
Constraints as a Design Pattern

Hesam Samimi Alessandro Warth Mahdi Eslamimehr Alan Borning
Communications Design Group, SAP Labs

Viewpoints Research Institute
Los Angeles, CA, USA

{hesam,alex,mahdi,alan.borning}@cdglabs.org

Abstract
Imperative programming has great merits. As the ubiquitous
style, it is familiar, and its linear and step by step nature
is favored by the human mind. Experienced programmers,
however, are aware of its major flaw: it is easy for meanings
to get lost in piles of code, making software hard to under-
stand, extend, and debug. Constraint-based programming as
an alternative has been observed to suffer much less from
these flaws, where the “what” (the intention) is expressed
rather than the “how” (the algorithm) in performing a com-
putation. It is the job of the system to automatically achieve
the intention through constraint solving. Sadly, poor perfor-
mance and expressiveness has prevented this style from see-
ing widespread adoption.

We propose a general programming model as a kind
of a sweet spot between imperative and constraint-based
programming. Our aim is to leverage many benefits of
constraint-based programming such as understandability,
behavioral modularity, extensibility, etc., in a practical way
and without suffering the breakdown of the approach as with
the traditional constraint-based paradigm. This model en-
forces a certain organization where at the top-level a pro-
gram is simply composed of a set of constraints. However,
the constraints aren’t necessarily solved by an external en-
tity, and the programmer uses imperative code to specify (1)
how each constraint should be solved in isolation, and (2)
how to combine individual solutions.

We have implemented a tool called SKETCHPAD14 that
incorporates this model in JavaScript, and built a number
of realistic applications in it. In this paper we demonstrate
the merits of our approach by comparing it with traditional
imperative as well as constraint-based approaches.

Categories and Subject Descriptors D.3.2 [Language
Constructs and Features]: Constraints

Keywords Constraints, design pattern, programming lan-
guages, language design, declarative, mixed

1. Introduction
The conventional imperative programming style has great
merits; humans tend to think in terms of step by step in-
structions, as in following a recipe to make a cake. Yet ex-
perienced programmers are well aware of when and how it
disappoints and breaks down. Meanings and behaviors get
buried down under piles of lines of code, making software
hard to understand, explain, extend, reuse, and debug. These
tasks, which make up a significant portion of software engi-
neering, have been observed to be significantly simplified in
the context of declarative, constraint-based programming.

Constraint programming allows stating “what” is desired
from a computation and asking the system to automatically
achieve it (“I want a carrot cake that feeds 4 with less than
350 calories per serving!”), rather than having to explain
“how” it is achieved (“Grandma’s recipe says mix 2 cups
of water with... and then...”), often a more burdensome feat.
The advantage of declarative programming over the impera-
tive style is more than a matter of convenience. A declarative
program is easier to understand, extend and modify, and so
on. In the context of our cake example, it’s easy to change
the what to “feeds 5 and 250 calories” instead, but modify-
ing grandma’s recipe to account for that is not as simple!

There have been various success stories for constraints,
for example, the use of constraint solvers for iOS and Mac-
intosh auto-layout, constraints and solvers for planning and
optimization, or finite domain constraints for model check-
ing. However, using constraints and constraint solvers as
part of the execution of software has by no means been
widespread in mainstream programming. Those program-
mers who have engaged in some form of constraint-based
programming must be aware of when and how it disappoints
and breaks down! While some programs can be written el-
egantly, the obstacles of poor performance and expressive-
ness can surface rather quickly. While in the case of imper-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.

Onward!’15, October 25–30, 2015, Pittsburgh, PA, USA
c© 2015 ACM. 978-1-4503-3688-8/15/10...$15.00

http://dx.doi.org/10.1145/2814228.2814244

28

ative code the problem becomes having to deal with entan-
gled, hard to understand and debug, yet still functioning and
usable code, for constraint-based programming this break-
down is catastrophic; the program cannot be written or exe-
cuted after hitting the expressiveness or performance scala-
bility walls. These challenges discourage most programmers
away and often force them to fallback to imperative code.

This paper tells the story of how our curiosity in the very
first constraint programming system–Sketchpad–eventually
and accidentally led us to the following observation:

It is possible to leverage the benefits of both constraint-
based programming (improved modularity, under-
standability, extensibility, emergent behaviors, etc.)
and imperative programming (flexibility, power, prac-
ticality) together, by following a design pattern within
an imperative language.

Still operating in an imperative language, we allow an API
to define constraints and use them as building blocks for
making applications. The programming discipline requires
that the program be organized in such a way that at the top
level it is entirely described as a set of constraints. Those
constraints, however, aren’t necessarily solved by an exter-
nal solver entity; they are simply solved by the program-
mer and using the imperative language itself. Thus impera-
tive style computation such as assignments and looping con-
structs aren’t part of the program’s outside view, but rather
used as part of the implementation of solving constraints.

Our approach is related to mixed programming paradigms,
such as constraint-imperative programming [5, 7], where
constraint solving is enabled within imperative code. In
these languages an imperative (e.g., object-oriented) lan-
guage is used for computations, while some of the dependen-
cies are maintained automatically by declaring constraints.
As a result, some of the aforementioned benefits of pure
constraint programming are lost, since constraints are no
longer the only players. On the other hand, we have found
that our hybrid programming paradigm can be used to make
realistic applications that enjoy those benefits of declarative
programming (since the program is declarative from the top
view) yet don’t hit the limitations that often surface with
constraint-based programming.

In this paper, we:

- propose a new discipline where imperative code is refac-
tored into a set of constraint definitions.

- propose a concrete set of API and user interfaces (UIs)
that implement the model and demonstrate its usage and
benefits inherited from the declarative paradigms.

- present SKETCHPAD14, a publicly available implemen-
tation of the programming model for JavaScript that runs
in the web browser.

- present our experiments implementing numerous appli-
cations in the system and share what we have learned in
comparison to existing imperative and constraint-based
approaches in the context of these applications.

In Sec. 2 we provide background on Sketchpad and a
followup work which were the inspiration behind this paper.
We then move on to introduce our proposed hybrid model of
programming in Sec. 3, followed by an overview of the user-
level language (Sec. 4), the definitions and expectations for
the system’s components (Sec. 5), the inside of the system
(Sec. 6), and then from the standpoint of a developer (Sec. 7).
Finally, Sec. 8 summarizes our experiences and evaluation of
this work and Sec. 9 highlights the limitations.

2. Background
In 1961, before personal computers existed, Sutherland built
a computer program called Sketchpad [16]. It was the first
in many things: first graphical user interface, first computer
drawing system, and so on. It is less commonly known that
the tool is also the first object-oriented system, as well as
first fully declarative programming system. That is, the user
defines behavior for a drawing by simply expressing its
constraints (requirements) (e.g. two line segments must be
parallel) and the system will automatically and continually
solve the constraints to ensure they are always maintained.

Many constraint-based programming systems came along
after Sketchpad. Borning’s ThingLab [3] generalized it by
packaging it as a constraint-based “kit building kit,” pro-
grammable within the Smalltalk environment. In later years,
language researchers, realizing the scalability issues, seem to
have veered towards mixing constraint-based programming
with the common imperative style (e.g., constraint impera-
tive programming [7]), keeping some but not all the benefits
that purely declarative programming has to offer.

2.1 Constraint Solving in Sketchpad
An important innovation of Sketchpad was to employ a
generic iterative numerical constraint solving approach called
relaxation to let the system automatically maintain the con-
straints required by the user.

