an
integer. This integer is said to be the context associated
with the object, therefore the set of contexts is: Ctx = M
The context of an object can be defined from the type of its
escaping part, as follows.

For each object or array type r E RefFype, let us define the
set Cont(~) of the types that T contains (types of the fields
for an object, type of the elements for an array). We define
the height T[7 o an object or array type r as the smallest] f

Object Object

Figure 3: Type heights. An arrow T + 7’ means
T’ E Co&(r) i.e. 7 has a field (or element) of type T’.

integer such that:

T[T] 2 1 (1)

if 7’ E Cant(r), T[r’] 5 T[r] (2)
if T’ is a subtype of 7, and T # Object, T[r’] < T[T] (3)

if that does not contradict rules (2) and (3),

if T’ E Colat (T), 1 + T[r’] 5 T[T] (4)

Oniy Rule (2) is necessary for the correctness of the anal-
ysis. Rules (3) and (4) are useful the get the best possible
precision. By convention, if r is not an object or an array,
T[T] = 0, Con+) = 8.

Example 2.2 We assume that no unmentioned subtypes
of the types considered in the following examples are de-
fined, so (3) does not apply. Let us consider for example the
LimVect class. This case is simple: there is no cycle in the
Cont relation (i.e. no object may contain an object of the
same type), so (4) always applies, and the height of a type
is 1 plus the maximum height of the types it contains. The
results are represented on Figure 3.

Let us consider now the Tree class:

class Tree (Object element ;
Tree [] sons ; 1

For Tree, there is a strongly connected component in the
graph of the Cont relation, which contains Tree Cl and Tree
(see Figure 3) since Cont(Tree) = (Object, TreeCl}, and
Cont(Tree [I) = {Tree). According to (2), T[Tree] >
T[Tree El] 2 T[Tree], so we cannot apply (4) between
Treed] and Tree. (4) gives T[Tree] 2 T[Object] + 1 = 2,
so T[Tree] = T[Tree[]] = 2.

The escaping part of an object will be represented by the
height of its type (for example, since local. el [O] escapes
in LimVect.run, the context for local will be T[Object] =
I). We do not directly compute types, because computing
integers will lead to a faster analysis and the experiments
show that the analysis is still precise.

To compute the escape information, we use a bidirectional
propagation: E is a backward analysis, whereas Es is a
forward analysis. The analyses E and Es depend on each
other. First, we know that what is read to build the re-
sult of a method escapes (for example, if a method reads a
field with getfield, and returns this field as its result, then

22

the field escapes). This is computed by analysis E, using a
backward propagation (from the result to the parameters).
However, because of assignments, objects may also escape
because they are stored in static fields, in parameters, or
in the result of the method. Backward propagation cannot
take into account the fact that an object o escapes because
it is stored in a parameter o’ of the method for example,
because at the point of the assignment, the analyzer would
not know that o’ is a parameter of the method. Therefore,
we have to introduce a forward analysis Es to cope with
assignments (S for store). For example, in LimVect . run0,
E can take into account that elements of local.el may be
part of the result, but ES is necessary to take into account
the fact that the new Integer may be stored in local.el.

Abstract values are contexts transformers: they take as pa-
rameters the escape contexts of the result of the method
for analysis E (except when it is void, in which case this
parameter is omitted. This case will be omitted in the fol-
lowing definitions) and of the parameters for ES. They yield
the escape context associated with the concrete value. Java
supports typecasts and subtyping, so the static type of the
same object may not be the same during the whole runtime,
and we have to remember the assumed type of objects with
each context transformer. Therefore, abstract values are:
Val= UnEN((Ctxn + Ctx) X Typen x Type).

Notations for escape analysis are summarized on Figure 4.
We define the following abstract operations:

l Conversion; The purpose of this operation is to con-
vert a context computed for one type r to another
type 7’. This will enable us to apply the following
abstract operations to any type, even if they are nor-
mally defined for some types only. Conversions appear
explicitly when using checkcast to convert types (but
in the analysis they are delayed until really necessary),
or implicitly when using a subtype as a supertype (in
method calls or field accesses). convert(r, T’) : Ctz +
(3X.

Let t[]” be the type t[]...[with k times [I. Assume
that T is an array type with k dimensions, r = t[]”
and t is not an array. 7’ is aIso an array type with k’
dimensions: 7’ = t/U”’ and t’ is not an array.

convert(r, r’)(n) = (n fl T[~‘])u

I

T[t’[]k’-i] if i 10 minimum such that i 5 k, i 5 k’
and n = T[t[k-i],

-WI if k > k’ and T/t] 5 n 5 T[tUkek’],
0 if n < T[t].

(For integers, U is the maximum, fl is the minimum).

In the particular case when r and 7’ are not
array types, this reduces to:
convert(-r, r’)(n) =

if T[-r’] < T[T],
n n T[T’]. Otherwise

convert(r, 7’)(n) = if n 2 T[r] then T[#] else n.

For example, convert(LimVect,Object)(2) = 2 n
T[Object] = 1.
T[LimVect] = 3.

convert(Object,LirnVect)(l) =

By convention, if T and T’ are not objects,
convert(r,r’)(O) = 0 (0 is the only possible context
since T[T] = 0). If one and only one of r and 7’ is an
object type, the conversion is not defined.

Abstract values are
order relation’

ordered by the
defined by

(d’, (T;, $),T’)
(4, (70, rj), T) pr:

N Vno E [O,T[d,]], b’nj E
[0, T[rjl]], convert(r, 7’) (@(convert(r;l, To)(no),

convert(r,!,rj)(nj))) < #(no, nj). ~1 < 2rz if and
only if 211 gives a more precise escape information
than ~2.

7~7 bound: ,Let ~1 = ($1, (TO, rj),r;), ~2, =
27 7-00, rj), rz). Then WI u ‘~2 = ((convert(ri, rZ) o

$1) U 42, (70, rj), ri) if T[rz] > T[rl]. Otherwise,
we swap the indices 1 and 2. The choice of the highest
type as the type of the result aims at improving the
precision of the analysis.

Construction: Let v = (4, (~0,q)).r’). If v is the
abstract value associated with the f field of an object
o, consf(v) gives the abstract value associated with
o. If 21 corresponds to the elements of the array o,
consd(o) is the abstract value associated with o.

conscc,f,t,(v) = (convert(r’, t) 0 4, (TO, 7-j), C).
ConsA = (6, (TO, Tj),T’[]).

For example, let w = ({c c+ 2}, (int), Object[), which
means that the corresponding Object [] escapes. Then
COnS(limV.ct,.l,Obj.ct[])(w) = ({c I+ 2}, (int),LimVect)
which means that the LimVect object does not escape,
only its field Object [I.

Restriction: Let v = (4, (rc, rj), 7’). If v is the
abstract value associated with an object o, cons;‘(v)
gives the abstract value associated with the field o.f. If
0 is an array, consi (u) is the abstract value associated
with the elements of o.

cons;-d,f,t) (v) = cm WI, (70, Tj), t), if t E Cont(7’).

Otherwise, consG,f,t) (u) = ((convert(r’, C) o 4) n

-WI, (TOO, q),t).
cons,‘(v) = (4 fl T[t], (70, q), t) if r’ = t[].

Otherwise, consi’ = ((convert(r’, tu) o 4) n
W, (TOO, ‘.., q),t) w h ere t can be arbitrarily chosen.

