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Abstract
Research in automated program verification against speci-
fications written in first-order logic has come a long way.
Ever-faster Satisfiability Modulo Theories (SMT) solvers
[Barrett et al. 2010] promise to verify program instructions
quickly against specifications. Unfortunately, aliasing still
prevents automated program verification tools from easily
and soundly verifying interesting programs. This paper in-
troduces the use of symbolic permissions as the basis for
sound automated program verification. Symbolic permis-
sions provide a simple alias control mechanism with expres-
siveness similar to the well-known fractional permissions
[Boyland 2003]. The paper shows that symbolic permissions
can be enforced with a linear refinement typechecking pro-
cedure. Once permissions are checked, aliasing can essen-
tially be ignored for the purposes of program verification,
which allows taking full advantage of SMT solvers for doing
the heavy verification lifting. The paper shows that a verifi-
cation tool based on symbolic permissions can easily verify
a design pattern with inherent aliasing challenges.

Categories and Subject Descriptors D.2.4 [Software/Pro-
gram Verification]

General Terms Languages, Verification

Keywords Symbolic permissions, SMT solvers, aliasing

1. Introduction
Research in automated program verification against speci-
fications written in first-order logic has come a long way.
Ever-faster Satisfiability Modulo Theories (SMT) solvers
[Barrett et al. 2010] promise to verify program instructions
quickly against preconditions, postconditions, loop invari-
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ants, and class invariants [Barnett et al. 2004; Flanagan et al.
2002].

Unfortunately, aliasing still prevents automated program
verification tools from easily and soundly verifying interest-
ing programs. Aliasing refers to the common situation in im-
perative programs where multiple variables and fields on the
heap point to the same object. Aliasing complicates sound
modular reasoning because of its non-local nature: every
method invocation in a sequence of program instructions can
render conclusions about the heap useless because we have
to assume that the invoked method may manipulate the very
objects touched by the instructions we are reasoning about.

State-of-the-art program verification tools such as Spec#
address the aliasing problem by enforcing a certain form of
ownership [Barnett et al. 2004; Müller 2002] called owners-
as-modifiers. Owners-as-modifiers requires that a forest of
references from objects to their “owned” children be exclu-
sively used to modify objects. Program verification based
on ownership can work very well [Bierhoff and Hawblitzel
2007]. But common design patterns such as iterators and
observers do not fit the owners-as-modifiers paradigm (see
Section 2 and Bierhoff and Aldrich [2008]). For instance,
Spec# as available today cannot verify the absence of con-
current modification exceptions (CMEs) in the usage of iter-
ators and collections, which is a well-established challenge
problem for program verification approaches. CMEs occur
when a collection is modified directly while an iterator over
the collection is in use.

Separation logic [Reynolds 2002] and other substruc-
tural logics have proved to be viable alternatives to first-
order logic plus ownership for verifying programs manu-
ally [Parkinson and Bierman 2008]. However, SMT solvers
cannot easily be made to decide separation logic assertions,
complicating automation substantially. In addition, separa-
tion logic is again not able to reason about concurrently
(separately) used iterators over the same collection. This is
because access to the shared collection has to be explicitly
passed between the different iterators [Krishnaswami 2006].

Separation logic has been combined with fractional per-
missions [Boyland 2003] to enable modular reasoning about
parts of a program that share read access to the same memory
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Figure 1. Refinement approach proposed in this paper

[Bornat et al. 2005]. While fractions finally allow reason-
ing about iterators individually [Bierhoff and Aldrich 2007;
Haack and Hurlin 2008], fractional permission checking is
in the author’s and others’ experience very difficult to auto-
mate [Bierhoff 2009; Terauchi 2008].

To summarize, aliasing still makes it very difficult for
machines and humans alike to reason about complex pro-
grams. Automation is essential for lightweight program ver-
ification but with many aliasing control techniques difficult
to achieve.

This paper introduces a simple type system for control-
ling aliasing with symbolic permissions. The paper shows
that symbolic permissions enable sound modular automated
program verification and reports on a prototype implemen-
tation of this approach. A verified iterator implementation
over an array list suggests that the proposed approach allows
verifying challenging programs quickly.

Symbolic permissions provide a simple alias control
mechanism with expressiveness approaching that of frac-
tional permissions [Boyland 2003]. The paper shows that
symbolic permissions can be enforced as a typechecking
procedure that refines conventional typechecking. Program
verification of a program module can then be performed
using an SMT decision procedure while ignoring aliasing
for all variables for which a permission is available, which
allows taking full advantage of SMT solvers for doing the
heavy verification lifting. Implementing a verification tool
based on symbolic permissions is therefore much “symplar”
than previously possible. Benefits of symbolic permissions
for program verification therefore include:

• Automation. Program verification can be effectively au-
tomated with the use of SMT solvers; symbolic permis-
sions are easily enforced with a typechecker.
• Express and enforce complex protocols. Permissions of-

fer flexibility to express and reason about properties of
complex protocols such as the absence of CMEs [c.f.
Bierhoff et al. 2009].

To verify these claims, I developed JavaSyp1, a program
verification tool for Java based on a symbolic permissions
that uses an off-the-shelf SMT solver. JavaSyp is able to au-
tomatically verify the absense of CMEs in use and imple-

1 Available at http://code.google.com/p/syper

mentation of iterators over an array list (Section 2), which
no existing automated behavioral program verification tool
I am aware of can do. More specialized typestate checkers,
including my own, are able to verify the absence of CMEs
[Bierhoff et al. 2009; Bodden et al. 2007; Ramalingam et al.
2002]; this paper attempts to simplify my own previous work
and take it beyond typestate checking to the more challeng-
ing context of behavioral program verification.

My proposal to separate permissions tracking using a
typechecker from logical reasoning about program correct-
ness using a decision procedure is pragmatically motivated
(Figure 1):

• Separation of concerns. Aliasing control and reasoning
about program behavior are handled separately, opening
up the possibility to reason about other aspects of pro-
gram behavior on top of permissions, such as typestates
[Bierhoff and Aldrich 2007].
• Simplicity. Permission tracking by itself can be imple-

mented as a linear typechecking procedure. At the same
time, aliasing concerns do not have to encoded in logic
and reasoned about with a decision procedure (as in
Spec#, see Barnett et al. [2004]). This should simplify
the task of program verification itself and possibly in-
crease the degree to which it can be automated.

As has been done with fractional permissions [Bornat
et al. 2005], I believe symbolic permissions could be em-
bedded into separation logic. Such an embedding would add
expressive power but would arguably also forego separation
of concerns, increase complexity, and decrease chances for
automation. Therefore, this paper attempts to get by without
a logical embedding approach by supporting common pro-
gramming idioms directly. The proposed symbolic permis-
sion type system (Section 4) to this end supports two pro-
gramming idioms—borrowing and capture/release—which
I previously have found to be crucial in using permissions
for reasoning about real programs [Bierhoff et al. 2009].