Constraints are expressed in terms of error functions re-
turning a number indicating how far the state is from satis-
fying the constraint. The error functions for all constraints
acting on each variable are approximated as linear equa-
tions. Often, multiple constraints refer to the same variable.
Sketchpad’s relaxation method uses the sum of squares for
the error values of all constraints involving each variable.
A least-squares fit is performed. The process iterates un-
til the system converges. Because the system can, in many
situations, smoothly and quickly converge to an acceptable
solution, this form of constraint solving can be used interac-
tively, as shown by Sketchpad and ThingLab. This relaxation
method did not employ any domain-specific knowledge in

29

solving a system of constraints—only generic numeric and
iterative methods.

2.2 Thirty Years Later
In “30 Years after Sketchpad: Relaxation of Geometric Con-
straints Revisited,” [18] van Overveld reworked Sketchpad’s
original relaxation algorithm for a small set of geometric
constraints. Van Overveld proposed to let each type of con-
straint define its own algorithm to solve itself, in isolation.
The algorithm is a function that returns a set of deltas (the
amounts to change) for the variables it needs to update. For
a better chance of convergence, the solution must be one
that minimizes the total amount of change to the variables
involved in the constraint. Unlike Sketchpad, which uses
numeric differentiation and therefore does it automatically,
in van Overveld’s approach, the programmer must perform
manual symbolic differentiation to come up with such algo-
rithms separately for each constraint type.

Take the example constraint that maintains the length
between two points p(x1,y1) and q(x2,y2) fixed at 1. Here
is the algorithm to solve the LengthConstraint given points
p and q for which the distance between is to be maintained
at length l, written as a JavaScript (JS) function below. The
returned value is a dictionary whose keys are the names of
the objects whose properties are to be changed, and whose
values are themselves dictionaries mapping property names
to delta values.1

// delta fn for LengthConstraint:

function computeDeltas () {

var deltaMagnitude =

(distance(this.p, this.q) - this.l) / 2

var delta = scaledBy(

normalized(minus(this.q, this.p)),

deltaMagnitude)

return {p: delta , q: scaledBy(delta , -1)} }

To make things interesting, let us assume there is a second
constraint acting on p(x1,y1), which says it should be fixed
at the origin coordinates. The computeDeltas function for the
CoordinateConstraint type simply returns the delta obtained
from subtracting the target position from the current position
of the point.

Once the deltas from all constraints (here the two above)
are collected, they are averaged together, then the average is
damped (divided by a constant) to increase the chances of
convergence, and then applied to the variables. In a solution-
converging situation (not always guaranteed with non-linear
constraints), the system moves closer to a solution (i.e.,
reduces the sum of the error values) with each iteration, and
usually converges quickly to an acceptable solution.

Next we introduce our new hybrid programming model
inspired from van Overveld’s approach.

1 Note that auxiliary functions such as minus and normalized operate over
and return Point types, which are themselves essentially JS objects with x

and y properties. Also note that the function splits the delta evenly between
the two points (i.e., it moves them equally in opposite directions), because
this minimizes the sum of squares of the changes.

3. 53 Years Later: Sketchpad14
Firstly, Sketchpad, as well as van Overveld’s tweak on its
solving strategy, were quite limited on the set of constraint
types handled and only suited for arithmetic constraints over
real values. Nonetheless, they paint a beautiful picture of
how elegant the design, implementation, explanation, and
modification of a computer program can be. Each program is
organized as a set of individual constraints that are declara-
tively stated. It’s the job of the system to combine the results
of all constraints, rather than leaving the user the often much
more complicated task of defining what the aggregate behav-
ior should be. Modifying and extending a program means
simply removing and adding constraints. Dynamic interac-
tions do the same. In our experiments, we have observed that
this way of programming makes the whole process quite lin-
ear and digestible for the human mind.

Secondly, from one point of view, van Overveld’s ap-
proach is inferior to Sketchpad’s: the system has no real
smarts in solving problems; the developer has to provide
an algorithm that solves each constraint type beforehand.
What we noticed, however, is that van Overveld’s approach
of delegating the responsibility for solving the individual
constraint types from the system to the programmer is much
more amenable to general programming.

Constraints as a Design Pattern in SKETCHPAD14

Van Overveld’s alternative relaxation method for solving
geometric constraints a la Sketchpad inspired us to build
a fully general programming model around it. We call it
SKETCHPAD14. Our intention was to go back and honor
and implement many of the great aspects of Sutherland’s
Sketchpad, especially being fully declarative and enjoying
all the benefits which that entails. Yet we wanted to give it a
generality and practicality edge so that realistic, interactive
applications can be developed in it.

As in the work that inspired it, the way to define and
modify the behavior of a program in our tool is to add/re-
move constraints, rather than the common imperative pro-
gramming practice of “adding or modifying some code.” We
take a pragmatic approach to constraint-based programming
based on a generalization of van Overveld’s approach. The
programmer uses a general-purpose programming language
to define the constraint and also to provide an algorithm to
solve it. Note that there’s nothing stopping that algorithm
from simply invoking an external solver!

We built SKETCHPAD14 around a new programming
model that we call Constraints as a Design Pattern, or CDP
for short. We wanted to be able to run our programs in the
web browser, so we built SKETCHPAD14 in JavaScript. Con-
structing a program in the CDP model involves describing
four parts:

1. data and constraint class definitions,

2. data, as instances of data classes,

30

3. continuous behaviors given in terms of constraints that
are always operating over the data2, as instances of con-
straint classes,

4. discrete behaviors, that is, the definition of events. An
event is defined by: (a) a trigger, e.g. an IO event, and
(b) a handler method describing the changes that need to
occur anytime the event is triggered.

The model restricts, though does not currently enforce,
what can be done in a handler. It is primarily used to add/re-
move data or constraints to/from the store.

Thus the execution model is unlike the imperative style,
i.e., statement by statement. At the top level, all behaviors
are expressed in terms of constraints. Also the program is
assumed to be reactive: as soon as constraints become unsat-
isfied the data is updated to re-establish them.

4. User Side: Using SKETCHPAD14 with
Predefined Types

SKETCHPAD14 allows the user to define new data or con-
straint types. Yet the focus of this section will be on an
end-user making use of existing definitions to build new pro-
grams. We will illustrate some of the benefits of our system,
directly resulting from the fact that from the top view a pro-
gram is purely declarative.

4.1 Example: CDG Logo

Figure 1. Logo example: viewing active constraints

Fig. 1 illustrates a program that displays our group
(CDG)’s interim logo, which consists of three dots and two
line segments. This is a reactive application: the user can
drag one of these objects around. However, the structure of
the logo needs to be maintained. To make this program, we
instantiated three Dots (p1, p2, p3) and two Lines with the
correct radius, text, color, etc. to match the figure.

The next step is to add the continuous behaviors. We will
add two LengthConstraints to keep the lengths of lines fixed
at 100px and one OrientationConstraint to keep the angle
between them at 90◦, at all times:

addConstraint(new LengthConstraint(p1 , p2 , 100))

addConstraint(new LengthConstraint(p2 , p3 , 100))

addConstraint(new OrientationConstraint(

p2, p1 , p2 , p3, Math.PI / 2))

2 Treatment of continuous constraints as real continuous values sampled at
specific discrete times a la FRP [4] is subject of future work.

Finally, we need to define the reactive aspect of the pro-
gram: if the user clicks on a dot, a CoordinateConstraint is
added to require that it follows the mouse dragging. This
constraint needs to be updated during the dragging:

registerEvent(’mousedown ’, function(e) {

if (e.pointedObject instanceof Dot)

dragConstraint = addConstraint(

new CoordinateConstraint(

e.pointedObject.position ,

e.mousePosition)) })

registerEvent(’mousemove ’, function(e) {

if (dragConstraint !== undefined)

dragConstraint.c = e.mousePosition })

The registerEvent call is a wrapper around JavaScript’s
addEventListener so that in the callback function SKETCH-
PAD14 objects can be accessed in relation to the event. Fi-
nally the drag constraint is removed on mouse up:

registerEvent(’mouseup ’, function(e) {

if (dragConstraint !== undefined) {

removeConstraint(dragConstraint)

dragConstraint = undefined } })

4.2 Exploring a Program’s Behavior
In the previous figure, the set of active constraint types were
shown at the top right of the screen, which helps program
understandability. Although not shown, due to the registered
events above one CoordinateConstraint temporarily appears
during the user dragging event.