For example, let w = ({c ti 3}, (int),LimVect)
which means that the LimVect object escapes. Then

ConS~:mV.ct,.l,Object[l)(w) = (tc * 21~ Cint)7 W4l)
which means that the Object [I may escape.

Composition: Let Wk =

(qs’, (T{, . ..) Tj11),7”‘)

($k, (TOO, -,?),d),

0

(convert(TA, r/) 0
(vo, .‘.) Vj) (4’ O

0

4ih (70) “., Ti), T”‘).
40, ,,., convert;;, 7,“)

It is the usual composition
except that we have to convert contexts types when
they do not correspond.

If the analyzed method has j parameters of types 71, rj
and a result of type ro, we note 8 all abstract values corre-
sponding with simple types ({(cc, cj) H 0}, (~0, rj), 7’)
y$e;e; E SWhType. Let Tv[(C,f,t)l ==r\{(cor....,.y) w

, TO ,..., Tj),Q.
01, (70

Let I,,[Es] =
,...) Tj),t) where Es = (4,(rc, rj),t)?‘TlZis ez

tended to stacks by L,[E1,...,E,] = [lv[E~], . ..) l,,[En]]
and to local variables by I,[L] = {n H -Lv[L(n)]}.

first = (((co,...,~,) +b CO}, (7-0,Tj).TO). Vi < j,&(i) =
({(CO, *.+,Cj) ++ G+l}, (TOO, '-.j Tj),C+l).

‘reflexive and transitive but not antisymmetric

23

c E ctx = N Escape contexts
pc E PC = Method x Address Program counter
Val = ((Ctz” -+ Ctx) x l$pe” x Qpe)(n E q Abstract domain of a value
p, p’ E Env = Method + N + Val Environment
ps, p’s E Envs = Method + Val
S E Stack = (Val)* Abstract stack
L E VarLoc = NVar + Val Abstract local variables
(S, L) E State = Stack x VarLoc Abstract state
Ins, Outs : PC + State Entry and exit forward statesa
In, Out : PC + State Entry and exit backward statesb
Idx = {Lot(n), Sta(n)(n E N} Index”

Es : PC x Idx + Val is: if Ins(pc) = (Ss, Ls), E.s(pc, Sta(n)) = S’s(n), Es&, Lot(n)) = Ls(n)
E : PC x Idz -+ VaZ is: if In(pc) = (S, L), E(pc, Sta(n)) = S(n), E(pc, Lot(n)) = L(n)

‘These are the abstract states for analysis Es, Ins(pc) just before the instruction at pc, Outs(pc) just after.
bThese are the abstract states for analysis E, In(pc) is the state after the analysis of the instruction at pc since E is

backward.
“Indices are used to represent stack elements and local variables: Lot(n) stands for the n-th local variable, and Sta(n) for

the n-th element of the stack (0 is the top of the stack). Local variables can also be represented by their name for simplicity.
For example, in the method LimVect .put(Object 01, this is equivalent to Lot(O), o is equivalent to Lot(1).

Figure 4: Notations for escape analysis

For the invokevirtual(C, m, t) bytecode, we need to eval-
uate the worst escape information for all methods that may
be called. We consider that all methods that have a cor-
rect signature (m, t) and are defined in a subclass of C may
be called. We define p’(m)(i) = U,! redefining ,p(m’)(i) and
P>(m) = LJ m’ redefining ds Cm’).

The upper bound is defined on abstract states by taking the
upper bound for each element of the abstract stack and each
abstract local variable. The Java Virtual Machine specifica-
tion [23, page 1301 requires that when merging two operand
stacks, the number of values on each stack are identical, and
the types of values at corresponding places on the stacks are
also identical (or both objects). Therefore, the only rules
for the upper bound of elements of the stack are 8 U 0 = 8
and the upper bound of abstract values VL U VZ. On the con-
trary, two corresponding local variables may contain data of
different types. In this case, the local variable becomes un-
usable after the merge. This corresponds to adding the rules
0 Ll c = 8, c U 8 = 8 for the upper bound of local variables.
With these rules, Ins(w) = UPC' predecessor ,,f pcOuts(Pc').

For the backward transition In(pc) = (S, L) j Out&c’)
where pc’ is a predecessor of pc, the value of L in pc’ is
in spirit the upper bound of L on all successors pc of PC’,
but we have to take into account that a variable may be
unusable at pc and usable at PC’, so, with Outs&‘) =
(SS, Ls), we define restore(L, Ls)(n) = L(n) if L(n) # 8,
restore(L,Ls)(n) = 0 if Ls(n) = 0, restore(L,Ls)(n) =
lv[Ls(n)] in all other cases (the variable was an object at
PC’, and has become unusable at PC). Then, Out(pc’) =

pc SUCCeSSOr or pc’ (S, restor Ls)) where Id&) = (S, L)
fnd Outs@‘) = (SS, Ls).

Escape analysis is summarized on Figure 5. The following
theorem is the main correctness theorem of our analysis. We
skip the proof because of its length. Intuitively, we aSsume
that the parameters and result escape, and we test whether
the allocated object escapes.

Theorem 2.3 (Stack allocation) Let us consider a nev

in method m, at program counter pc. Let 0 be the ob-
ject allocated by that neu. Then with E(p:,Sta(O)) =
fd-oA,;,t’,h7’), if 4~(T[~ol,...,Thl) < Tk 3, 0 can be

Theorem 2.4 (Additivity) Analysis E is additive:
with E(pc, i) = ((f+(n))...) Tj),T’), vc,co)‘.., cj E
ctx, gqco) Cj) LJ (b(cb, . ..) cj) = #(co u Cb,...,Cj Ll c;).
Es has the same property.

Example 2.5 Let us consider the LimVect.get method
from Example 2.1.

Ins(pc) a P(pc) Inbc)
)

([PJ::) Y J$T% f
(1 (0 C) consf(Ea), 1 I+ 8))

’ (bsf(E2)1, L[pal)
([Eo], Pv) 4 iload- W32lr W’~l)

([8 $cI~, 2; z adoad ([0 : Ez],LJ[Pv])

lr Y areturn N.e-4, -L[P~l)

where m = (LimVect,get, (int)Object) represents the get
method, pc = (m,a). The el field is represented by
f = (LimVect,el,Object[]). The middle column gives the
analyzed bytecode.

Abstract values for this method have three parameters:
CO corresponds to the E escaping part of the result,
cl to the ES escaping part of this of type LimVect,
and c2 to the Es escaping part of n of type int.
So the abstract values are of the form ({(co, cl, ~2) c-t
$(co, cl, CZ)}, (Object,LimVect, int), 7). When analyzing
another method that calls get, we need to know what hap-
pens if we keep only a part of the parameters or of the result,
that is why CO, cl, c2 are parameters and not constants.