Contributions of this paper include:

• Symbolic permissions (Section 2) as a new basis for
sound automated program verification (Section 3).
• Formalization of symbolic permissions in a core object-

oriented langauge with an argument for soundness of
verification based on symbolic permissions (Section 4).
• Validation of the presented ideas with a working proto-

type implementation for Java that can verify the iterator
implementation and client shown in this paper in under 2
seconds (Section 5).

Furthermore, Section 6 discusses related work and Sec-
tion 7 concludes. Like most work on automated program
verification with first-order logic in the last decade, exam-
ples, formalisms, and implementations are based on object-
oriented programming. Subtyping and inheritance can be
handled using standard techniques [Fähndrich and Xia 2007;
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name fract. access to referenced obj. annot.
unique 1 exclusive read-write @Excl
immutable (0, 1) shared, read-only @Imm

Table 1. Permissions, their meaning (after Boyland [2003]),
and corresponding annotations for JavaSyp

Liskov and Wing 1994] and are therefore not discussed in
this paper.

2. Symbolic Permissions
This section introduces the idea of symbolic permissions.
Symbolic permissions are a simplification of fractional per-
missions, which I will first briefly recount. I will then explain
what it means to do away with fractions and instead track
permissions symbolically based on their kind. Finally, I will
introduce the concepts of borrowing, capturing, and releas-
ing permissions, which are key to making symbolic permis-
sions practical. A Java-like array list implementation (Figure
2) with read-only iterators (Figure 3) serves as a running ex-
ample through this and the following section.

2.1 Recap: Fractional Permissions
Boyland [2003] initially proposed fractional permissions for
ensuring race freedom of data that could at different times
be modified by only one thread or only read by multiple
threads in parallel. In other words, they formalize that it is
safe to concurrently access a single object in memory if none
of the accessing threads modify that object; while an object
is modified it is only accessible by one thread.

This idea can be formalized by associating a fraction
k ∈ (0, 1] with every program reference (variable or memory
location), often written k · x. Boyland coined a reference
with a fraction of 1 a unique permission; references with
any fraction strictly less than 1 (but greater than 0) are called
immutable permissions (Table 1).

A permission can be split (V) by dividing up its fraction
among two references so that they new fractions sum up to
the split fraction. Permissions also can be joined (W) by
associating the sum of their fractions with a single reference:

k · x WV k1 · x1, k2 · x2 (if k = k1 + k2)

A non-deterministic type system ensures that unique and im-
mutable permissions do not co-exist (which would repre-
sent data races); essentially the type system guarantees that
fractions associated with a single object do not sum up to
more than 1. The type system is non-deterministic because
it “guesses” how fractions are split up among references.

In addition to being used for avoiding race conditions
[Heule et al. 2011; Terauchi and Aiken 2008; Zhao 2007],
fractions have also been used for verification [Bierhoff and
Aldrich 2007; Bornat et al. 2005] and combinations of the
two [Beckman et al. 2008].

2.2 We Don’t Need Fractions
While formally appealing, automated reasoning about frac-
tions requires significant engineering and a sophisticated de-
cision procedure for rationals or integers [Bierhoff 2009;
Heule et al. 2011; Terauchi 2008]. One reason is that per-
missions can be split among references (e.g., at method call
sites) in infinitely many ways; which split should be chosen
depends on what fractions the different references need later
on in the program.

Fortunately, the “concrete” fractions associated with im-
mutable permissions do not matter: by design it is irrele-
vant for reasoning about object accesses through a reference
whether that reference has a 0.5 or 0.25 fraction. Fractions
are in fact only relevant for joining permissions to regain
a unique permission for modifying a previously immutable
object.

Furthermore, a programmer likewise does not care about
fractions. It is far more convenient to simply declare a refer-
ence as needing a unique or any immutable permission than
to declare it as 0.25·x! Not only does using immutable·x in-
troduce a certain amount of “polymorphism” over fractions
[Bierhoff 2009], but it is also stable against changes in the
program that would otherwise require changing 0.25 · x into
0.5 · x because some additional method is now called that
happens to require a larger fraction than is available. A single
such signature change could have ripple effects through the
entire program even through nothing substantially changed:
the program still works with read-only access to the refer-
enced object. Previously I and others have approached this
problem by somehow “hiding” concrete fractions from pro-
grammers using inter-procedural inference or fraction poly-
morphism [Bierhoff 2009; Heule et al. 2011; Terauchi 2008].

The idea of symbolic permissions is to instead repre-
sent and track permissions symbolically by their “kind”—
i.e., as unique or immutable—rather than with fractions
and fraction variables. This approach dramatically simplifies
automation to an almost-trivial procedure that can be per-
formed by a refinement type checker. In JavaSyp, the Java
annotations @Imm and @Excl signify references with im-
mutable and unique permission, respectively.

2.3 Borrow, Capture, Release
The good news is that in most all cases we don’t need the
full generality of fractions anyway, as suggested by my ex-
perience with using permissions for typestate verification
[Bierhoff et al. 2009]. But, we need borrowing [Boyland
and Retert 2005] as well as capture (similar to adoption
[Fähndrich and DeLine 2002], although we don’t use “fo-
cus” here) and release [Bierhoff et al. 2009]. In a nutshell,
a method that borrows a permission returns that permission
exactly the way it was passed into the method. An object
captures a permission in a field if all subsequent accesses to
the field borrow that permission. The type system is then al-
lowed to release (return back to the client) captured permis-
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1 public class ArrayList<T> {
2
3 @Excl private T[] a;
4 private int size ;
5 // @ invariant 0 <= size & a != null & size <= a.length;
6
7 // @ ensures size == 0;
8 public ArrayList () {
9 this (16);

10 }
11
12 // @ requires 0 <= initialCapacity ;
13 // @ ensures size == 0;
14 public ArrayList ( int initialCapacity ) {
15 super ();
16 a = (T[]) new Object[ initialCapacity ];
17 size = 0;
18 }
19
20 // @ requires 0 <= index & index < size ;
21 @Imm public T get(int index) {
22 imm: return a[index ];
23 }
24
25 // @ ensures size == \old( size ) + 1;
26 @Excl(mod = {"a", "size "}) public void add(T e) {
27 excl : {
28 if (a . length <= size ) {
29 @Excl(borrowed = false) final T[] newA =
30 (T[]) new Object[a. length ∗ 2 + 1];
31 final int oldSize = size ;
32 final T[] oldA = a;
33 int i = 0;
34 // @ maintaining 0 <= i;
35 // @ size == oldSize & a == oldA;
36 for (; i < size ; ++i)
37 newA[i] = a[ i ];
38 a = newA;
39 }
40 a[ size++] = e;
41 } }
42
43 // @ ensures \ result == size;
44 @Imm public int size () {
45 imm: return size ;
46 }
47
48 // @ ensures \ result != null ;
49 @Imm(released = true)
50 @ReturnExcl public ArrIterator <T> iterator () {
51 imm: {
52 @Excl final ArrIterator <T> result =
53 new ArrIterator <T>(a, size );
54 return result ;
55 }
56 }
57 }

Figure 2. Verified ArrayList implementation

sions when the capturing object becomes garbage. Objects
become garbage when unique permissions are abandoned
[Bierhoff 2009].