To quickly explore a constraint type, we can click on the
number of instances (on the left) to get a list of individual
constraints. Hovering over each will highlight the objects
involved in the constraint (Fig. 2). To explore each constraint
in more detail, we can click to get an inspector on it (Fig. 3).
The class definitions of the constraint type itself can be
viewed by clicking on the name of the constraint type (rather
than the instances) in the right pane. We’ll see examples of
those definitions in the next section.

Figure 2. Viewing involved objects in a constraint

The inspector displays the properties belonging to its
associated object. For those properties which are objects,
arrows are drawn to the objects in the scene. Note that
properties of objects are typed.

We can modify the properties of the inspected object
(here the constraint). For example, in Fig. 4 we had modified
the required angle between the two lines segments. We can
also modify the object properties of the inspected entity. For

31

Figure 3. Inspecting a constraint & constraint description

Figure 4. Modifying a primitive value in a constraint

example, in Fig. 5 we modify one of the length constraints
by changing one of the dots it operates on. Notice that when
each listed property is clicked on, all compatible values (of
the same type) in the scene are highlighted. By clicking on
one of them we can change the property to reference the
clicked object. Here we chose to use a concept in Sketchpad
called merging, where the target object inherits all behaviors
of the source object (recursively in its object properties) and
then the source object is removed (See Fig. 5).

Figure 5. Modifying an object property (via merging) in a
constraint using the inspector: (left) before (right) after

To explore and understand a program and its behaviors,
we may wish to turn on and off constraints to see the change
in behavior, as shown in Fig. 6. Note that doing the same in
an imperative program is likely to be not as simple.

Figure 6. Mixing & matching behaviors: a
LengthConstraint disabled

Another feature is an English sentence summarizing the
behavior. For the constraint inspected in Fig. 3 it reads “dots
p1 & p2 always maintain a distance of 110.” SKETCHPAD14
can also generate a whole English description of the pro-
gram. This involves giving a parameterized description of
each involved constraint type, as well as a description of in-
dividual active constraints as the one above, along with a
listing of existing objects and their states, and finally the set
of registered events. Fig. 7 shows part of this description. In
Sec. 7 we examine how these are generated.

Figure 7. Viewing a program description

5. Definitions
To get started explaining the details of the proposed pro-
gramming model, let us discuss some definitions and expec-
tations from the programmer as well as from the system.

In its full generality, constraint solving over a set of vari-
ables in CDP occurs at three levels. At the bottom level, in-
dividual constraints are solved in isolation. At the next level,
a merge logic combines the solutions from all the constraints
on a given variable to find one consolidated solution for its
updated value. At the top level, another logic coordinates
which collected solutions and in what order should be ap-
plied and how to proceed. In the case of the van Overveld
algorithm, for example, this involves finding all the new val-
ues for the variables, simultaneously updating them, and it-
erating until a fixed point is reached.

32

5.1 Level 1: Individual Constraints
Constraints are relations over a subset of variables in the
program that we want to hold. They are implemented in CDP
in terms of classes whose instance variables are the variables
they operate on. They define the following functions, which
are potentially functions of the current pseudo-time of the
system, so that constraints can be temporal.

types gives a type to the variables, enabling run-time checks
such as the type-oriented UI features shown earlier.

predicate is a boolean function, returning true iff the con-
straint is satisfied.

error returns a numeric error value as an indicator for how
far the state is from a solution. It returns 0 (or close to 0)
iff the constraint is satisfied.3

epsilon defines an upper bound ε for an acceptably small
error value.

solve takes the names of a subset of variables constrained
by this constraint (ones allowed to change, i.e., not read-
only), and returns a list of patches (new values for those
variables) to make the constraint hold. The returned solu-
tion is represented as a dictionary where the keys are the
names of the object instance variables belonging to the
constraint (for simplicity we only allow constraints over
the properties of objects, e.g., in the LengthConstraint

they are called p1 and p2) and the values are themselves
dictionaries, mapping the name of a property belonging
to an object to a new value.
The patches should be such that, if we apply them,
the constraint will be satisfied. In addition, for the van
Overveld-style algorithm used in Sketchpad14, the new
values should minimize the sum of the squares of the
changes to the variables. (The goal here is to perturb the
system as little as possible when solving the constraints.)

Here is their definition for an instance of LengthConstraint:

LengthConstraint.prototype.propertyTypes =

{p1: ’Point’, p2: ’Point ’, l: ’Number ’}

LengthConstraint.prototype.error =

function(pseudoTime) {

return distance(this.p1, this.p2) - this.l }

LengthConstraint.prototype.solve =

function(pseudoTime) {

var p1 = this.p1 , p2 = this.p2

var deltaMagnitude =

(distance(p1 , p2) - this.l) / 2

var delta = scaledBy(

normalized(minus(p2 , p1)), deltaMagnitude)

return {p1: plus(p1 , delta),

p2: plus(p2, scaledBy(delta , -1))} }

3 When the error function isn’t provided, the system assumes an error
value of 0 when satisfied and 1 when if not. Similarly, if the predicate

function isn’t provided, the system uses the error and epsilon functions
to determine whether or not the constraint is satisfied.

Contrast the above with the computeDeltas function for
the LengthConstraint in the van Overveld approach, given
previously. There this function was used to both express and
solve the constraint and it returned a set of deltas. Here, on
the other hand, we have separated the expression and solving
of the constraint, and the solution is the set of new values the
constraint is proposing for the coordinates of the two points.
It so happens that these new values are obtained by adding
delta values to the current values. Yet this logic was left as a
choice to the implementer of the constraint type.

5.2 Solution
If we only had required constraints, and no other consider-
ations, the desired properties of a global solution would be
obvious: we need to satisfy all the constraints. However, this
is not the only consideration. First, we don’t want solutions
that are wildly different from the starting state. Second, we
might want to have explicit soft (preferred but not absolutely
required) constraints, perhaps with multiple priorities, in ad-
dition to the required constraints. To accommodate this, we
use the definition of a solution to a collection of hard and
soft constraints given in [2]. For relaxation-type solvers, this
involves minimizing the sum of the squares of the errors for
the highest-priority soft constraints, then if there is still some
freedom left, the sum of the squares of the errors for the next
priority, and so forth.

5.3 Level 2: Merge Function
We take the approach of van Overveld to collect the solutions
from unsatisfied constraints and merge them in order to come
up with one consolidated solution. Unlike the van Overveld
approach, however, in CDP we do not use a hardcoded merge
function, but rather let the programmer define it:

merge given the current value of a variable (curr) and the set
of collected new values (sols) obtained from individual
constraints that wanted to change it, this function decides
how to consolidate the set of values into one new value.

We let the programmer designate different merge func-
tions to different variables. A particular merge method is
specific to a constraint satisfaction algorithm. A general
property for any merge function is that applying it must
result in an equally good or better solution to the constraints
overall (where “good” is again as defined in [2]). For itera-
tive numeric techniques, such as relaxation, this means that
the sum of squares of the errors for the affected constraints
(or all constraints, same thing) must remain the same or de-
crease; this means that the algorithm does hill climbing.