The left column corresponds to the forward pass (analy-
sis Es). Each line gives the state before the execution
of the corresponding instruction. We say that an ob-
ject o store-escapes when, if we store an object o’ in o,

24

P(pc) Forward transition Ins (pc) + Outs(pc) Backward transition Out(pc) + In(pc)
entry a([, Pv) cn, Lb

emit: Vi E (0,j - 11, /Q(m)(4 2 L(i)
aload n (Ss, Ls)=qLs(n) : Ss,Ls) (E : S, L)=s(S, L[n ++ E u L(n)])
iload n (Ss, Ls)*(Q : ss, Ls) (0 : s, L)*(S, L)
astore n (Es : Ss, Ls)+(Ss, Ls[n ++ Es]) (S, L)*(L(n) : S, L[n t-) J-v[Ls(n)]])
istore n (0 : Ss, Ls)*(Ss, Ls[n c) 01) (S, L)*(0 : S, L[n * L[Ls(n)]])
ireturn (0 : ss, Ls)* *(0 : -L[Ss], LJLS])
areturn (Es : SS, Ls)* emit: ps(m) 2 Es *(first : L[Ss], L[Ls]) J

p (PC>
got0 a
getfield f

if f not object
putfield f

if f not object
getstatic f
putstatic f
new c/aconstnull
(a)neuarray t
dup
invokevirtual m’

iaload
aaload
iastore
aastore
instanceof t
checkcast t

Ss transition Ins(pc) * Outs(pc)
ss*s.s

ES : Ss*cons;‘(Es) : Ss
Es : &a0 : Ss

Es : E$: Ss+-Ss
0 : E$: S.y=x&

Ss=J-,[f] : Ss
Es : Ss+Ss

Ss=+Es : Ss
0 : &+-Es : Ss

Es : &e-Es : Es : Ss
ESn : . . . : Es0 : Ss 3 EL : Ss

8 : Es : Ss=+-0 : Ss
0 : Es : Ss+cons,‘(Es) : Ss

0 : 0 : Es : S,+-Ss
Es : 0 : EL : Ss+-Ss

Es : S.++0 : Ss
Es : S.y=sEs : Ss

S transition Out(pc) * In(pc)
s*s

E’ : Saconsf (E’) : S
8 : S=slv[Es] : S

S+consf’(Ek) : consf(Es) : S
S=sQ, : I,[E$] : S

E’ : S=sS
S=s-T,[f] : S

E:S+S emit: Es>E
E:S=+-0:s emit: Es > E

Et : E” : S=sE’ u E” : S
E’ : S =+ p’(m’)(i) o (E’, Eso, Es,),i = n...O : S

emit: Ek 2 p$(m’).o (E’, Eso, Es,)
0 : s*0 : I,[Es] : s

E’ : S+0 : consA : S
S=Gi : 8 : E : S
S+consi’(E$) : 0 : consa : S

0 : S=sI,[Es] : S
E:S=sE:S

The current method is m, which has j parameters of types ~1, . . . , rj and a result of type TO. The bytecode at program counter
pc is P(pc). A field f = (C,f’,t) is said not to be an object if its type t is a simple type (such as int). The generated
equations are mentioned after the word ‘Lemit:“. The transition for bytecodes of the second tabular leaves local variables
unchanged.

Figure 5: Escape analysis.

o’ escapes (this is the intuitive meaning of analysis Es).
At the beginning of the method, the local variables are
initialized with the parameters, so the corresponding es-
cape information is Pv, with Pv(0) = ({(CO,CI ,cz) I+
c~},(Object,LimVect,int),LimVect) which means that if
the first parameter (this) store-escapes, then local vari-
able 0 also store-escapes. In the same way, P,, (1) =
({(co,c~,cz) e CZ}, (Object,LimVect,int),int) (CZ will al-
ways be 0 since it corresponds to an integer which is a simple
type).

The abstract value associated with this-e1 (after the
getfield f) is Eo = consfl(P,(0)) = ({(co,c~,c~) I-+ cl n
T[Object[]}, (Clbject,LimVect,int),Objectfl) which means
that if this store-escapes, this. el also store-escapes (the
height is limited to T[Object[] which is the height of
this.el). Let El = consi’ = ({(co,cl,c~) ti cl 17
T[Object]),(Object,LimVect,int),Object) which means
that if this store-escapes, an element of this. el also store-
escapes. The equation emitted on areturn shows that
ps(m) = El: if we store an object in the result of get, it
will also be stored in this, and so it escapes if this escapes.

The right column corresponds to the backward pass
(analysis E) . Each line gives the state after analysing
the corresponding instruction (which is an abstraction
of the concrete state before the instruction since the

analysis is backward). This column should be read
from bottom to top. Let Ez = consA(fi7Tt) =
({(co,cI,c~) c) c~~},(Object,LimVect,int),Object[]) which
means that if the result escapes, the elements of the ar-
ray this.el also escape (co is at most T[Object], so
only the elements may escape). The escaping part of
the first parameter, this, is consf(Ez) = ({(co,c~,c~) I-+
co}, (Object, LimVect, int), LimVect) which means that the
elements of this.el (not more than the elements, since
co 5 T[Object]) may escape if the result escapes.

Example 2.6 Let m be the LimVect .put method from Ex-
ample 2.1. The result given by the analyzer is

E((m,O), this) = E((m, 0), Lot(0))

= ({(co,Q) ++ cl}, (LimVect, Object),LimVect)

E((m, O), 0) = E((m, 01, LOCO))
= ({(co,c~) ++ 1 n CO), (LimVect,Object), Object)

The escaping part of object o, E((m, 0), o), is the one of the
elements of array this. el (CO corresponds to the value of
Es for this) and if the object o escapes, the elements of the
array this. el may also escape. Escape analysis is therefore
able to express relations between escaping parts of the differ-
ent parameters, which gives a very precise information. The
fact that o and this may escape comes from the store in the

25

array el (done by aastore). The analyzer finds that local
can be stack allocated: E((LimVect.run(),O), local) = (4 =
(co ti co},(Object),LimVect) and +(T[Object]) = 1 <
T[LimVect].

Example 2.7 We do not take into account assignments
which decrease the set of aliases, and could therefore im-
prove the precision of the analysis, but at the cost of an
increased complexity. For example,

aload 0
putstatic (C,f ,t>
. . . .
aconst-null
putstatic (C,f,t)

If operations ‘I....” do not make the variable 0 or the static
field C . f escape, and no other thread accesses the static field
C . f , the variable 0 does not escape. Our analysis cannot dis-
cover this property since it believes that variable 0 escapes
as soon as it analyses the first putstatic. Also notice that
escape analysis is not control-flow sensitive (its result does
not depend on the order of assignments to fields of objects).
Taking such properties precisely into account would require
alias analysis which is much more costly than escape analy-
sis.

Experiments have shown that this does not prevent our anal-
ysis from giving precise results.

Example 2.8 When there is an assignment x.f = y or in
bytecode (x is in variable 0, y in variable 1)

1: aload 0
2: aload 1
3: putfield (c,f,t)

we have: E((m, 2), Sta(0)) = conS&,tl(Es((m, 21, SW)))
which expresses that when x.f escapes, y escapes, and
E((m, 2), Sta(1)) = cons(,,f,t,(Es((m, 2), Sta(0))) which ex-
presses that if y escapes, x.f escapes. The first equation
seems fairly natural, but the second one may be surpris-
ing at first sight. It is however necessary, as the following
example shows:

t x = new t(); t' y = new t'(); t" 2 = new t”0;
C.static-field = y;
x.f = y;
x.f.f' = 2;

When executing the assignment x .f = y, when y escapes,
without this second equation, the E and Es-escaping parts
of x would be empty, and we would think that z does not
escape, which is wrong. In effect, the above program stores
z in y (it is equivalent to y . f ’ = z) and as y escapes in the
static field C. static-f ield, z also escapes.

3 IMPLEMENTATION

Escape analysis has been implemented in the Java-to-C com-
piler turboJ produced by the Silicomp Research Institute.
The compiler is written in Java and so is our analyzer.