Recall that from a technical perspective, fractions let us
join permissions after they were split. Borrowing and cap-
ture/release let us do just that with symbolic permissions for
objects shared on the stack and in the heap, respectively.

2.3.1 Borrowing vs. Permission Consumption
In order to explain borrowing, let’s first look at its opposite
in the constructor of the following code snippet. It assigns
the given receiver permission to a field:

1 class Consumer {
2 @Imm ArrayList list ;
3 Consumer(@Imm(borrowed = false) ArrayList l) {
4 list = l ;
5 } }
6 // client code
7 @Excl(borrowed = false) ArrayList<Object> l =
8 new ArrayList<Object>();
9 int zero = l . size ();

10 l .add(new Object ());
11 @Excl Consumer c = new Consumer(l);

I will call this permission consumption: a permission to
a constructor argument is consumed by that constructor by
holding on to it in one of the fields of the new object.
Methods can consume permissions in the very same way.
In JavaSyp we explicitly indicate consumed permissions by
setting the borrowed attribute in permission annotations to
false .

Borrowing represents the absence of permission con-
sumption in a method and transitively in all methods it
calls. The method size () in Figure 2 is an example of such
a method. Here, @Excl and @Imm annotations on methods
define receiver permissions.

As the vast majority of method arguments are borrowed
in practice [Bierhoff et al. 2009], the borrowed attribute is true
by default, so get () and size () both borrow a receiver per-
mission. The same annotations on fields such as ArrayList .a
mean that these fields hold the respective permission to the
referenced object (if not null). I will refer to such permis-
sions as field permissions.

Now consider typechecking the “client code” starting at
line 7 above. Assuming new ArrayList () yields a unique per-
mission, our caller can clearly call size on l: we can split
the unique permission for l into two immutable permissions,
one of which we pass into the method. But can we call add af-
terwards? Only if we can join the two permissions for l back
together. The fact that method size borrows the receiver per-
mission allows us to do just that! Since the permission we
pass into that method comes back exactly the way it was
we are allowed to reinstate the unique permission for l after
size returns. This allows calling add, and by similar reason-
ing to before, we can afterwards create a Consumer object.
That call, however, leaves us only with an immutable per-
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mission for l , which still allows calling size , but calling add
is no longer allowed. Also, we now consumed part of the
original permission to l , and we are therefore required to de-
clare l as consumed on line 7.

It is instructive to consider how this example would be
handled with fractions.

• size would be declared to require some fraction and yield
the same fraction for the receiver.
• add would require and yield a 1 fraction for the receiver.
• Consumer’s constructor would require some fraction and

not yield any permission for the receiver.

Thus, borrowing is characterized by yielding the same
fraction that was passed in; consuming means yielding no
permission. Notice that permission consumption encodes
most methods that requires some fraction and yields a dif-
ferent (smaller) fraction without loss of expressiveness: intu-
itively, one can subtract the smaller fraction from both sides,
unless the larger fraction was 1 (which we could encode by
requiring and yielding different symbolic permission kinds).

2.3.2 Capture and Release
Where borrowing represents temporary sharing on the stack,
capture and release allow substantially the same thing in the
heap. Consider an instance i of class ArrIterator that re-
quires a permission to a helper array snapshot during con-
struction (Figure 3). The iterator can then use the helper ar-
ray throughout and does not further split the permission to
the array. We will say that the permission for snapshot is cap-
tured by i . When i is no longer in use then we can release
its captured permission to snapshot back to the client (in this
example, the array list being iterated).

This reasoning allows the sane method in Figure 4 to type-
check and in fact consider the parameter l as borrowed: The
locally used objects it1 and it2 each capture a immutable
permission to l .a. These l .a permissions in turn capture im-
mutable permissions to l . Since it1 and it2 are abandoned
at the end of the method and not consumed anywhere (the
local variables are declared as borrowed), l’s originally per-
mission can be returned to the caller at the end of sane.

2.4 Exposure: Field Access
Ultimately we want to use permissions to access and modify
fields. Unsurprisingly, a unique permission will be required
to assign to fields of an object; immutable permissions will
allow reading values. These rules are sufficient for reading
and writing primitive fields (such as size in Figure 2).

But fields will often have object type themselves, in
which case they are associated with a field permission. For
instance, the a field in Figure 2 is declared to hold a unique
permission to the referenced array object.

Given a permission to an object o, an interesting question
is then what permission will be available to access that
object’s fields o.f with object type. Since immutability is

1 public class ArrIterator <T> {
2
3 @Imm private final T[] snapshot ;
4 private final int count ;
5 private int index;
6 // @ invariant snapshot != null & 0 <= count &
7 // @ count <= snapshot.length & 0 <= index & index <= count;
8
9 // @ requires snapshot != null && 0 <= count &&

10 // @ count <= snapshot. length ;
11 public ArrIterator (@Imm(released = true) T[] snapshot ,
12 int count) {
13 this . snapshot = snapshot ;
14 this . count = count ;
15 this . index = 0;
16 }
17
18 // @ ensures \ result == index < count;
19 @Imm public boolean hasNext() {
20 imm: return index < count ;
21 }
22
23 // @ requires index < count;
24 @Excl(mod = "index") public T next () {
25 excl : return snapshot [index++];
26 }
27 }

Figure 3. Verified iterator over ArrayList in Figure 2

a “deep” property that is supposed to guarantee that an
object does not change in any way, we have to weaken field
permissions read through immutable permissions to always
be immutable. Reading through a unique permission will
yield the original permission assigned to the field.

Because field reads yield permissions, we have to be able
to track for how long those field permissions are used after
reading a field. In particular, if a field carries a unique per-
mission, as a in Figure 2, then we don’t want that permission
to disappear on us. More to the point, we should not be able
to use an object if one of its field permissions is consumed
(that would break the declared “invariant” of expected field
permissions).

To simplify detecting these sorts of problems, we will
use exposure blocks to delineate field access. Receiver fields
will be accessible inside exposure blocks, but not outside.
An exposure block captures a permission to the receiver;
hence we can distinguish unique and immutable exposure
of the receiver depending on what kind of permission the
exposure block captures. The permission used to expose
the receiver is inaccessible inside the exposure block but
may be returned to the client at the end of the block (see
below). By the reasoning from above, fields can be assigned
inside unique exposure blocks, and field reads yield the
field’s original permission. Reading fields inside immutable
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1 // @ requires l != null ;
2 public <T> boolean sane(@Imm ArrayList<T> l) {
3 @Excl ArrIterator <T> it1 = l . iterator ();
4 @Excl ArrIterator <T> it2 = l . iterator ();
5 assert it1 != it2 ;
6 while ( it1 .hasNext() & it2 .hasNext ()) {
7 // it1 . index < it1 .count & it2 . index < it2 .count
8 if ( it1 . next () /∗ it2 . index<it2 .count∗/
9 != it2 . next ())

10 return false ;
11 }
12 if ( l . size () % 2 == 1)
13 l .add(null ); // ERROR: Need Excl but have Imm
14 return ! it1 .hasNext() & ! it2 .hasNext ();
15 }

Figure 4. Sample client for classes in Figures 2 and 3
with facts known between loop statements in comments and
seeded permission error that exposes Concurrent Modifica-
tion Exception (CME)

exposure results in weakened field permissions as discussed
above.