For example, to perform the van Overveld style averaging
and damping the deltas we can define:

dampedAverageMergeFn = function(curr , sols) {

var damping = 0.25, sum = 0

sols.forEach(function(v) { sum += v })

var avg = sum / sols.length

return curr + (damping * (avg - curr)) }

33

As another example, we may use a merge function for fi-
nite domain constraints, where each constraint restricts the
possible values that the variable can take on. Then, if one
constraint says that the value of the variable must be in
the set {red, yellow}, and another constraint says {yellow,
green}, then the merge method gives a combined patch that
must be in {yellow}. Another (trivial) example is the merge
method for a scenario where we know that only one con-
straint will be affecting a given variable. The same situa-
tion holds for local propagation solvers: since a single con-
straint determines the value of the given variable, this merge
method simply takes that patch and returns it. The smarts in
this case comes from the satisfaction algorithm, which de-
cides which variable to compute with which constraint, and
in which order to do these computations.

5.4 Level 3: Satisfaction Algorithm
The job of the satisfaction algorithm is to decide on an
order for updating the constrained variables, and for each
variable, which constraints to consider in generating the
merged patch.

The generalization of van Overveld’s algorithm is one
example of a satisfaction algorithm. Here, we consider all
the constraints in parallel, feed the patches to the merger,
which takes their weighted average, and then simultaneously
updates all of the variables. The process continues until it
reaches a fixed point, which will be a local minimum. If
the constraints are required and there is still a residual error
above ε, the system should raise an exception.

Local propagation solvers, for example DeltaBlue [6],
also fit into this framework. For DeltaBlue, the satisfaction
algorithm is in charge of figuring out the correct order to
consider the constraints and variables. Given this ordering,
for each constraint there will be a distinguished variable
whose value will be found by that constraint. We then get
a patch just for that variable and apply it.

We can also implement a simple finite domain solver
using the framework. Here, the variable values are sets of
possible values for the variable, from a finite universe. The
merge method here is as described above. The algorithm
iterates around until we reach a fixed point (i.e., no more
restrictions) or until we have unsatisfiable constraints. At
this point, if all the variables don’t have a single value, we
need to try labeling them, i.e., trying a specific value and
seeing if it is possible to satisfy the constraints on several
variables.

6. Execution Model
In the previous section, we provided the definitions for a
general constraint solving framework. However, SKETCH-
PAD14 currently implements a more restricted form of CDP.
While the programmer is allowed to implement the first (in-
dividual constraints) and second (merging solutions) levels,
the top level (satisfaction algorithm) is currently fixed to per-

form the relaxation method. Customization of the top level
is left as future work. In this section we delve into how the
current system works internally.

There are three main stores that are maintained by the
model: (a) data, (b) constraint, and (c) event stores. These
stores get populated and modified by user operations of in-
stantiating or removing data and constraints, or registering
events handlers. During the execution of the program, the
stores might be modified as part of solving for various con-
straints or running event handlers.

In order to support responsive interactive and animated
applications, we adopt a two-phased execution model (de-
picted in Fig. 8), cycling at an adjustable frame rate. The
clock time at the moment of each arrival on the first phase is
used as the pseudo-time for the system. The two phases are
the event handling phase and the solving phase.

Figure 8. Two-phase execution model in CDP

6.1 Event Handling Phase (A)
The system starts in the event handling phase, at top of
which it is considered to be at a “good” state (constraints are
satisfied when possible), and the current state is drawn on
the canvas (should changes have occurred). The rendering
step calls the draw methods for all objects to refresh the
frame. At this time the system updates its pseudo-time to
reflect the time passed since last cycle. The handlers for any
cached events that may have occurred during the previous
solving phase are executed next. During such step the data
and constraint stores may be modified. As a result (or despite
of the fact) some constraints in the constraint store may now
be unsatisfied. In any case, once all relevant handlers are
executed, the system moves onto the phase B.

6.2 Solving Phase (B)
During the solving phase (illustrated in Fig. 9) the system
invokes the error function belonging to each of the existing
constraints. As long as the value is more than an ε error
threshold, the system invokes the solve function associated
with each unsatisfied constraint. Note that because at this
stage solutions are simply collected but none is actually
applied, all constraints will see the same state.

34

At this point the system uses the designated merge func-
tions to combine all solutions to each variable into one con-
solidated new value, and then applies it to the variable. How-
ever, since these values won’t necessarily be what each con-
straint had asked for, after this step all or some of the pre-
viously unsatisfied constraints are likely to remain unsatis-
fied (or even previously satisfied constraints may have now
turned unsatisfied). As long as that is the case, the system
applies iterative relaxation, repeating the above process, un-
til either: (1) no unsatisfied constraints (computed error >
ε) remain, (2) the sum total error from all constraints re-
mains unchanged for several consecutive iterations (reached
a fixed-point), or (3) the solving phase times out, that is, the
system has remained in the solving phase for longer than the
frame rate value. At that point, the model cycles back to the
event handling phase, and this process repeats.

Figure 9. Solving phase

It is important to note that, because the solving is in
the hands of the programmer, the process isn’t guaranteed
to succeed. It may get stuck or diverge. In the previous
section we defined the conditions that ensure the process
successfully converges to a solution.

7. Developer Side: Creating Applications
from Scratch in SKETCHPAD14

In Sec. 4 we saw how existing building blocks can be used
to construct a program and in Sec. 6 we learned about the
system under the hood which executes it. Let’s now discuss
building new blocks, i.e., data or constraint types, which are
often necessary when making a new application.

7.1 Parable of the Polygons
Recently, CDG’s Vi Hart and web programmer Nicky Case
released a highly cited and praised web page called “Parable
of the Polygons.”4 Not only beautifully designed, the page

4 http://ncase.me/polygons/

explains a socioeconomic concept in an interactive and ex-
plorable way, and leads to conveying a positive social lesson
of tolerance. We took on the task of remaking the web page
in SKETCHPAD14 and the CDP model to learn their advan-
tages and limitations. This section summarizes making this
demo, a snapshot of which appears in Fig. 10.

Figure 10. Parable of the Polygons remake

Though this demo does not fully implement the original
page, most interesting and interactive behaviors are present.
Surprisingly, only three new constraint types had to be de-
fined, describing behaviors very specific to this page. The
other six types were more general and already part of our
predefined set of constraints or present in previous demos.

All CDP programs are conventionally organized in the
same way. Data classes are defined first, then constraint
classes. Afterwards data objects are created and then con-
straints are instantiated to operate on them. Finally, should
this be an interactive program (all SKETCHPAD14 programs
are because objects are draggable), events are registered,
whose job is to modify the data and constraint stores.

7.2 Data Classes
In the page there are many polygon shaped objects (triangles
and squares) which are draggable. We defined a Shape class
to denote each shape in the page. Each one can be part of a
Board, another class defined. A Board’s Shape has a mood (sad,
meh, and yay, based on how many of its neighbors are of
the same kind) determining its rendered image. A Board has
a cells property, an array representing what’s on it, whose
elements may be Shapes or none.

We will see later than one of the constraint types will be
affecting the mood property of a shape and another the url

property (a text) of its image property. As we discussed, the
system needs to be told how to combine multiple solutions
from all constraints affecting each variable. The merge func-
tion can be associated with a class property. For both these
non-real valued properties we designate the trivial merge
function that expects only one solution. One of the con-
straint types will also be affecting the cells array property
of a Board. For this, the class uses a different merge function
called dictionaryAddMergeFn:

dictionaryAddMergeFn = function(curr , sols) {

sols.forEach(function(dict) {

35

for (var k in dict) curr[k] = dict[k] })

return curr }

where each solution is a dictionary of key-value pairs that
includes keys (in this case indices in an array) that it wants
to change. Now the class defines its merge function:

Board.prototype.merge = function () {

return {cells: dictionaryAddMergeFn} }

The above works since we know there will be exactly one
constraint that will want to set the cells property of a board
at a given time, so there’ll be no conflicts.

7.3 Constraint Classes
We define a few constraint types each enforcing a certain
behavior needed in the page. We’ll preview one here and
leave the rest for the appendix Sec. A.2.