3.1 Representation of contexts trans-

formers

In the last section, we have seen that context transform-
ers of escape analysis were of the form ((Ctx* + Ctx) x
Tw* x Tw), 2) = ($3 (~0, -., ~j),4. Moreover, 4 is ad-
ditive (Theorem 2.4), so it can be split into ~(co,cj) =
ge(ce) U . . . Ugj(cj). Now we still have to represent the mono-
tone functions N -+ N go, , gj

We can notice that the needed elementary operations are
built by composition and upper bound from constants, iden-
tity, intersection: n I+ n n T[t], and step: n I-+ if n >
T[r] then T[r’] else 0 (there is at most one step for conver-
sions where array types do not intervene, several steps in
general for conversions between array types). This suggests
to use the general form

Xc.(if c 1 s then i’ else 0) u (c fl f) LI i

Identity will be represented by Xc.c fl co (in practice, we use
an integer larger than all type heights instead of infinity).
However, with this general form, we cannot represent all
monotone functions. We have to use approximate operations
for upper bound, composition and conversion between array
types. If e&(c) = (if c 2 si then it else 0) U (c n fi) u ii
and &(c) = (if c 2 sz then $ else 0) U (c fl fs) U iz, the
approximate upper bound is

(41 U’ 42)(c) = (if c > sl n s2 then if U i$ else 0)

qc i-l (fl u fz)) LJ (il u i2)

The approximate composition is

(41 o’ #z)(c) = if c > (if fz 2 SI then SI n sz else sz) then

[(if f:! U izf 2 si then ir else 0) U (i$ fl fl)] else 0 U (c n

(fi ll fi)) U ((iz n fi) U ii U (if i:! 2 si then z ‘t else 0))

For type conversions from 'T = t[]‘” to 7’ = t’[]@,
let S = {nlconvert(T,+)(n) > n]. If s = 0,
convert(r,r’)(n) = n n T[r’] (as convert(r,#)(n) > n n
T[r’] and convert(T,#)(n) 5 T[r’]) which can be ex-
actly represented. Otherwise let s = minS, i+ =
convert(-r, ~‘)(maxS). Then convert(T,p’)(n) 5 (if n 2
s then i+ else 0) U (n n T[T’]) which can be exactly repre-
sented.

Finally, we can represent function 4 by @(CO, , cj) =
i U (if co 2 se then ii else 0) U (CO ll fo) U . . . U (if cj 2
sj then it else 0) U (cj ll fj). Theorem 2.3 easily extends
to this s lghtly more approximate representation with only f
one step (since the computed escape information is always
greater in the one step approximation than in the analysis
of Section 2). Theorem 2.4 also remains true, since we can
only represent additive functions.

Moreover, we use a sparse representation, where only the
useful parameters appear, to save up both memory and com-
pute time, as in general a context only depends on a few of
the parameters of the method.

26

3.2 Computing type levels

The height of type T, T[r], is computed using the rules (1)
to (4) given in Section 2.2. To do this, we split the graph of
the relation r’ E Cont(r)V(r’ subtype of rAr # Object) in
strongly connected components. Inside a strongly connected
component, all types have the same height by rules (2) and
(3). Between strongly connected components, we add one
to the height, following rule (4).

Notice that the set of fields of a class is not given in a single
class file. Super-classes also have to be read. We memorize
the computations already done, so the total time to compute
type heights is U(t) where t is the number of different types
in the analyzed program.

3.3 The analysis algorithm

The analysis algorithm works in several passes, as follows:

For each method m, if it has not been analyzed yet, search
the graph of methods that may be called by m, and compute
the strongly connected components of this graph.

For each strongly connected component,

l Build the equations for each method:

- Sort the bytecode topologically by a depth first
search. In case of cycie (loop), we cannot sort
topologically. In this case, we mark specially the
instruction at the end of the back edge during the
depth first search.

- Compute the equations for Es thanks to a for-
ward pass (in the order determined above). New
unknowns are introduced at the end of back
edges, since we need the analysis of the current
bytecode to know the state before it.

- Compute the equations for E thanks to a back-
ward pass.

l Solve the equations, by an iterative fixed point solver.
To get a satisfying speed, we begin with splitting
the dependence graph into strongly connected compo-
nents, and we solve each component separately. The
size of systems is therefore much reduced.

l Prepare the post-transformation, by building the
structure giving for each allocation its escape infor-
mation.

The post-transformation itself is done when generating the
C code.

The escape information for the elements of the stack is rep-
resented by a list. For local variables, it is represented by a
binary tree, each bit of the variable number indicates which
branch of the tree should be visited to find the variable.
This provides the maximum sharing between data useful for
the analysis of one instruction and the following one, and so
the fastest program and minimal memory usage.

3.4 Program transformation

34.1 Stack allocation

The simpler post-transformation is to replace an allo-
cation new, newarray, anewarray or multianewarray by
a stack allocation by alloca when the allocated object
does not escape from the method in which it is allo-
cated. By Theorem 2.3, the object can be stack allo-
cated when +(T[re], T[rj]) < T[r’], with E(pc, Sta(0)) =
(4, (r-e, r-j), r’), if the allocation takes place at program
counter pc. We can determine whether this condition is re-
alized or we do not know thanks to information computed
during the analysis.

3.4.2 Reuse allocated space in loops

If an allocation takes place in a loop, the allocation is done
again at each iteration, which leads to increasing the stack
size (this may lead to program failure because of stack over-
flow [S]) whereas without stack allocation, the stack size
remained constant. Furthermore, data referenced from the
stack are considered as always alive by the GC (the GC is
conservative for the stack), which may lead to keep impor-
tant quantities of useless data is the heap.

A typical example of this situation is the following:

String s = “‘I ;
for (int i = 0; i < 10000; it+)

s += i + ‘I ‘I ;
//i.e. s=new StringBuffer(s).append(i)
// . append(” ‘I) .toString() ;

where all intermediate StringBuffers used to compute s
+= i + ” ” can be stack allocated, and so all intermediate
char arrays are kept uselessly by the GC until the end of the
method.

To solve this problem, if an allocated object is always use-
less after one iteration, we do not use a new space for each
allocation, but we reuse the already allocated space. To de-
termine whether the object will still be useful at the next
iteration, we consider that all live variables just before the
allocation escape, and we test whether the allocated object
escapes. The intuitive idea behind this criterion is the fol-
lowing: consider for example the while loop

while (test) { . . . x: new CO . . . 1

and assume that we unroll that loop:

if (!test) goto end;
. . . xl: new CO . . .
if (!test) goto end;
. . . x2: new CO . . .
. * .

end:

If the object allocated at xl is not live any more at x2, i.e.
it is not accessible from a variable live at x2, i.e. it does
not escape when we assume that all the variables live at x2

27

escape, then we can reuse at x2 the memory space allocated
at xl.

Technically, when analyzing a new, we emit, together with
the equations already mentioned in the preceding section,
the following equation for each variable live before the new,
i E Idx being the index of this variable, and t; the type of
this variable:

4(Po, ..., Pn) 2 pk t-l Vi]

where E(pc, i) = (4, (~0, rn), ti), n 2 Ic, pk is a new pa-
rameter which is 0 for the normal escape analysis, the one
which determines whether alloca should be introduced, and
pk = co when determining if the allocation at pc can reuse
the space allocated at the preceding iteration. A new pk
parameter is introduced for each allocation which occurs in
a loop.