If at the end of an exposure block field permissions
are missing then the permission that was exposed will be
deemed consumed; otherwise the exposed permission is re-
leased and can be used again. While that seems like an odd
rule, it is sound while flexible: the rule does the obvious
and desirable if no field permissions are consumed inside
an exposure block, but it does allow field permissions to be
consumed.2

Figure 2 illustrates exposure blocks for unique and im-
mutable receiver permissions, which we signify to JavaSyp
with block or statement labels named excl : and imm:, respec-
tively (this is legal Java [Beckman et al. 2008]!). For sim-
plicity, JavaSyp does not support exposing references other
than the receiver, but there is no theoretical problem expos-
ing other references. Exposure blocks are in fact inspired by
Spec#’s expose blocks, which can be used with an arbitrary
reference [Barnett et al. 2004]. Just as in Spec#, exposure
blocks not only help tracking field permissions but also sim-
plify verifying that class invariants hold (Section 3.2).

Notice that it is never a problem to expose multiple per-
missions at once: Because there can be only one unique per-
mission per object, two unique exposures at the same time
can never refer to the same object (which would be bad be-
cause we could get two unique permissions to fields).

3. Program Verification with Permissions
This section will discuss the kinds of assertions we want to
verify, how permissions help ensuring that class invariants
hold, outline a procedure for verifying a method against

2 In the spirit of Beckman [2010], immutable field permissions marked
with borrowed = false can be consumed without losing the exposed
permission. For soundness, such field permissions cannot be released.

contracts, and illustrate how some of the code from the
running array list example will be verified. As we will see,
once permissions are in place, we will pretty much be able to
read off verification conditions (VCs) from code, feed them
to an SMT solver, and get sound program verification.

3.1 Assertions and Contracts
We can specify the array list’s expected behavior using con-
tracts. Figure 2 shows JML contracts [Leavens et al. 1999]
that can be understood by JavaSyp. The array list implemen-
tation in Figure 2 with its iterator (Figure 3) and a sample
client (Figure 4) continues to serve as a running example
thoughout this section. Array list and iterator are simplified
versions of the ArrayList class in the Java standard library.

An array list maintains a list of objects (“elements”) in the
order they were added (using the add method) in a backing
array. The backing array is grown as needed to add more
elements. The get method returns the element with the given
index, and size returns the number of elements in the list.
Notice that the backing array can have more cells than the
list has elements because the array’s size doubles every time
it has to grow to accommodate more elements. The iterator
method returns a Java-like iterator of the array list whose
implementation is shown in Figure 3. Figure 4 shows a
simple array list client that uses two iterators to make sure
they return the same objects.

Let’s consider some example contracts:

• Pre-conditions that callers have to meet. get’s pre-condition,
for instance, is that the index parameter be between 0 (in-
clusive) and the list’s size field (exclusive).
• Post-conditions have to hold at the end of a method. For

instance, the ArrayList constructors promise that the size
field will be 0. add’s post-condition means that when add
returns, size will be one larger than when add was called.
• Loop invariants are declared using maintaining JML

clauses and have to hold at the beginning and end of
every loop iteration. JavaSyp does not perform any infer-
ence of loop invariants, so the invariant in add’s loop has
to include the rather obvious lower bound for i .
• Assertions are encoded with Java’s built-in assert state-

ment. The assertion in Figure 4, for instance, requires
proving that it1 and it2 do not reference the same object.
• Assumptions allow programmers to “inject” knowledge

into the verification process. This paper does not resort
to assumptions, but JavaSyp supports them.

The iterator implementation in Figure 3 likewise uses
JML contracts to define how to properly use hasNext and
next. Notice how the constructor’s pre-condition becomes
the iterator’s class invariant. With these contracts, no further
specifications are required for JavaSyp to check the client in
Figure 4 (the assert statement is for illustrative purposes).
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3.2 Class Invariants
Class invariants are assertions over a class’s instance fields
that must hold for a given instance of the class whenever a
client of that instance could assume the invariant is holding.
Making sure of that is indubitably the hardest aspect of
contract-based program verification because class invariants
typically should continue to hold beyond the point in the
program execution where we proved them so we can assume
they still hold the next time we access a field.

With permissions, we can ensure the class invariant of an
object holds as long as a client has a permission to the object.
We can do so by requiring that the invariant holds unless
the object’s unique permission is exposed. This satisfies our
requirement that invariants always hold when a client has
a permission: while the unique permission is exposed, no
client has a permission to the object (since the exposed
permission is captured during exposure), and hence no client
could assume the invariant is holding. On the other hand, if
the object’s unique permission is not exposed, clients can
have a permission to the object and we are guaranteed that
the invariant holds.

Class invariants can then be operationalized (analogously
to Barnett et al. [2004] and Bierhoff and Aldrich [2007]) as
follows:

• We get to assume the class invariant at the beginning of
an exposure block.
• We have to prove that the class invariant holds at the end

of excl : exposure blocks. (Since fields transitively cannot
change in imm: exposure blocks, we don’t have to prove
the invariant at the end of those blocks.)
• We also have to prove class invariants at the end of

constructors (which mark the end of exposures as well).

Crucially, this approach requires that invariants only men-
tion fields of objects reachable through permissions. For in-
stance, a class invariant f .x == g.h.y is only legal if fields
f, g, and g.h are declared with immutable or unique field
permissions. Under this condition, the field permissions for
f, g, and g.h are necessary to modify f .x and g.h.y, which
can only be acquired by exposing a unique permission to
an instance of the class defining the invariant, making this
approach sound. (Recall from the previous chapter that ex-
posing a immutable permission results in “weakened” per-
missions for fields.)

3.3 Verification Procedure
Verifying a method now becomes a collaboration between
a programming-language specific tool and an SMT solver:
the language-specific tool produces verification conditions
(VCs) from contracts as well as the semantics of the program
instructions encountered. VCs encode the program and the
assertion that is to prove as a first-order logic predicate. Once
we have constructed a VC we ask a decision procedure, such

as an SMT solver, whether the VC holds, which allows us to
conclude the truth of the assertion.

Deriving VCs requires maintaining knowledge about lo-
cal variables as well as (portions of) the heap, with the ability
to havoc individual variables or the heap. “Havocking” vari-
ables means assuming that the havocked variables (or heap
portions) could now hold any values, effectively invalidating
the knowledge about those variables (or heap portions).