ShapeMoodiness (Shape shape): states that a shape’s
mood property must be set based on the surrounding shapes
(see the original webpage). Here are the definitions related
to property type checking and description generation:

ShapeMoodiness.prototype.propertyTypes =

{shape: ’Shape’}

ShapeMoodiness.prototype.description =

function () {

return this.shape + "’s mood is set based"

+ " on its neighbors." }

And now things related to constraint solving:
ShapeMoodiness.prototype.predicate =

function(pseudoTime) {

return this.shape.mood ===

this.shape.board.getMood(this.shape) }

ShapeMoodiness.prototype.solve =

function(pseudoTime) {

return {shape: {mood:

this.shape.board.getMood(this.shape)}} }

ShapePlacement (Shape shape): states if shape is
moved inside its board and fits in the dropped coordinate,
it should snap in place in the center and its board should add
it in the right index of its cells array. Otherwise it should
snap in its original position. Appendix Sec. A.2 covers the
implementation of this constraint.

7.4 Reactive Parts
We’ll discuss one example of describing interactive/reactive
behaviors here and leave the rest for the appendix Sec. A.2.

Placing pieces on a board (on mouse events): Since
ShapePlacement constraint applies only when a piece that was
picked up is dropped by the user, it makes sense to only add
this behavior on the fly and remove it the next time another
piece is picked up (since by that time that original piece
should already be snapped in the right place):

registerEvent(’mouseup ’, function(e) {

var thing = e.pointedObject

if (thing instanceof Shape

&& thing.board !== undefined)

placementConstraint = addConstraint(

new ShapePlacement(thing))})

registerEvent(’mousedown ’, function(e) {

if (placementConstraint !== undefined) {

removeConstraint(placementConstraint)

placementConstraint = undefined

}})

7.5 Final Step: Laying Out Data and Constraints
Once all kinds of data and continuous and reactive behaviors
have been defined, we finish up by laying out the program:
instantiate as many Shapes, Boards, TextBoxes, etc. as we need,
and add constraints as appropriate; e.g., all shapes on a board
get a ShapeMoodiness constraint, and so on.

8. Experience
SKETCHPAD14 is open source, available online, and playable
in the browser at http://www.cdglabs.org/sketchpad14/. There
you’ll find also a blog post as an extended version of this pa-
per, with interactive graphics and embedded demos.

We have made numerous demos all fully implemented
in the CDP model—that is, no fallback to JS code at the
top level, and all JS code at the implementation level of
constraints. These include a toy version Text editor with
various word-wrap modes (Fig. 11), remake of the “Parable
of the Polygons” web page (see Sec. 7 and 8), a Sudoku
application with solving features (Fig. 12), a word game
called “Quick Brown Fox”, a puzzle game of Pentominoes
with solving capabilities, and physics simulations (e.g. see
Fig. 16). With minimal effort we also added a 3D frontend to
SKETCHPAD14, using the nicely packaged Three.js5 library
(see Fig. 13). Finally, we successfully implemented in this
framework a selection from the 7GUIs benchmark6 (Fig 14),
a popular GUI/web programming benchmark. All demos can
be found in the tool. Please click on the Example Bin button
to see the list.

Our overall experience in making new applications has
been quite positive. The familiar obstacles and impracticality
when performing all or part of the computation using con-
straint solving did not come up.

Figure 11. Text area with “word-wrap” modes, e.g., one
employing dynamic programming for optimal line breaking

5 http://threejs.org/
6 https://github.com/eugenkiss/7guis/wiki

36

Figure 12. Sudoku

Figure 13. SKETCHPAD14 3D: Geodesic dome & bridge

Figure 14. Snapshots from the 7GUIs benchmark

To learn more about the merits of our approach, we com-
pared it with both imperative style and existing constraint-
based programming, in the context of several of our bench-
mark applications, including the parable discussed in Sec. 7.

8.1 Advantages
In CDP behaviors stand out; in IP they get buried: Im-

perative programming (IP) doesn’t enforce any particular re-
straint on programmer’s thought process or program organi-
zation. He is free to write any code as long as it eventually
captures the desired behaviors. Yet the resulting code, al-
though functional, can be cryptic or mix behaviors in a way
that’s hard to parse to human mind. Moreover, there is no
easy way to explore and understand the program by shallow
inspection due to the lack of any high-level, semantic orga-
nization.

Take the slider in the parable page, for example, which
is used to set the bias level of a shape. Where is the piece

of code that’s responsible for making such functionality?
After digging into this, we see that the part of the page that
includes the slider is actually embedded as an iframe, which
loads another HTML file. There we see that there is an event
listener, with a callback setting the associated global variable
representing bias to the value of the slider:

onChange: function(values) {

window.BIAS = values [0];

// some more code ...

bias_text.innerHTML =

Math.round(window.BIAS *100)+"%"; }

The name of the global suggests we have identified the code
responsible for this behavior. But there was no indication
anywhere. After all, these are just lines of code like many
other thousands of lines of code in this application.

The CDP model, however, forced the programmer to ex-
press this behavior as a constraint type. The slider behav-
ior indeed clearly shows up in the list of constraints as
an enabled behavior in the scene. Here we clearly see the
SliderValueConstraint in the list, can hover over the instance
to see the objects it’s applied to (Fig. 15), and can temporar-
ily disable the constraint to verify the behavior.

Figure 15. Exploring the slider behavior

Also, despite being an elaborate demo, the set of behav-
ior types are relatively short (8-9) as we see in the graphic.
Thus the automatically generated English description (see
Sec. 4) summarizing the active constraints gives a digestible
overview of the full program. This can be contrasted to many
thousands of lines of code which make the original JS im-
plementation of the parable page.

CDP induces a “linear” thinking process in design &
implementation; IP results in “ad hoc” ways: The CDP
model forces the programmer to think and design the pro-
gram as a set of individual and orthogonal behaviors. Once
the set of behaviors are defined (as constraint types), build-
ing a program is simply a matter applying a selection of them
to the data. In our experience, this particular program or-
ganization actually guided and simplified our thinking and
design process, easing the overwhelming effects of making
applications from scratch. Similarly, the non-linear interac-
tions that are part of interactive applications are tamed by
the model. It provides a principled manner to register events

37

and handlers, and makes the actions that need to be done by
the handlers straightforward, which is often simply adding
or removing constraints.

By contrast, in IP the process is quite ad hoc. In the lack
of any organization or guidelines, the code often makes no
attempt to keep the behaviors separable and modularized.
This can also confuse the thinking process itself, leading to
bugs. Finally in IP extensions and modifications may require
algorithms to be reworked.

CDP reduces the burden on the programmer having
to reason globally and computing or describing “emerg-
ing behaviors”: Have a look at the truss bridge demo shown
in Fig. 16, an original Sketchpad demo and remade here us-
ing SKETCHPAD14. Although it cannot be seen with this
static image, the resulting emergent behavior of the program
simulating an oscillating bridge is quite elaborate. There is
not an easy way to “code” the behavior of this bridge un-
der the forces of gravity and wind imperatively. On the other
hand, as you can see on the constraint listing on the right
pane, the constraint types that make up this overall behavior
are not complicated at all. We only had to define behaviors
of velocity, acceleration, and the spring force (Hook’s law).

The particular program structure in CDP enables the pro-
grammer to focus more on “local” reasoning (individual or-
thogonal behaviors) and worry separately on the “global”
logic of how local solutions should interact. We simply had
to instantiate these constraints for all the bodies and beams
(springs) that make up the bridge. Because the particular
constraints involved here were on real-valued variables, a
simple van Overveld-relaxation-style averaging and iterat-
ing was enough to let the system capture the global emer-
gent behavior by combining the results of individual local
constraints. In our experience, even when relaxation-style
solving was not appropriate, the simple fact that the local
and global reasoning are separated helped simplifying and
reasoning about the design.