3.4.3 Inlining

The algorithm can still be improved to discover more stack
allocation opportunities: it may happen that an object d
cannot be stack allocated in method m because it is still live
at the end of m, but becomes dead at the end of method m’
which has called m. In this case, we can inline m in m’ and
allocate d on the stack in m’. This technique can of course
be extended to m” calling m’ which calls m, and d dead at
the end of m” etc , *

However, we have to determine at the end of which method
d will be dead. Assume that we call a method m’ with j
parameters at pc in method m. Then, we define

Ec(pc) =(E(next(pc), Sta(O)>,
J%(PC, SW - I)), Es@, Sta(0)))

the (j + l)-tuple containing the escaping part of the result
and parameters of method m’ in method m. EC&) is the
transformer which converts escaping parts computed in the
callee m’ to escaping parts computed in the caller m, taking
into account that the scope of m is larger than the scope of
m’.

Theorem 3.1 (Inlining) Assume that method mo calls
ml at pcl, which calls ms at pcz, . . ., which calls m, at
pen, and that in method m,, at pc, an object of type T is
allocated. Then, i;f 4(T[70], T[r-j) < T[T] where

E(pc, Sta(0)) 0 Ec(pcn) 0 . . . 0 &(PcI) = (4, (TO, q), T)

this object can be stack allocated if we inline ml, mn in
mo.

Moreover, we wish to inline a call to method m’ only if that
allows more stack allocations, i.e. if the above criterion is
true for some allocations in m’ or in methods m’ calls, but
is wrong without the inlining of the call to m’.

We look for the condition on co, cj such that:
4(co, cj) < T[T]. A s analysis E is additive (since only
additive functions can be represented by the general form
of Section 3.1), this is: go(cs) LI _.. U gj(cj) < T[T] where
g; are monotone functions N + N. That is gs(co) <
T[T] A A gj(cj) < T[T], i.e. ce 5 cb, cj 5 c$, where c:
is the greatest integer such that gi(c:) < T[T]. As all c; are

vi, TCI v2><
10) i

(xl ;

static T f (Vector
if (vl.size() <

T x = new TO
vl.addElement
return x;

3 else C
T y = new TO
v2fOl = y;
return y;

3
3

c

1

-WI

”

VI

Figure 6: Example of inlining condition. The 3-cell
of depth 0 corresponds to the stack allocation con-
dition of x, the other one of y.

zero or positive, this defines a right-angled parallelepiped in
lR3” which sides are contained by the coordinate axes (see
Figure 6) which is called a j -I- l-cell (this parallelepiped
may be empty or infinitely long in certain directions, if
Vc;,gi(ci) < T[r]). Th e set of solutions is represented in
the implementation by the null pointer for the empty set or
an array of j + 1 integers corresponding to the sides of the
j + l-cell.

Practically, the sides of the j + l-cell can easily be
computed. For the first step, we compute the condi-
tion on co, cj such that 4(co, cj) < T[T] where
E(pc, Sta(0)) = (4, (~0, rj),r). The set of solutions is
called E(pc, Sta(O))-l(T[T]). For the following steps, we
have to solve (40,q$g)(co.cj) E S where S is the j’+l-
cell computed at the preceding step, Ec(pc) = (~0, wjl)
and ‘uk = (4k, (70 , rj), r:). The set of solutions is called
EC (PC) - 1(s).

Example 3.2 Consider the method from Figure 6. Let c be
the E-escaping part of the result, cl and cs the Es-escaping
parts of the parameters vr and ‘~2 respectively. The escaping
part of x is c U (if cl > 0 then T[T] else 0) and that of y is
cU ~2. Then x can be stack allocated if and only if c < T[T]
and cr = 0. y can be stack allocated if and only if c < T[T]
and c2 < T[T]. This is represented on Figure 6.

Consider now the g method:

void g(Vector vl) C

28

System. out .println(f (new Vector0 , new T[lOl>
.toString()) ;

1

If the parameter of T. toString does not escape, then f
can be inlined to stack allocate y. x may be stack allocated
in a caller of g, if cl = 0.

The above representation enables us to build easily the con-
ditions such that a given chain of function inlining should
be done. A first idea of algorithm would be to store for each
method m’ the list of all interesting chains of inlining. This
leads to a memory space quadratic in the size of the program
in the worst case, which in the case of very large projects
may lead to memory overflow.

So we have to keep only a summary of all stack allocation
opportunities in the methods called from m. However, allo-
cation conditions may be represented by complex sets and
we cannot guarantee that they can be represented in a small
enough space. To solve this problem, we use heuristics.
When these heuristics do not give the answer to the ques-
tion “should we inline ?” we make a complete and exact
computation, at the cost 0: speed. In practice, this case will
be rare enough for the system to be very efficient.

We store for each method m the following information:

l m.inter-cond is the j + l-cell such that all stack allo-
cations can be done if the entry escaping parts are in
it (the entry escaping parts are the escaping parts of
the parameters and the result of m, coming from the
caller of m - Es for the parameters, E for the result).

l m.maxvol-cond is a j + l-cell which corresponds to
a stack allocation which cannot be done if we do
not inline m, and of the greatest possible volume (so
that it has the greatest probability to be realized if
we inline m). The entry escaping parts of m are in
m.maxvol-cond if and only if this stack allocation be-
comes possible if we inline m. The volume of a j+l-cell
p will be denoted vol(p).

l m.englob-cond is a j + l-cell which contains all j + l-
cells corresponding to possible stack allocations that
we are not sure to do without inlining m. If pi and pz

are two j + l-cells, we call contains(pi , pz) the smallest
j + l-cell which contains pl and pz (it can be computed
by taking the maximum of the sides of pl and pz).

Let C = (40, &)(T[T;], T[$]) where Ec(pq) o . . . o
&(pcl) = (Ve,Vj) and vk = (&., (r;, rj,),rk) be
the entry escaping parts of method m = m;. If c E
m.maxvol-cond, we know that we should inline the call to
m. If C $! m.englob-cond, we know that it is useless to in-
line m. Only when C E m.englob-cond - m.maxvolxond,
we still do not have the answer, and we have to compute it
by looking at all possible stack allocations.

Those j+l-cells can be computed by the algorithm of Figure
7 (the current method is m, its parameters are of types
ri, rj, its result is of type 700; the parameters of m’ are of
types T: , r$, its result is of type 7;).

Example 3.3 Let us consider again Example 3.2.
f.englob-cond is the 3-cell c < T[t]. f.maxvol-cond is

ADD~OND(I)C, englob-cond, maxvol-cond, inter-cond) =
if (0, 0) E englob-cond then

minter-cond = m.inter-cond n inter-cond
if (T[nJ, .,., T[q]) # maxvol-cond
and voZ(maxvol-cond) > vol(m.maxvol-cond) then

m.maxvol-cond = maxvol-cond
m.englob-cond = contains(m.englob-cond, englob-cond)
Add (PC, englob-cond, maxvol-cond, inter-cond)

to m.inlineinfo

For each call to a method m’ at pc,
if (0, 0) E m’.englob-cond
and (T[T~], T[T$]) $ m’.inter-cond then

ADDCOND(PC,EC(~C)-l(m’.englob~cond),
&(pc)-‘(m’.maxvol-cond),
EC (pc)-‘(m’.inter-cond))

For each allocation of an object of type r at pc,
cod = E(pc, Sta(O))-‘(T[r])
ADDCOND&, cond, cond, cond)

Figure 7: Computing inlining conditions

c < T[T],cz < T[t] (associated with y). f.inter-cond is
c < T[T], cl = 0, cz < T[t].

The entry context of f when analyzing g will be c = 0, cl =
T[Vector],cs = 0, so our algorithm correctly detects that f
should be inlined, as this point is in f.maxvol-cond.