Verification of a method is pretty standard and begins
by assuming the method’s pre-condition. We then process
program instructions in the order of execution, with special
treatment of control flow structures (loops and conditionals).

• Whenever we encounter a method (or constructor) invo-
cation, we have to prove the method’s pre-condition and
havoc the parts of the heap that could be modified by
the method. Then we get to assume the method’s post-
condition. We do not have to havoc objects for which the
caller retains a permission (see below).
• Whenever we encounter a programmer-provided asser-

tion we prove it.
• We get to assume programmer-provided assumptions as

we encounter them.
• Verification of loop invariants requires a combination of

proving and assuming the invariant, as previously de-
scribed for Spec# [Barnett et al. 2004].
• Conditional branches can be processed one by one from

their common initial knowledge. After the conditional,
the knowledge is a disjunction of the knowledge we had
at the end of each branch.
• Assignments havoc the assigned variable or field and then

equate it with whatever is known about the new value.
• Class invariants are handled as described in the previous

section based on exposure blocks.

A crucial advantage of using permissions for verification
comes from the details of handling method invocations. Con-
ventionally, method invocations result in information loss
about objects accessible through local variables and fields
not involved in the invocation. For instance, when the sane
method in Figure 4 calls the next method that may modify
it1 then previous verification tools can get into trouble prov-
ing predicates involving the local variables it2 and l . This is
because those locals may alias with it1 (reference the same
object), and so the method call may have modified the ob-
ject pointed to by it2 , resulting in spurious warnings about
the precondition of it2 . next () not holding.

Conversely, with permissions, any locals and fields for
which the caller retains a permission during a method in-
vocation will not be modified by that invocation. In other
words, any permissions a caller does not pass into a method
allow that caller to assume that the object accessible through
the unused permission is not modified. (JavaSyp encodes
this non-interference in VCs with inequalities and “protec-
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tion” predicates derived from field permission declarations
in assumptions for havocking the heap.)

In separation logic, this effect is provided by the frame
rule, which can be extended to verification with fractional
permissions (as in Bornat et al. [2005]). Likewise, the frame
rule could be extended to symbolic permissions, but in this
paper we investigate tracking symbolic permissions with a
separate type system rather than directly in the logic used
for program verification.

Unlike Spec# [Barnett et al. 2004] and JML [Leavens
et al. 1999] we do not need “deep” modifies clauses that
describe all heap portions modified by a method because
our permission-defined frame of untouched variables serves
a similar purpose without the overhead. For added conve-
nience we only havoc those fields of objects passed into a
method that are listed in mod attributes. For instance, call-
ing next in Figure 3 does not havoc what we know about
count. This is simply to avoid x == \old(x) assertions, which
I believe reduces annotation burden. I plan to investigate the
impact of encoding mod attributes with the JML in future
work.

3.4 Examples
To illustrate verification with symbolic permissions, let’s
consider the sane method in Figure 4. The knowledge avail-
able to JavaSyp after various instructions is shown in com-
ments (omitting non-nullness predicates for readability).

The method creates two iterators it1 and it2 over the
given list l . These iterators each capture an immutable per-
mission to l . Inside the loop, calling hasNext ensures the
exact predicate required for calling next on the same itera-
tor. Notice that we can call next on it1 without problem for
calling the same method on it2 . This is because we retain a
unique permission to it2 during the (modifying) call to it1 ,
allowing us to maintain the knowledge we gained from call-
ing it2 .hasNext() until we need it. While we use iterators, we
cannot modify the array list, which is a good thing because
such a modification would represent a CME.3

At the end of the method, the two iterators become un-
available (because their unique permissions are declared as
borrowed and indeed are not consumed anywhere in the
method), which allows releasing the list permissions they
capture. That, in turn, means the method parameter l’s per-
mission is also borrowed, as declared in sane’s signature.

Notice that we do not need a loop invariant in this method,
as the loop’s condition establishes everything we need to
know inside the loop body. Conversely, a loop invariant ap-
pears in the add method in Figure 2. The loop invariant helps
proving the array bounds needed in the loop as well as the
class invariant and post-condition: JavaSyp, like Spec# [Bar-

3 Note that JavaSyp can in also handle modifying iterators (that include a
remove method), although they have to be created using a separate method.
This is because modifying iterators need a unique permission to the iterated
list and JavaSyp does not support multiple signatures for a single method as
the author’s previous work does [Bierhoff et al. 2009].

nett et al. 2004], for simplicity assumes that the fields size
and a mentioned in the method’s mod attributes could change
in loops (even though that’s not the case here). Assuming
the declared class invariant at the onset of the excl : block,
the loop invariant allows proving that the class invariant still
holds at the end of that block.

Using JavaSyp helped me find a bug in my ArrayList code
of which I was previously unaware: it is not enough to dou-
ble the length of the underlying array when growing it—one
must also add a constant factor. Otherwise the array would
not actually grow if it initially was of zero length, violating
the class invariant that size < a. length . java . util . ArrayList
in the Java standard library employs the same strategy of
adding 1 when growing the underlying array that my imple-
mentation (now) uses.

4. Formalization of Symbolic Permissions
Symbolic permission checking can be implemented as a sim-
ple, syntax-directed typechecking procedure. This section
formalizes symbolic permission checking for a core object-
oriented language that is similar to my previous work [Bier-
hoff and Aldrich 2007] and inspired by Featherweight Java
(FJ) [Igarashi et al. 1999]. It formalizes permission check-
ing as a refinement type system: it assumes that conventional
(class) types have already been established, e.g., as formal-
ized in FJ. In a few places, permission checking relies on
class types to look up type declarations for fields and meth-
ods, but it proceeds otherwise independently from conven-
tional typechecking.

4.1 Syntax
Syntactic forms are summarized in Figure 5. Expressions M
are unsurprising and include variable access, object creation
(new), method invocation, a let binding construct, field as-
signment, and field access. For simplicity, programs are writ-
ten in A-normal form: expressions are not allowed as part
of other expressions except in a binding. This is a common
trick that simplifies the theory [Bierhoff and Aldrich 2007].
Assignments will evaluate to the field’s previous value (and
its permission). To keep typechecking syntax-directed, field
reads x : p.f c are annotated with the permission expected
for the accessed object (this helps deciding which permis-
sions are available for fields). Instead of the “expose” blocks
that JavaSyp supports, field reads will be bounded by a sur-
rounding let binding, and field assignments can happen
whenever a unique permission is available. This simplifies
the formalization. Field reads and method invocations are
annotated with the class the field or method belongs to—
this information is assumed to come from conventional type-
checking.