Figure 16. Emergent behavior: oscillating bridge under nat-
ural forces. See it in action at https://vimeo.com/107522156.

CDP enables “modular” behaviors: Next, take a look
at Fig. 17 (left). Within the parable demo we have loaded
another demo, called mid point, where a red dot always is
maintained at the middle between two blue dots. Fig. 17

(right) shows the effect after we have merged these three
dots’ behavior into three of the shapes from the parable ex-
ample. The shapes retain their previous qualities and behav-
ior (swinging, etc.) yet also take on the new behavior of the
mid point example, with the blue square always staying at
middle point between the two yellow triangles.

In terms of CDP this operation is quite simple. All con-
straints previously operating on the three dots (easily enu-
merable by inspecting the constraint store) were respectively
transferred to the three shapes. Then old dots were deleted.
Doing this in IP is by no means easy. Where to add this new
behavior? How to make sure previous behaviors still work?

Figure 17. Modular behaviors using merge: (left) before
(right) after

CDP makes IP compatible with constraint program-
ming: IP and declarative programming do not mix well. Hy-
brid systems such as constraint imperative programming [5,
7] have been proposed, though the constraints there have a
specific role and do not replace the imperative code.

The CDP discipline forces imperative programs to be
organized in a way that at the top level a program is sim-
ply composed of a set of constraints. This setup enables a
seamless usage of traditional constraint-based programming
as part of the implementation of a program. The user can
easily decide to invoke an external constraint solver as part
of the solve function for a specific constraint, while other
constraint types may still be solved using imperative code,
or even perform global constraint solving using an external
solver. For example, in our text editor application, we used a
well known dynamic programming algorithm as the solution
for a constraint that requires the line-breaks in a paragraph
be chosen in a way so that the variations in margin size of
each line are minimal. We believe developers will find this
level of flexibility quite compelling.

Truly unified constraint & programming language:
One of the barriers in traditional constraint-based program-
ming is the lack of unification between the language of the
constraints and that of the rest of the program. The mismatch
is plain to see if we attempted to solve the constraints in-
volved in the parable application in Prolog, for example. It

38

is unclear if it is even possible, and even so taking on the
task of translating of the intentions into constructs of Prolog
seems daunting. The mismatch is less felt in a constraint-
imperative language, such as Babelsberg [5, 9], since a sub-
set of the programming language is itself used to construct
constraint expressions, which the system automatically com-
piles to the encoding of the supported external solver. Nev-
ertheless limitations and mismatches still exist, since we are
necessarily bounded by the expressive limits of the solver.

A nice property of CDP is that the entire program, includ-
ing the declaration and solving of the constraints, is done in
one language. As a result, the user can use the same data
structures, abstractions, methods, etc. to express constraints
and provide the logic and strategies to solve them.

9. Limitations
We face important limitations in our proposed programming
model in its current form, discussed below.

Lost guarantees of constraint solving: An essential
appeal of constraint-based programming is that when the
solver does return a solution, all considered constraints are
guaranteed to have been satisfied. The relaxation method of
Sketchpad and van Overveld are weaker; convergence is not
guaranteed and the system may get stuck in a local mini-
mum. However, it is guaranteed that with each iteration the
total error will not increase.

The biggest flaw of CDP is that the guarantees of global
constraint solving (as well as the property of relaxation
method stated above) are lost, as soon as we have opened
up to the programmer both the algorithm to solve each con-
straint as well as the logic of how the set of solutions are
combined. The system currently is able to signal to the user
if upon the completion of the solving phase any constraints
remain unsatisfied. However, no automatic remedy is avail-
able. It is up to the programmer to verify that the overall
outcome meets the expectation.

Our Initial focus so far has been on allowing the general-
ity and flexibility to successfully implement our benchmark
applications. Nonetheless, as part of future work, we would
like to be able to provide stronger solving guarantees under
restricted scenarios.

Lack of flexibility over the overall solving process: As
we have seen earlier, when dealing with finite-domain or
integer constraints the van Overveld approach of averaging
solutions to consolidate does not work. We thus let the user
provide the logic of how to combine solutions. Yet at the top
level there is no flexibility; the system performs the iterative
relaxation process. This process seems to be sensible in
some but not all scenarios. Sometimes a finer level of control
for the entire solving process is needed.

For instance, sometimes performing traditional back-
tracking search might be suitable (a proposed solution

for that is found in appendix Sec. A.1). Sketchpad and
ThingLab, besides the general relaxation scheme, employ
a straightforward local propagation approach when possible.
The Nelson-Oppen method for cooperating decision pro-
cedures [14], around which SMT solvers are built, has its
own iterative approach to solve a problem involving mul-
tiple theories. As part of future work, we need to provide
a framework where the programmer can control the overall
solving procedure in a finer way, so that scenarios above or
others could be accommodated without much difficulty.

Choosing the right granularity level for constraints:
The choice of how large or fine-grained constraints are orga-
nized is important. Consider the example of solving a system
of arithmetic linear inequalities. Clearly, setting up a sepa-
rate constraint for each equation and then relying on itera-
tive relaxation to converge the solutions from each equation
is not the way to go! In that case, we have efficient solv-
ing tools, e.g. the simplex method, to simultaneously solve
all the inequalities at once. It is nice that the CDP model
gives us this flexibility; we simply create one constraint type
that represents the system of inequalities, whose solve func-
tion will invoke a simplex solver to compute the answer. We
have used the following rule of thumb when designing the
constraint types to be used in a program:

Break a program into a set of logically orthogonal, or
only loosely related, behaviors.

The objective here is to reason about solving each con-
straint separately, and then in the merge function reason about
how conflicting solutions should be consolidated. Neverthe-
less, more experience is needed to learn about the challenges
in defining the right abstraction level for constraints.

Developer burdens: CDP enforces a particular way of
organizing a program, a source of burden to developers.
Moreover, unlike traditional constraint-based systems which
make use of external solvers, the burden of solving the con-
straints also falls on the shoulders of the programmer.

Performance hits: Its execution model follows an in-
volved process and all the machinery can be a huge perfor-
mance overhead over a hand-coded imperative program that
performs the precise set of necessary instructions to accom-
plish a certain task. For animations, the overhead of com-
putation is exacerbated by the fact that we might repeat the
process at a rate of 60 times a second.

Nonetheless, in our current set of animated demos the
performance is satisfactory, i.e., smooth (see the truss bridge
demo referred to earlier). We also have leveraged easy op-
timization opportunities in the tool. For example, by simply
keeping track of the total error of the system we detect con-
vergence to avoid redundant computations.

39

10. Related Work
This section presents a brief summary of related literature on
constraint-based programming.

10.1 Pure Constraint Systems
Sketchpad [16] and van Overveld’s relaxation approach [18]
were our main inspiration for the CDP model and SKETCH-
PAD14, by looking beyond the focus there—geometric con-
straints. ThingLab [3] made an important step in building on
its ideas within a general object-oriented language.

Pure constraint languages have failed to pervade main-
stream software development, lacking severely when it
comes to scalability and practicality. The aim of many, in-
cluding us, has been to leverage the full expressiveness and
power in imperative languages while bringing in some of
the benefits of declarative and constraint-based approaches.
Some have also applied the ideas on a specific aspect of
development, such as layout in graphical applications.

10.2 Mixed Systems
Let us now focus on hybrid programming models.

10.2.1 Declarative within Imperative
Languages that bring some form of constraint-based pro-
gramming within an imperative system have a long his-
tory; see for example constraint-imperative programming
(CIP) [5, 7, 12] or related work [1]. The convention is that
while we’re still working in an imperative (e.g., object-
oriented) language, a constraint language and solver is used
to let the system automatically maintain a set of relation-
ships. For example declaring y = x + 1 should ensure that,
on subsequent assignments to either variable due to the ex-
ecution of some statement, the system will automatically
update the other accordingly.