3.44 Synchronization elimination

A method only needs to be synchronized if the object on
which it is called can be accessed by several threads. Objects
accessible from several threads are objects reachable from
static fields and from Thread objects. Objects reachable
from static fields are considered as escaping by our analysis,
and the thread creation method Thread. start (1 makes its
parameter escape. Therefore, if our analysis finds that an
object does not escape from a method m, it can be accessed
only by one thread, the thread in which it is allocated. So
there is no need to synchronize methods called on this ob-
ject. This is an important optimization as synchronization
is a costly operation in the JDK.

We perform two transformations.

l First, assume that we call a synchronized method m,
on an object o of type 7. Assume that m, has k pa-
rameters (including the object o on which it is called),
and me = main or Thread .run has j parameters of
types ~1, .., ~j and a result of type TO. If our analysis
can determine that for all call chains me = main or
Thread. run calls ml at per , ., which calls m, at pc,,
o does not escape from me, i.e.:

U 4 PCl,...,PC,--I PCl>...~PC, (T[To], ..., T[T~]) < T[T] where

Es(pc,, Sta(k - 1)) 0 Ec(pc,-1) 0 . 0 Ec(pc~) =

(4PCl,...,PC, > (Too, ‘.., Tj),T)
then we call a copy of the method m, without syn-
chronization. Choosing the largest possible scope mo
gives the best results, since fewer objects escape.

29

l Second, before acquiring a lock on an object o, we
test at runtime whether o is on the stack, and if it is,
we skip the synchronization. This technique could be
extended by marking at allocation time objects that
are detected to be local to one thread, and testing this
mark before acquiring a lock.

3.5 Complexity

Size of the bytecode
Number of local variables
Height of the stack
Number of parameters of a method
Number of parameters of a context
Maximum type height

Equations building O(n(l + SIP’)
Number of equations n, = U(n(Z + 3))
Number of unknowns n, = U(n(Z + 5))
Number of iterations n; = U(n,p’H) = U(n(E + s)p’H)
Equations solving O(n,pp’T&) = C?(n(b + s)pp’rG)
Posttransformation U(v)

I”
3
P
P’
El

Figure 8: Notations and results on the complexity
of escape analysis

When out-of-loop stack allocation is activated, contexts
transformers may have more parameters than methods,
hence the distinction between p’ and p. If out-of-loop stack
allocation is disabled, p’ = p.

The analysis time of a bytecode depends on the considered
bytecode: an upper bound on the whole stack and local vari-
ables takes O((Z-ts)p’) time, a methodcall (invoke) 0(pp’),
a local variable access 0(log 1), an upper bound, conversion
or minimum on contexts O(p’). The total complexity of
equation building is therefore O(n(2 + 3)~‘) (because p 5 2
so the cost of a method call is dominated by the one of an
upper bound).

The number of generated equations or unknowns is U(n(2 +
s)) (an upper bound generates 6(1+ s) equations, the other
operations generate a constant number of equations).

If the system contains n,, unknowns, the number of itera-
tions ni is less than the height of the lattice of n,-tuples of
contexts transformers, so ni = C?(n,p’H). In practice, the
number of iterations is very small (at most 17 in our bench-
marks. 44.8% of equations are iterated at most twice, 91.3%
at most 7 times, 98.4% at most 10 times. On average, each
equation is iterated 3.9 times). This is possible thanks to the
splitting of equations systems into strongly connected com-
ponents. On the other hand, one iteration costs the compute
time of equations, which is at most U(n,pp’). The complex-
ity of the solving is therefore O(n,pp’ni). This complexity
which sounds large is much reduced in practice by using a
sparse representation for contexts transformers, which en-
sures that the number of parameters of a context is in fact
small compared to p in most cases.

The post-treatment of a method call (when inlining is ac-
tivated) or of an allocation is in O(p) if we can decide to
inline or not with our fast algorithm. In this case, the
post-treatment is dominated by the generation of equations.

Memory size decrease (%) Size
alloca No loops All (Mb)
dhry 95 95 5.1
Symantec 84 84 40.2

Table 2: Stack allocated memory

If our fast algorithm does not give the answer, the post-
treatment of a call may take time up to O(n’p) where n’
is the number of allocations in all methods called from the
program point, following any call chain. This case is very
rare and can be neglected (it appends 21 times only in all
the tested benchmarks, which represent more than 2 Mb of
classes).

Finally, the complexity is therefore 0(n(Z + s)pp’ni) =
O(n2(Z + ~)~pp’~H), with ni small in practice.

4 BENCHMARKS

Benchmarks have been conducted on a 233 MHz Pentium
MMX, 128 Mb RAM, primary cache 16 kb instructions and
16 kb data, secondary cache 512 kb instructions and data,
under Linux. Benchmark programs are listed on Table 1.

4.1 Results

Each program has been tested in two stack allocation con-
figurations: in the first configuration called “NO loops” all
stack allocations done in a loop must reuse the same memory
space. In the second configuration “AH”, alloca is allowed
even in a loop. The last configuration may stack allocate
more objects, but may lead to stack overflows. In the fol-
lowing benchmarks, inkining is allowed for methods of less
than 150 bytes.

Table 2 gives the percentage of stack allocated data in each
program. The last column represents the total size of al-
located data in the program. Table 3 is similar but deals
with number of objects instead of size. Table 4 gives the
percentage of eliminated synchronizations at runtime. The
left column represents the part of eliminated synchroniza-
tions that we would get without testing at runtime whether
objects are in the stack or not. The middle column gives the
part of eliminated synchronizations with this dynamic test.
The right column is the total number of synchronizations
(without elimination) at runtime.

In Dhrystone, we mainly stack allocate arrays of one in-
teger, which are used as references to integers. Symantec
is a set of small benchmarks which contains particularly a
version of Dhrystone, in which we do the same optimiza-
tions. It also contains a function which uselessly allocates
many nodes of a tree, which can be stack allocated. We also
manage to eliminate all synchronizations corresponding to
synchronized calls to a random number generator.

30

Table 1: Benchmark programs. The size is the total size of the .class files, Java standard library excluded.

Benchmark programs Size kb
dhv I Dhrystone 6

Set of small benchmarks
Java compiler (jdk 1.1.5) compiling jBYTEmark
Java to C compiler from Silicomp RI compiling jBYTEmark

19
600
788
89

402
497

50

I-

40

30

20

10

I 0

= Total

I Ill j-j Inline

Miss

q Synchro

-10

i dhry Symantec javac turbo3 JLex jess javacc

Figure 9: Speedup without alloca in loops.

40

30

20

io

0

u -1 I

mll

dhry Symantec javac turboJ JLex

l-l

jess javacc

Figure 10: Speedup with all possible stack allocations, even in loops

31

Stack allocated objects I%) II Total number
” \I

alloca 1 No loops 1 All of objects (K)
dhrv I 99 I 99 II 600

Table 3: Stack allocated objects

Eliminated svnchro. (%) II Thousands 1
1 (1, 1 '(2j 1 of synchro.

dhrv I -I -II 0
Symantec 99 99 2520
javac 5 31 430
turboJ 21 46 587
JLex 78 94 1989
jess 14 21 158
j avacc 2 3 1075

SEi!St.

iminated synchronizations without dynamic “is in

(2) Eliminated synchronizations with dynamic “is in stack”
test.