Classes C are lists of fields f : p and methods B, and
a program consists of the “class table”, C1 · · ·Cn (the list
of all classes), and a main expression. Permissions p include
unique and immutable. Borrowing is indicated with a 0 be-

26



prog. R ::= 〈C1 · · ·Cn,M〉
class C ::= class c {f1 : p1; . . . ; fk : pk;B1 · · ·Bl}

meth. B ::= u0p0 m(x1 : u1p1, . . . , xn : unpn) : T = M
exprs. M ::= x

| new c(x1, . . . , xn)
| x0.m

c(x1, . . . , xn)
| let x : up = M1 inM2

| x.fc := y
| x : p.fc

perms. p ::= unique | immutable

borrow u ::= 0 | 1
ctxs. Γ ::= · | Γ, x : P

var. ts. P ::= T | P\p
ex. ts. T ::= p[x1 : p1, . . . , xn : pn]

variables x, y methods m fields f classes c

Figure 5. Syntax

fore types T in method declarations and let bindings. Con-
sumed permissions are indicated with a 1. Types T include
permissions with a list of captured variables; p is a short-
hand for p[·], which types a variable that does not capture
any permissions. Additionally, variable contexts Γ can mark
consumed permissions with x : T\p, meaning that p was
consumed from T , leaving potentially no or a less powerful
permission for x.

4.2 Typing
Typing rules are shown in Figure 6, with helper rules in Fig-
ure 7. Typechecking proceeds with the following judgment:

Γ `M : T | Γ′

This can be read as, “under variable context Γ, expression
M is assigned type T and yields context Γ′ for typechecking
subsequent expressions”. The “output” context Γ′ reflects
permissions consumed by M . Implicity, the class table is
available when typechecking expressions.

Variable contexts Γ are assumed to not include the same
variable name twice, which can be achieved with alpha-
conversion. Let’s discuss each rule in turn.

T-VAR types a variable and consumes the required per-
mission in the process. T-BORROW and T-CALL ensure that
borrowed permissions do not remain consumed, but it is eas-
ier to always assume that a variable’s permission will be con-
sumed in this rule.

T-NEW ensures that the arguments provided match the
permissions needed for fields of the newly constructed ob-
ject. The new object is typed as unique.

T-CALL likewise ensures that the arguments provided
match the method’s signature for all arguments. In a “sec-
ond pass”, the rule limits itself to consuming only consumed
(u = 1) permissions, leaving borrowed permissions un-
touched in the resulting context Γ′′. The first pass is nonethe-

less necessary to catch situations in which the same variable
is used in two argument positions and cannot satisfy the per-
missions needed for both parameters.

T-BORROW makes sure that the initial permission for
the borrowed variable x is fully returned by M2 and not
consumed. The rule then releases any permissions captured
by x back into the context Γ2. By contrast, T-CONSUME has
no requirement on x’s permission after checking M2 but also
does not release captured permissions.

T-ASSIGN requires a unique permission for the object
whose field is assigned. It also requires the assigned field’s
permission for the new field value. While the latter permis-
sion is consumed, the former is not.

T-READEXCL types a field read with the accessed field’s
permission and captures the accessed object’s (x) permission
with it. T-READIMM works similarly but weakens any field
permission to immutable.

T-METHOD unsurprisingly checks a method B by type-
checking the method body under the context formed by the
method parameters. Borrowed variables have to be available
in their original form in the output context Γ.

T-CLASS and T-PROGRAM are standard and check each
method in each class before checking the program expres-
sion M under empty variable context.

Notice that these rules support returning captured vari-
ables from method calls, which would come from field ac-
cesses inside that method. Permissions captured in fields of
new objects are not formalized but could be added to T-
NEW.

4.3 Soundness
This section discusses the soundness of the presented ap-
proach in two parts. We first briefly review existing permission-
related soundness results. Afterwards we sketch a proof of
soundness for permission-based verification. The soundness
argument follows Barnett et al. [2004]. Formally proving
soundness of the system presented in this paper is future
work.

4.3.1 Symbolic Permission Tracking
Fractional permissions have been repeatedly proven sound
in the context of typestate verification [Beckman et al. 2008;
Bierhoff and Aldrich 2007] as well as for concurrent pro-
grams [Terauchi and Aiken 2008]. Borrowing and adoption
(similar to capture) have however been proven sound in iso-
lation [Aldrich et al. 2002; Boyland and Retert 2005].

4.3.2 Verification
To show soundness of the Symplar verification approach
presented in Section 3 our biggest concern must be that
class invariants continue to hold during evaluation [Barnett
et al. 2004]. This is because while pre-conditions, post-
conditions, and other assertions only have to hold at the
point they are proved, we prove class invariants at the end
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T-VAR
P ` T T = p[x1 : p1, . . . , xn : pn]

Γ1, x : P,Γ2 ` x : T | Γ1, x : P\p,Γ2

T-NEW
Γ ` x1 : p1, . . . , xn : pn | Γ′

�elds(c) = f1 : p1, . . . , fn : pn

Γ ` new c(x1, . . . , xn) : unique | Γ′

T-CALL
Γ ` x0 : p0, x1 : p1, . . . , xn : pn | Γ′

Γ ` x0 : u0p0, x1 : u1p1, . . . , xn : unpn | Γ′′
mtype(c.m) = u0p0(u1p1, . . . , unpn)→ T

Γ ` x0.m
c(x1, . . . , xn) : T | Γ′′

T-BORROW
Γ `M1 : T1 | Γ1 Γ1, x : p `M2 : T | Γ2, x : p
T1 = p[x1 : p1, . . . , xn : pn] x not occurring in T

Γ ` let x : 0p = M1 inM2 : T | Γ2 + xn : pn + . . . + x1 : p1

T-CONSUME
Γ `M1 : T1 | Γ1 Γ1, x : p `M2 : T | Γ2, x : P
T1 = p[x1 : p1, . . . , xn : pn] x not occurring in T

Γ ` let x : 1p = M1 inM2 : T | Γ2

T-ASSIGN
Γ ` x : unique | Γ1 Γ1 ` y : p | Γ2 f : p ∈ �elds(c)

Γ ` x.fc := y : p | Γ2 + x : unique

T-READEXCL
Γ ` x : unique | Γ′ f : p ∈ �elds(c)

Γ ` x : unique.fc : p[x : unique] | Γ′

T-READIMM
Γ ` x : immutable | Γ′ f : p ∈ �elds(c)

Γ ` x : immutable.fc : immutable[x : immutable] | Γ′

T-METHOD
this : p0, x1 : p1, . . . , xn : pn `M : T | Γ

Γ = this : P0, x1 : P1, . . . , xn : Pn

∀i.ui = 0 implies Pi = pi

u0p0 m(x1 : u1p1, . . . , xn : unpn) : T = M ok in c

T-CLASS
B1 ok in c · · · Bl ok in c

class c {f1 : p1; . . . ; fk : pk;B1 · · ·Bl} ok

T-PROGRAM
C1 ok · · ·Cn ok · `M : T | Γ

〈C1 · · ·Cn,M〉 ok

Figure 6. Symbolic permission typechecking rules (helper
judgments in Figure 7)