The hybrid form of declarative within imperative style
programming we propose here, however, is totally different
because the two apply at different levels. At the highest level
the program is only declarative, consisting of a set of con-
straints. Imperative code, however, is used at the lower, im-
plementation level: for the purposes of solving of individual
constraints and combining their results.

The problem with the conventional mixed paradigms [5,
7, 9, 12] is that many of nice properties of pure declara-
tive programming are lost. While constraint solving does au-
tomate and relieve the burden of maintaining some of the
dependencies upon updates, a program cannot be fully ex-
plained or understood just in terms of constraints. Both the
imperative code and the declarative constraints need to be
inspected to account for the full behavior. The existence of
imperative code means the existence of its flaws in modular-
ity, extensibility, understandability, and debuggability.

The major downside of CDP, as we mentioned, is that the
outcome of constraint solving cannot be guaranteed. This is
because individual constraints are solved and combined as

programmed by the developer. In CIP, on the other hand, the
declared constraints are guaranteed to hold, whenever the
solver is able to find a solution.

In CIP and other forms of mixed constraint programming,
the constraints are only expressed, and it is the job of the
system to solve them. This can be a good or a bad thing! It’s
good if the user can get the desired behavior; but it’s bad if
the system is unable to support solving the constraint (at all
or efficiently) and provides no mechanism to help or steer
the process. In CDP, however, we trade automatic solving
for control, by letting the programmer, separately from the
expression of the constraints, provide the logic for solving
them, by writing arbitrary code.

In some forms of CIP, e.g. the Babelsberg family of
object-constraint languages [5, 9], constraints are also ex-
pressed using the same host language rather than a DSL.
However, constraints can only be expressed in terms of low-
level operations which the constraint construction mode,
a form of hybrid concrete and symbolic execution, and
the underlying solver can support. For example, in Babels-
berg/S [9] basic Array class’s low-level access methods had
to be redefined to support encoding constraints on collec-
tions. The language of the employed solvers is often limited
in the set of supported data types. In CDP, however, there is
no translation to an external solver entity, and thus we incur
no restrictions on the set of data types/structures supported,
as the solving logic is given in the host language.

Rosette [17] is a DSL design framework in Racket that
specifically addresses the translation difficulties that arise
in embedding automatic “solver-aided” features (e.g., veri-
fication, angelic non-deterministic execution) in designing a
language. The goal of our work is quite different. We aim to
provide a programming mechanism to build an entire appli-
cation declaratively.

10.2.2 Imperative within Declarative
The reverse direction of mixed paradigms, that is, impera-
tive within declarative languages, exists but is less common.
Constraint systems that support local propagation (e.g.,
DeltaBlue [15]) can fall into this category. Given a multi-
way constraint, these systems build a propagation graph that
given the context tells which direction the data flows and
how to compute the unknowns from known data. Some such
systems allow the programmer to code each propagation
scenario for each constraint. This is similar to the proposed
model here where the developer implements the solving of a
constraint using imperative code.

Modelica [8] is an object-oriented declarative modeling
language, where equations are used to declare relationships
in the model. Numerical methods are used for solving. The
language also supports an “algorithm” construct to perform
a computation imperatively when simpler. The language is
primarily used for modeling, verification, and simulation of
physical systems, however, not for developing software.

40

10.3 Domain Specific Systems
Some prior works concern declarative web programming,
focusing on some aspects of web development, includ-
ing forms [19], data [10], sessions, authentications, secu-
rity [11], etc. Building interactive applications declaratively
was an aspect of Elliott’s functional reactive programming
(FRP) [4], with followup works focused on web program-
ming [13]. Numerous domain-specific declarative systems
exist. Our aim, however, was to devise a general program-
ming paradigm that would cover all aspects of interactive,
graphical, and web development, so that the entirety of an
application, from a top view, is described fully declaratively.

As a final remark, we have not seen any prior work used
to make realistic, fully-declaratively designed applications
such as those we have been able to write (e.g., a real-world
high quality interactive web page) in SKETCHPAD14.

11. Conclusion
We presented a programming model as a pragmatic approach
to constraint-based programming which aims for the prac-
ticality and scalability of imperative programming, while
still leveraging some of the great benefits of declarative
constraint-based programming such as raised level of ab-
straction and organization, understandability, extensibility,
and modularity.

In this model programs are organized in a way that at the
top level only constraints exist. Yet the solving of constraints
is orchestrated by the programmer and within the imper-
ative language. We empirically illustrate the gained bene-
fits in comparison to traditional imperative and constraint-
based programming through several realistic applications.
Our hope for this work is that it is not only an academic
interest, but one that serves software developers by making
declarative programming more accessible.

Acknowledgments
We thank Alan Kay for his lead to revisit Sketchpad and
Todd Millstein for helping shape the narrative of this paper.

References
[1] K. R. Apt, J. Brunekreef, V. Partington, and A. Schaerf. Alma-

0: An imperative language that supports declarative program-
ming. Technical report, Amsterdam, Netherlands, 1997.

[2] A. Borning and B. Freeman-Benson. Constraint Hierarchies.
LISP and Symbolic Computation, 5(3):223–270, 1992.

[3] A. H. Borning. Thinglab–a Constraint-oriented Simulation
Laboratory. PhD thesis, 1979.

[4] C. Elliott and P. Hudak. Functional reactive animation. In
ICFP ’97.

[5] T. Felgentreff, A. Borning, R. Hirschfeld, J. Lincke,
Y. Ohshima, B. Freudenberg, and R. Krahn. Babelsberg/js:
A browser-based implementation of an object constraint lan-
guage. In ECOOP 2014 Object-Oriented Programming.

[6] B. Freeman-Benson, J. Maloney, and A. Borning. An incre-
mental constraint solver. Commun. ACM, 33(1):54–63, Jan.
1990.

[7] B. N. Freeman-Benson. Kaleidoscope: Mixing objects, con-
straints, and imperative programming. In OOPSLA ’90.

[8] P. Fritzson and V. Engelson. Modelica a unified object-
oriented language for system modeling and simulation. In
ECOOP 98.

[9] M. Graber, T. Felgentreff, and R. Hirschfeld. Solving inter-
active logic puzzles with object-constraints. In Workshop on
Reactive and Event-based Languages and Systems, 2014.

[10] M. Hanus and S. Koschnicke. An er-based framework for
declarative web programming. In PADL’10.

[11] T. L. Hinrichs, D. Rossetti, G. Petronella, V. N. Venkatakr-
ishnan, A. P. Sistla, and L. D. Zuck. Weblog: A declarative
language for secure web development. In PLAS ’13.

[12] A. S. Köksal, V. Kuncak, and P. Suter. Constraints as control.
In POPL ’12.

[13] L. A. Meyerovich, A. Guha, J. Baskin, G. H. Cooper,
M. Greenberg, and S. Krishnamurthi. Flapjax: a programming
language for ajax applications. In OOPSLA ’09.

[14] G. Nelson and D. C. Oppen. Simplification by cooperating
decision procedures. ACM Trans. Program. Lang. Syst., 1(2):
245–257, Oct. 1979. ISSN 0164-0925.

[15] M. Sannella, J. Maloney, B. Freeman-Benson, and A. Born-
ing. Multi-way versus one-way constraints in user interfaces:
Experience with the deltablue algorithm. Softw. Pract. Exper.,
23(5):529–566, May 1993.

[16] I. E. Sutherland. Sketchpad a man-machine graphical commu-
nication system. In Papers on Twenty-five Years of Electronic
Design Automation, 25 years of DAC.

[17] E. Torlak and R. Bodik. Growing solver-aided languages with
rosette. In Onward! 2013.