Table 4: Eliminated synchronizations

In turboJ and javacc, we mainly stack allocate strings
and arrays of characters. Our inlining algorithm is use-
ful to allocate such data on the stack, since they are
generally allocated in StringBuf f er . ensurecapacity and
StringBuffer.toString, and of course still live at the end
of these methods (char arrays stack allocated thanks to in-
lining represent 4% of data for javac, 20% for turboJ, 29%
for javacc). The difference between the “No loops” and the
“All” configurations is only important for javacc.

Table 5 indicates the speedups. The last column is the run-
time without any optimization, for reference. The mean in
the bottom row is the geometric mean. Figures 9 and 10 also
give the speedup percentage (Total bar), and they detail the
reasons of the speedup. The GC bar gives the part of the
speedup percentage that comes from a decrease of GC time.
The Inline bar gives the part of the speedup that comes from
inlining of methods (inlining is done as if there were stack

SDeeduD (%I II Time
alloca
dhry
Symantec
javac
turboJ
JLex
jess
javacc
mean

- \ I
0 oops

44
26

8

I’
11
42
-1
6

21

Table 5: Speedups

1

allocation, but all allocations are done in the heap). The
Miss bar gives the contribution of the cache misses to the
speedup. This is an estimation based on a cost of 165 ns for
a read miss and 70 ns for a write miss, measured experimen-
tally. The Synchro bar gives the part of the speedup that
comes from synchronization elimination. A synchronization
costs 790 ns when the monitor is in the monitor cache, and
1450 ns when it is not.

The speedups correspond with what could be expected
knowing the percentage of stack allocated data and of syn-
chronization elimination. We get high speedups for dhry
(thanks to stack allocation), for JLex (thanks to synchro-
nization elimination), and for Symantec. Speedups about
10% are obtained for javac, turboJ and javacc. Inlining has
negative effects for turboJ and jess. This may come from an
increase of the code size, which leads to more traffic for load-
ing the code from memory. Inlining also leads to changes in
register allocation which may affect performance. This neg-
ative effect of inlining explains the slowdown that we obtain
for jess. For JLex, stack allocating data gives negligible
speedups, because the GC time was very small anyway.

The speedups that come from stack allocation mainly have
three causes: reduced allocation time, better data locality,
decrease of the GC workload. The graphs show that the part
of the speedup coming from the GC is important (about half
of the speedup not coming from synchronization elimina-
tion). This is logical since the JDK uses a mark and sweep
garbage collector, which is not efficient for short lived data,
which can precisely be stack allocated. The better data lo-
cality is responsible for about a quarter of the speedup. The
rest, i.e. about a quarter comes from allocation time. Stack
allocating an object just requires moving the stack pointer,
whereas heap allocating it requires scanning the list of free
blocks, and acquiring a lock, which is much less efficient.

For javacc, the speedup is more important in the “All” con-
figuration, in which more allocations can be done in the
stack. In the “All” configuration, the stack size increases by
a factor 10 for the javacc program, whereas in the ‘(No loops”
configuration the increase is limited to only 75%. This shows
that it may be useful to limit ourselves to the “NO loops”
configuration to avoid stack overflows (even if it does not
happen in our benchmarks). The stack size increase is 129%
for JLex in the “All” configuration. It is small in all other
cases (at most 31%).

The left part of Table 6 gives the speedup percentage on the
GC time, and in the last column the GC time for reference.
The speedup on the GC time is similar to the percentage of
stack allocated data. The exceptions are javac which does
a single GC without stack allocation, and none with stack
allocation, and turboJ and JLex for which the GC time is
less reduced than what we could expect. This comes from
the fact that stack allocated data are mainly short lived
data which are scanned only once by the GC, and so have
a smaller cost for the GC than data which cannot be stack
allocated (they may be scanned in several GC cycles if they
remain alive). Data allocated in turboJ and JLex live longer
than in the other benchmarks.

The table about cache misses shows that stack allocation
reduces the number of read misses (except for jess). But
when there is only a few stack allocated objects, the number
of write misses increases. This seems to be linked with the
fact that the Pentium MMX has a write-through cache (This

32

GC speedup (%
-q ”

Syniantec
javac
turboJ
JLex
jess
i avacc

97
100
15

1
27
29

100
97

100
15

1
24
41

GC time 1

1552
196

8474
56

196
1811

Read miss Write miss
Decrease (%) Thousands Decrease (%) Decrease (%) Thousands Thousands

alloca alloca I NO loous I All No loops All of misses I
47

of misses No loops All No IOODS I All of misses of misses
dhry dhry 47 47 47 3249 3249 io 20 1 1 3248 3248
Symantec Symantec 33 33 32 32 14955 14955 51 51 49 49 11231 11231
javac javac 8 8 8 8 6533 6533 6 6 3 3 8235 8235
turboJ turboJ 16 16 13 13 27845 27845 3 3 -2 -2 13407 13407
JLex JLex 1 1 1 1 2276 2276 2 2 -0 -0 2574 2574
jess jess -6 -6 -6 -6 5980 5980 -3 -3 -12 -12 4757 4757
javacc javacc 7 7 14 14 10876 10876 -2 -2 -7 -7 5948 5948

Table 6: Effects on the GC and the cache.

does not happen on a Pentium II).

4.2 Analysis speed

We have measured the analysis time and compilation over-
head, as a percentage of the total compilation time without
stack allocation. The compilation overhead comes from in-
lining and synchronization elimination, which lead to more
code generation. In these tests, the library is not reana-
lyzed when analyzing each benchmark (whereas it was in
the preceding tests, but it does not make sense to compare
the analysis time of a large amount of code with the compi-
lation time of a small program). These tests have been run
with TurboJ bootstrapped.

dhry
Symantec
javac
turboJ
JLex
jess
javacc

4
13
11

8
9
6

6
36
23
8

23
9

c”“”
2
6

11
7
9

17

Time is the total compilation time without stack allocation.
An is the escape analysis time, as a percentage of Time.
Gen is the C code generation overhead, as a percentage of
Time. Gen includes An.
Comp is the C compilation overhead, as a percentage of
Time.

These results show that our analysis takes about 10% of
the C compilation time, and the total compilation overhead
generated by our optimizations is about 34%.

5 CONCLUSION

We have extended escape analysis from Park and Goldberg
[27], Deutsch [14] and Blanchet [5] to allow a precise treat-
ment of assignments, and to support subtyping and inher-
itance. Our implementation can analyze the full Java lan-
guage.

Our study has shown the feasibility of escape analysis for ob-
ject oriented languages. The example of Java shows that it
gives high speedups (21% on average) at a reasonable anal-
ysis cost (the analysis takes about 10% of the compilation
time, the total compilation overhead is about 34%).

Since Java uses a mark and sweep garbage collector, the
main reasons for speedups due to stack allocation are a de-
crease of the GC workload and of the allocation time. Im-
provements on data locality also contribute to the speedups,
but to a less important extent. The best results are obtained
when stack allocating an object is allowed even with multiple
allocations in a loop, when it actually allows more stack al-
location. This solution is unsafe, as it may cause stack over-
flows, but it does not happen in the considered benchmarks.
Inlining of small functions increases stack allocation oppor-
tunities. Synchronization elimination also gives impressive
speedups, by eliminating most of the cost of synchronization
(JLex, Symantec).

Acknowledgements

Many thanks to Alain Deutsch for his help during this work,
to Patrick Cousot for helpful comments on a draft of this pa-
per and to the Java team of the Silicomp Research Institute
for providing TurboJ.