T ` T T ` immutable[·]

P ` immutable[·]
P\immutable ` immutable[·]

Γ0 ` x1 : 1T1, · · · , xn : 1Tn | Γn

Γ0 ` x1 : T1, · · · , xn : Tn | Γn

Γ0 ` x1 : u1T1 | Γ1 · · · Γn−1 ` xn : unTn | Γn

Γ0 ` x1 : u1T1, · · · , xn : unTn | Γn

Γ ` x : T | Γ′

Γ ` x : 1T | Γ′ Γ ` x : 0T | Γ

Γ1, x : T\p,Γ2 + x : p = Γ1, x : T,Γ2

Γ + x1 : p1 = Γ′ Γ′ + x2 : p2 + . . . + xn : pn = Γ′′

Γ + x1 : p1 + . . . + xn : pn = Γ′′

class c {f1 : p1; . . . ; fn : pn; . . .} ∈ CT

�elds(c) = f1 : p1, . . . , fn : pn

class c {. . . u0p0 m(x1 : u1p1, . . . , xn : unpn) : T = M . . .} ∈ CT

mtype(c.m) = u0p0(u1p1, . . . , unpn)→ T

Figure 7. Helper judgments for Figure 6

of unique exposuse blocks and assume that they still hold at
the beginning of the next exposure.

To show that class invariants are preserved during evalua-
tion we first re-state the well-formedness condition for class
invariants mentioned in Section 3.

Definition 1 (Well-formed invariant). A class invariant is
well-formed if every field it references is either one of the
class’s own instance fields or is (transitively) reachable
through field permissions.

Note that this definition trivially permits invariants over a
class’s own fields. This leads to the following heap invariant
that we wish to preserve:

Invariant 1 (Heap invariant). During evaluation, for every
object o, either its invariant inv(o) holds or it is exposed with
a unique permission.

Finally, we can state that this heap invariant is preserved
under evaluation:

Proposition 1 (Invariant preservation). For every object o,
if inv(o) is well-formed and inv(o) is proved when o is
constructed and at the end of every unique exposuse block
for o, then Invariant 1 is preserved during every evaluation
step.
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Proof. By induction over small-step evaluation judgment
with case analysis on last rule applied.

• New object o: The class invariant must be proved for
the field values provided, establishing inv(o) for the new
object o.
• Entering unique exposure of o: inv(o) holds by assump-

tion.
• Leaving unique exposure of o: The class invariant must be

proved at this point, to establish that inv(o) holds again.
• Other evaluation rules:

while unique permission for o is exposed: fields men-
tioned in inv(o) can freely change.
otherwise: o’s fields cannot be changed because o
is not exposed with unique permission (typecheck-
ing guarantees this). Every other object mentioned
in o’s invariant must be reachable transitively from
o through field permissions (because the invariant is
well-formed). None of these objects can therefore be
exposed with unique permissions because some per-
mission to them is held by another field. Therefore,
none of these objects’ fields can change, preserving
o’s invariant.

As we can see, the soundness argument for the approach
presented in this paper is ultimately quite simple and re-
lies on our symbolic permission type system to only allow
field modifications for objects whose unique permission is
exposed. As long as an object’s unique permission is not
exposed it must hold the field permissions declared for its
fields, which in turn guarantees that none of the objects ref-
erenced through fields change during that time. This, finally,
means that class invariants will continue to hold for all ob-
jects while their unique permission is not exposed as long as
these class invariants are well-formed.

5. JavaSyp: Implementation for Java
JavaSyp contains a prototype implementation of the per-
mission tracking algorithm shown in Figure 6 for the Java
programming language enriched with Java 5 annotations as
shown in Section 2. In a linear pass it assigns “effective
permissions” to every program expression. JavaSyp also
derives verification conditions (VCs) from programmer-
defined JML contracts and the semantics of program in-
structions and invokes a theorem prover whenever a pre-
condition, invariant or “assert” statement has to be proved
(see Section 3). JavaSyp encodes VCs according to the SMT-
LIB standard [Barrett et al. 2010] and currently uses Z3
[de Moura and Bjørner 2008] to discharge VCs.

JavaSyp and is available open-source 4. JavaSyp is a plu-
gin to the Eclipse development environment5 and is imple-
mented as a visitor over Eclipse’s AST. The Crystal6 static
analysis framework is used to help parsing annotations and
provide feedback to the developer where permissions are
missing or assertions could not be proved. JML support is
currently based on the JML4 project7 with some extensions
(details on the JavaSyp website). JavaSyp can also be used
without JML4 and to this end supports its own, pure-Java
declarations of method contracts and invariants. Examples
are available with JavaSyp and include the array list exam-
ple shown in this paper.

JavaSyp verifies the code shown in Figures 2, 3, and 4 in
about 1.9 seconds on a 2GHz Intel Core Duo laptop with
3GB RAM running Eclipse 3.5.2 and Java 1.6_18 (x86);
1.4 seconds of those are spent in the theorem prover, Z3
2.7 (x64). The following subsections touch on features of
JavaSyp that appear in the array list example but haven’t
been discussed so far.

5.1 Constructors
JavaSyp handles Java constructors soundly at the price of
currently not allowing method calls in constructors that re-
quire a receiver permission. This is achieved by treating con-
structor bodies as “expose” blocks for an injected unique re-
ceiver permission. Constructors hence cannot use receiver
permissions for calling methods and can also not consume
a receiver permission. Without an explicit annotation, con-
structors therefore always return a unique permission, which
is consistent with the T-NEW rule in Figure 6. Method calls
in constructors could for instance be allowed with the use of
delayed types [Fähndrich and Xia 2007].

5.2 Arrays
Arrays are handled in JavaSyp just like fields are handled
in Figure 6 (that is, without “expose” blocks): Storing into
an array cell is allowed with unique permission to the ar-
ray. All elements of an array can uniformly carry a per-
mission that can be specified with the optional elems at-
tribute in JavaSyp’s permission annotations. For instance,
@Excl(elems = "excl") Object [] defines a unique permission
to an array holding unique permissions to objects.

This declaration can in fact be used for a more sophisti-
cated array list implementation that keeps track of permis-
sions for elements as well. Capture/release can be used to
make element permissions temporarily available to iterator
clients. JavaSyp supports forall and exists quantifiers that
can be used to encode properties of array contents.

Assigning to an array cell will consume the permission
needed for the cell. Reading from an array cell captures

4 http://code.google.com/p/syper/
5 http://www.eclipse.org
6 http://code.google.com/p/crystalsaf
7 http://sourceforge.net/apps/trac/jmlspecs/wiki/JML4
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the permission used to access the array until the resulting
value releases it (if the value is borrowed); thus, reading
and writing array cells is similar to field reads and writes
in Figure 6.