[18] C. van Overveld. 30 years after Sketchpad: Relaxation of
geometric constraints revisited. CWI Quarterly, 6(4):363–
383, 1993.

[19] W3C. Xforms 2.0. http://www.w3.org/TR/2012/

WD-xforms20-20120807/.

41

A. Appendix
An addendum to the programming model proposed in the
paper as well as more details on the implementation of one
of our benchmarks are presented here.

A.1 Enabling Backtracking Search
Classical backtracking search isn’t accommodated by the
CDP model as described. However, we have made a mod-
ification that allows programmers to rely on search, when
suitable, as part of a program.

We let a constraint type to be marked as searchable.
A searchable constraint’s solve function returns a set of
solutions rather than one. Thus a user can communicate to
the system that it wants to try either one of the solutions
and search for the right combination of solutions from all
constraints that will result in a globally acceptable solution.

During the first iteration of the solving phase B, the sys-
tem collects the set of solutions from each searchable con-
straint (typically representing all permutations to try), as
well as the usual one solution from others. It then constructs
a search tree that gives all possible combinations of choos-
ing a single solution from each constraint. (When no search-
able constraint exists this tree has a single branch as the only
combination to explore.) At this point the system engages
in a brute-force search to find the combination that leads to
a satisfiable place. For each combination choice, it does the
usual relaxing-style iterative solving up to some timeout du-
ration, except that searchable constraints do not participate
during those iterations. Should a fixed-point be reached with
all constraints satisfied, the solution is committed and the
model cycles back to the reactive phase A. Otherwise, solu-
tions in the last attempt are discarded and the search of all
possible combinations continues on.

As an example, below we have defined a constraint called
NumListSorted to ensure a list of numbers is sorted. Provided
that a copy of the list is kept in oldList, the predicate func-
tion returns true only when the list has been properly sorted.
The solve function simply returns all possible permutations
of the list, therefore hinting to the system to search for one
that would make the constraint satisfied.

NumListSorted.prototype.searchable = true

NumListSorted.prototype.predicate =

function(pseudoTime) {

return sorted(this.list)

&& isPermutationOf(this.list , oldList) }

NumListSorted.prototype.solve =

function(pseudoTime) {

return allPermutations(oldList).map(

function (l) { return {list: l} }) }

Note that the above scheme works well when the nu-
meric constraints solved by relaxation and finite domain
constraints solved by search are mixed together within the
same program, provided that numeric constraints use the
searched-over values in a read-only manner. Roughly speak-

ing, if the relaxation-style iterative approach is like hill-
climbing in some neighborhood in the state space, our aug-
mented search-model is akin to simultaneously running hill-
climbing in different regions in space in order to have a bet-
ter chance of finding a solution.

A.2 Parable of the Polygons: More Details
Some of the remaining continuous and reactive constraint
definitions from the parable application are listed here.

A.2.1 Constraint Classes
ShapeSwinging (Shape shape, Number swingSpeed,

Boolean dangling): states that shape must swing back and
forth over a span of 72 degrees, at a rate of swingSpeed. We
will see later how dangling boolean flag is used. this.image
will be set as shape.image.

These are the declarations related to constraint solving:

ShapeSwinging.prototype.error =

function(pseudoTime) {

this.targetRotation =

this.image.origRotation

+ (Math.sin(this.swingSpeed

* pseudoTime) * Math.PI / 10)

return this.targetRotation

- this.image.rotation }

ShapeSwinging.prototype.solve =

function(pseudoTime) {

return {image:

{rotation: this.targetRotation }} }

ShapePlacement (Shape shape): states if shape is moved
inside its board and it fits in the dropped coordinate, it should
snap in place in the center and its board should add it in the
right index of its cells array. Otherwise it should snap back
in its original position.

error: We check if the position of shape is within the
board and if the board coordinate closest to the shape’s
position is free. If so, we compute the position where the
shape should be snapped onto. Otherwise, it should snap
back at its original place on the board (this.shapeOrigPos).
The error value is the distance between the current position
of the shape and its computed target position:

ShapePlacement.prototype.error =

function(pseudoTime) {

var currPos = this.shapePos

var board = this.shape.board

this.shapeCoord = board.getCoord(currPos)

var inside = board.containsPoint(currPos)

if (inside && board.fits(shapeCoord)) {

this.placing = true

this.targetPos = plus(board.position ,

{x: shapeCoord.j * board.cellLength ,

y: shapeCoord.i * board.cellLength })

} else {

this.placing = false

this.targetPos = this.shapeOrigPos

}

return magnitude(

minus(this.targetPos , currPos)) }

42

solve: We have already computed where the position of
shape must be updated to and stored it in this.targetPos. If
the shape is being placed on the board (captured by boolean
value this.placing) then the solution wants to free up the
previous cell location and set the content of the new cell co-
ordinates to this shape. This is done by setting the respective
location in the cells array to 0 (for empty cell) or the shape,
respectively:

ShapePlacement.prototype.solve =

function(pseudoTime) {

var board = this.board , shape = this.shape

var sol = {shapePos: this.targetPos}

if (this.placing) {

var shapeOldCoord = shape.boardPos

var dict = {}

dict[(shapeOldCoord.i * board.width)

+ shapeOldCoord.j] = 0

dict[(this.shapeCoord.i * board.width)

+ this.shapeCoord.j] = shape

sol.board = {cells: dict}

}

return sol }

A.2.2 Reactive Parts
And now we complete the listing of reactive parts of the
demo.

Dragging pieces (CoodinateConstraint on mouse events):
As with all demos, the default dragging-related events allow-
ing things to be moved are in place.

Swinging faster on mouse hover (ShapeSwinging on
mouse events): The pieces on the header of the page (stored
in swingingShapes array) swing faster when mouse hovers
over them. They all already have a ShapeSwinging constraint
operating over them, so it’s simply a matter of changing the
property of that constraint to reflect the speeding or slowing
of the swing rate:

registerEvent(’mousemove ’, function(e) {

swingingShapes.forEach(function(shape) {

var dist = distance(e.mousePosition ,

shape.position)

// kept a reference to the constraint:

shape.swingConstraint.swingSpeed =

2 + (dist < 200 ?

((200- dist)/20) : 0) } })

Pieces dangle when dragged (also using ShapeSwinging on
mouse events): We’ll add an instance of ShapeSwinging to not
only the happy swinging shapes on the page header, but
also to a shape that is picked up by the user, for a dangling
effect. The difference is that the dangling-kind swinging rate
subsides with the passage of time.

We use a feature in SKETCHPAD14 not yet discussed.
Each class (be it a data or constraint type) can define an
onEachTimeStep method, which will be run by the CDP ex-
ecution model right before going to the solving phase B, and
is used to do any sort of housekeeping, property updating,
etc. Thus we define one such method for each instance of
the ShapeSwinging which happens to be simulating dangling,
in order to get the effect of gradually ceasing the dangling.

ShapeSwinging.prototype.onEachTimeStep =

function(pseudoTime) {

var shape = this.shape

if (this.dangling) {

var movement = shape.position.x

- shape.lastPosition.x

if (Math.abs(movement) > 0)

this.swingSpeed += (movement / 200)

else {

this.swingSpeed /= 1.05

if (this.swingSpeed < 0.001)

this.swingSpeed = 0

}

shape.lastPosition =

shape.position.copy()

} }

Alternatively we could have chosen to embed the behav-
ior of subsiding the swinging rate as part of the definition and
solution to the constraint. But here we took the easy route.

Now all we need to do to get the dangling effect is to add
a ShapeSwinging when a shape is picked up (similarly, the
constraint gets removed when a shape is dropped down):

registerEvent(’mousedown ’, function(e) {

var thing = e.pointedObject

if (thing instanceof Shape) {

danglingConstraint = addConstraint(

new ShapeSwinging(thing , 2, true))

} })

43