Java and all Java-based marks are trademarks or registered trade-
marks of Sun Microsystems, Inc. in the U.S. and other countries.

REFERENCES

[l] AIKEN, A., FAHNDRICH, M., AND LEVIEN, R. Better
Static Memory Management: Improving Region-Based
Analysis of Higher-Order Languages. In ACM SIG-
PLAN Conference on Programming Language, Design
and Implementation (PLDI’95) (San Diego, California,
June 1995), pp. 174-185.

[2] ALDRICH, J., CHAMBERS, C., SIRER, E. G., AND EG-
GERS, S. Static Analyses for Eliminating Unnecessary
Synchronization from Java Programs. In Static Analy-
sis Symposium (SAS’99) (Sept. 1999).

[3] BIRKEDAL, L., TOFTE, M., AND VEJLSTRUP, M. From
Region Inference to von Neumann Machines via Re-
gion Representation Inference. In 23rd Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages (Jan. 1996), pp. 171-183.

[4] BLANCHET, B. Garbage Collection statique. DEA re-
port, INRIA, Rocquencourt, Sept. 1996.

[5] BLANCHET, B. Escape Analysis: Correctness Proof,
Implementation and Experimental Results. In ACM

33

SIGACT-SIGPLAN Conference on Principles of Pro-
gramming Languages (POPL’98) (San Diego, Califor-
nia, Jan. 1998), ACM, pp. 25-37.

[6] BOGDA, J., AND HC~LZLE, U. Removing Unnecessary
Synchronization in Java. In Conference on Object-
Oriented Programming, Systems, Languages and Ap-
plications (OOPSLA ‘99) (Nov. 1999).

[7] CARR, S., MCKINLEY, K. S., AND TSENG, C.-W.
Compiler Optimizations for Improving Data Locality.
In Sixth International Conference on Architectural Sup-
port for Programming Languages and Operating Sys-
tems (Oct. 1994), pp. 252 - 262.

[8] CHASE, D. R. Safety considerations for storage allo-
cation optimizations. In Proceedings of the SIGPLAN
‘88 Conference on Programming Language Design and
Implementation (22-24 June 1988), ACM Press, pp. 1
- 10.

[9] CHOI, J.-D., GUPTA, M., SERRANO, M., SREEDHAR,
V. C., AND MIDKIFF, S. Escape Analysis for Java.
In Conference on Object-Oriented Programming, Sys-
tems, Languages and Applications (OOPSLA’99) (Nov.
1999).

[lo] COUSOT, P., AND COUSOT, R. Abstract interpretation:
a unified lattice model for static analysis of programs by
construction or approximation of fixpoints. In 4th An-
nual ACM Symposium on Principles of Programming
Languages (Jan. 1977), pp. 238 - 252.

[ll] COUSOT, P., AND COUSOT, R. Systematic Design of
Program Analysis Frameworks. In Sixth Annual ACM
Symposium on Principles of Programming Languages
(Jan. 1979), pp. 269 - 282.

[12] DEUTSCH, A. On determining lifetime and aliasing of
dynamically allocated data in higher-order functional
specifications. In Seventeenth Annual ACM SIGACT-
SIGPLAN Symposium on Principles of Programming
Languages (Jan. 1990), pp. 157 - 168.

[13] DEUTSCH, A. Interprocedurai May-Alias Analysis for
Pointers: Beyond k-limiting. In Proceedings of the
SIGPLAN ‘94 Conference on Programming Language
Design and Implementation (20-24 June 1994), ACM
Press, pp. 230 - 241.

[14] DEUTSCH, A. On the Complexity of Escape Analysis.
In 24th Annual ACM SIGACT-SIGPLAN Symposium
on Principles of Programming Languages (Jan. 1997),
pp. 358 - 371.

[15] GAY, D., AND STEENSGAARD, B. Stack Allocating Ob-
jects in Java. http://research.microsoft.com/apl.

[lS] HANNAN, J. A Type-based Analysis for Stack Allo-
cation in Functional Languages. In Proceedings of the
Second International Static Analysis Symposium (SAS
‘95) (Sept. 1995), vol. 983 of Lecture Notes in Computer
Science, Springer, pp. 172 - 188.

[17] HARRISON, W. The interprocedural analysis and au-
tomatic parallelisation of Scheme programs. Lisp and
Symbolic Computation 2 (1989), 176 - 396.

[18] HEDERMAN, L. Compile Time Garbage Collection Us-
ing Reference Count Analysis. Tech. Rep. Rice COMP
TR88-75, Rice University, Houston, Texas, Aug. 1988.

[lQ] HUDAK, P. A Semantic Model of Reference Counting
and its Abstraction (Detailed Summary). In Proceed-
ings of the 1986 ACM Conference on LISP and func-
tional programming (Aug. 1986), pp. 351 - 363.

[ZO] HUGHES, S. Compile-Time Garbage Collection for
Higher-Order Functional Languages. J. Logic Compu-
tat. 2, 4 (1992), 483 - 509.

[Zl] INOUE, K., SEKI, H., AND YAGI, H. Analysis of Func-
tional Programs to Detect Run-Time Garbage Cells.
ACM nansactions on Programming Languages and
Systems 10, 4 (Oct. 1988), 555 - 578.

[22] JONES, N. D., AND MUCHNICK, S. A flexible ap-
proach to interprocedural data flow analysis and pro-
grams with recursive data structures. In Nineth Annual
ACM SIGACT-SIGPLAN Symposium on Principles of
Programming Languages (1982), pp. 66 - 74.

[23] LINDHOLM, T., AND YELLIN, F. The JavarM virtual
Machine Specification. Addison-Wesley, 1996.

[24] MCDOWELL, C. E. Reducing garbage in Java. ACM
Sigplan Notices 33, 9 (Sept. 1998), 84-86.

[25] MOHNEN, M. Efficient Closure Utilisation by Higher-
Order Inheritance Analysis. In Static Analysis Sym-
posium (SAS’95) (1995)) vol. 983 of Lecture Notes in
Computer Science, Springer, pp. 261 - 278.

[26] MOHNEN, M. Efficient Compile-Time Garbage Collec-
tion for Arbitrary Data Structure. In Symposium on
Programming Language Implementation and Logic Pro-
gramming (PLILP’95) (1995), vol. 982 of Lecture Notes
in Computer Science, Springer, pp. 241-258.

[27] PARK, Y. G., AND GOLDBERG, B. Escape Analysis on
Lists. In ACM SIGPLAN ‘9.2 Conference on Program-
ming Language Design and Implementation (17-19 July
1992), vol. 27, pp. 116 - 127.

[28] RUGGIERI, C., AND MURTAGH, T. P. Lifetime Analysis
of Dynamically Allocated Objects. In Fifteenth Annual
ACM SIGACT-SIGPLAN Symposium on Principles of
Programming Languages (Jan. 1988), pp. 285 - 293.

[ZQ] SERRANO, M., AND FEELEY, M. Storage Use Analysis
and its Applications. In 1996 ACM SIGPLAN Inter-
national Conference on Functional Programming (May
1996), pp. 50-61.

[30] SHIVEF~S, 0. Control flow analysis in Scheme. In ACM
SIGPLAN Conference on Programming Language, De-
sign and Implementation (jun 1988), pp. 164 - 174.

1311 TOFTE, M., AND TALPIN, J.-P. A theory of Stack
Allocation in Polymorphically Typed Languages. Tech.
Rep. 93/15, Departement of Computer Science, Copen-
hagen University, 9 July 1993.

34