6. Related Work
Program verification research has a history too long to re-
count here. Over the last decade, automated program veri-
fication for mainstream programming languages has made
very exciting advances with comprehensive systems such as
ESC/Java [Flanagan et al. 2002] and Spec# [Barnett et al.
2004]. Methodologies based on the owners-as-modifiers
paradigm have been key to achieving soundness [Barnett
et al. 2004; Müller 2002]. These advances have greatly ben-
efitted from the performance gains of first-order logic SMT
solvers [Barrett et al. 2010] at the same time [e.g., de Moura
and Bjørner 2008]. Reasoning about concurrent modifica-
tions in iterators over a collection is difficult in these systems
because no single iterator can claim ownership of the collec-
tion. The “friends” methodology offers a potential solution
[Barnett and Naumann 2004], but it has to my knowledge
never been implemented. Iterators and collections can be
made “peers” with universe types [Dietl and Müller 2005],
but in Dietl and Müller [2005] it appears that this does not
preclude the possibility that collections are modified while
iterated, allowing concurrent modification exceptions at run-
time in verified code.

This paper takes advantage of fast SMT solvers to reason
about program behavior while using symbolic permissions
for achieving soundness under aliasing. Permissions can ex-
press heap structures incompatible with ownership, such as
iterators over collections, and do not impose an overall tree-
like heap structure (as ownership does). Ownership systems
also have considerable trouble allowing “ownership trans-
fer” [Müller and Rudich 2007]—Spec #, for instance, does
not implement it—while that’s trivial to do with permissions.
(Ownership transfer is possible, but transferring permissions
from one owner to another is simpler compared to owner-
ship transfer.) Spec# enforces ownership as part of the ver-
ification conditions it discharges, while this paper enforces
permissions with a typechecker (universe types are enforced
with a typechecker as well).

Separation logic [Reynolds 2002] and other substruc-
tural logics have also received a lot of attention as reason-
ing frameworks for program verification. These “resource-
aware” logics essentially build aliasing control directly into
the logic, which enables elegant manual proofs of program
correctness even in object-oriented languages [Parkinson
and Bierman 2008]. Promising inroads into automated ver-
ification have been made, but to date automation seems to
rely on custom provers [Calcagno et al. 2009; Smans et al.
2009] and can involve significant additional input from the
programmer [Jacobs and Piessens 2008], neither of which
has been shown to scale.

Symbolic permissions as proposed in this paper are in-
spired by fractional permissions [Boyland 2003] for separa-
tion logic [Bornat et al. 2005] but separate permission track-
ing into a type system, easing program verification and al-
lowing the use of SMT solvers. As a corollary, this paper
allows programmers to write their assertions about program
behavior (behavioral contracts) in first-order logic, which is
arguably more familiar to most programmers.

Because of the aliasing flexibility they offer, fractional
permissions [Boyland 2003] have seen a variety of uses for
verifying program behavior [Bierhoff and Aldrich 2007],
ensuring the absence of race conditions [Heule et al. 2011;
Terauchi and Aiken 2008; Zhao 2007], or both [Beckman
et al. 2008]. The author found them well-suited for reason-
ing about a variety of existing open-source programs [Bier-
hoff et al. 2009], but automated reasoning about fractions is
stubbornly difficult by itself: fraction inference [Terauchi
2008] and fraction polymorphism [Bierhoff 2009; Heule
et al. 2011] require substantial engineering and computa-
tional resources before one can even start proving assertions
about the program. Without inference or polymorphism,
however, programmers are left with annotating their pro-
grams with concrete fractions such as 0.5, which is not only
awkward but also hard to maintain: changing the signature
of one function can easily have ripple effects through an
entire program.

This paper proposes using symbolic permissions, which
the paper shows can be checked with a linear-scan refine-
ment typechecker. Symbolic permissions are simpler to rea-
son about than fractions and save programmers from writing
concrete fractions. The proposed typechecker supports the
notions of borrowing as well as capture & release [Aldrich
et al. 2002; Boyland and Retert 2005; Fähndrich and DeLine
2002], which the author previously found to be critical for
capturing realistic programs [Bierhoff et al. 2009]. Note that
Plural, the tool used in the author’s previous work, can ver-
ify clients of interfaces using capture and release, but Plu-
ral is currently not equipped to verify that permissions are
properly captured and released by an implementing class,
while JavaSyp is able to do so. Independently, Saini et al.
[2010] have also developed the idea of symbolic permis-
sions as the basis of typestate-based programming, although
their calculus does not address program verification and does
not include borrowing or capture & release. Program ver-
ification in this paper happens separately from permission
checking and can mostly ignore aliasing once permissions
are checked.

7. Conclusion
This paper introduces symbolic permissions for lightweight
automated program verification in sequential programs. The
paper shows that permission tracking can be separated into a
linear refinement type system that allows program verifica-
tion to mostly ignore aliasing challenges: specifically, vari-
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ables, fields, and array cells with permissions cannot change
during method invocations. This allows the use of SMT
solvers for doing the heavy verification lifting while keep-
ing verification conditions free of predicates for controlling
aliasing. A prototype implementation, JavaSyp, illustrates
this approach for Java and is able to verify a conventional
array list, an iterator implementation over that array list, as
well as clients of these iterators to guarantee the absence of
concurrent modification exceptions and other common er-
rors in using this data structure such as accessing a list ele-
ment that does not exist.

The symbolic permission type system includes two pro-
gramming idioms, called borrowing and capture & release,
that are needed to reason about common programs. More
such common idioms could conceivably be added. Like-
wise, this paper limits itself to unique and immutable per-
missions, and other kinds of permissions such as the ones I
have proposed previously [Bierhoff and Aldrich 2007]—i.e.,
full, share, and pure—could be supported easily.

Symbolic permissions are also compatible with race con-
dition avoidance as has been done with fractional permis-
sions [Boyland 2003; Heule et al. 2011; Terauchi and Aiken
2008]. In particular, fork-join-style multi-threading can be
seen as the forked thread capturing permissions in scope and
releasing them upon joining with the parent thread. In Java
and C#, this is particularly apparent as threads are repre-
sented as objects themselves. Additionally,verifying concur-
rent programs seems to require havocking unprotected heap
portions after every program instruction [Beckman 2010;
Beckman et al. 2008].

While the annotation overhead shown in this paper is sig-
nificant, the principle of annotating (relevant) variable and
field declarations makes for very transparent and easy-to-
implement permission tracking, unlike in my and others’
previous, more inference-based approaches [Bierhoff et al.
2009; Terauchi 2008]. I will note that permission annota-
tions appear in strictly fewer places than type annotations
required in Java (because primitives need not be annotated),
but inferring annotations certainly seems desirable where it
doesn’t confuse programmers.

This paper attempts to make things simpler: symbolic
permissions are much easier to track than fractional per-
missions, and the paper shows that permissions simplify au-
tomation of program verification while giving programmers
simple tools to work with. I believe we are only at the be-
ginning of exploring what permissions can do for automated
reasoning about programs, and this paper attempts to provide
a glimpse at what we can do with them.
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