Cloud Twin: Interactive Cross-Platform
Replay for Mobile Applications

Ethan Holder

Software Innovations Lab, Virginia Tech
eholder0@vt.edu

Categories and Subject Descriptors D.2.2 [Software Engi-
neering]: Design Tools and Techniques—Evolutionary pro-
totyping Computer-aided software engineering (CASE)

Keywords Android; Automated; Cloud; Emulate; Mobile;
Multi-Platform; Replay; Windows Phone

1.

To successfully compete in the software marketplace, mod-
ern mobile applications must run on multiple competing
platforms, such as Android, i0S, and Windows Phone. Pro-
ducers of mobile applications spend substantial amounts of
time, effort, and money to port applications across platforms,
S0 as to maximize the potential customer base. Creating indi-
vidual program versions for different platforms further exac-
erbates the maintenance burden, as each bug fix and feature
enhancement must be applied to all platforms.

Presented in this paper is a solution to the heterogene-
ity problem of the mobile application market that does not
require manual porting of applications nor shifting develop-
ment into cross-platform frameworks. The solution, called
Cloud Twin, makes it possible to execute mobile applica-
tions written for one platform natively on another platform.
The basic idea behind Cloud Twin is that a mobile applica-
tion has two isomorphic versions: the source, executed on a
cloud-based edge server, and the target, executed on a local
mobile device. Initial case studies with third-party applica-
tions indicate that Cloud Twin can become a viable solution
to the heterogeneity of the mobile application market.

Research Problem and Motivation

2. Background and Related Work

Recognizing the need for heterogeneity, mobile application
designers have created frameworks for cross-platform mo-

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

SPLASH 13, October 26-31, 2013, Indianapolis, Indiana, USA.

Copyright is held by the owner/author(s).

ACM 978-1-4503-1995-9/13/10.

http://dx.doi.org/10.1145/2508075.2514879

119

bile development, such as PhoneGap [1]]. These platforms
typically leverage the mobile web browser that executes
applications written in JavaScript and CSS. Despite the
widespread use of cross-platform mobile frameworks, de-
veloping native applications remains the preferred practice
in the mobile software market. Native applications (i.e., writ-
ten for a specific platform using the platform’s API) have a
unique look-and-feel expected by the customers; they also
take advantage of platform-specific features such as the plat-
form’s native maps (Google Maps for Android [2], Apple
Maps for i0S [3], and Bing Maps for Windows Phone [4]]).

Cloud Twin builds on prior work utilizing aspect-oriented
programming and reflection to reverse-engineer Uls at run-
time with the purpose of subsequently translating them to
other platforms [7]]. Cloud Twin employs the same strategy
for extracting UI elements. Specifically, this mechanism is
used to produce the initial Ul screen of the target application.
While in prior work, focus was placed on extracting Uls and
statically translating them to multiple additional platforms,
Cloud Twin translates and updates Uls across platforms con-
tinuously at runtime.

Cloud Twin conceptually relates to the work performed
to map various platform APIs to one another. Mobile plat-
form vendors commonly provide publicly accessible map-
pings that show which APIs of the target platform can be
used to emulate the functionality of the source platform. For
example, Microsoft provides such mappings between An-
droid and the Windows Phone [8]. These mappings specif-
ically relate API calls from one language to equivalent API
calls in the other language in a dictionary-like fashion. Cloud
Twin differs by using an intermediate form that abstracts
away the logic of either language. Thus, Cloud Twin differs
by lending itself to being easily extended to other platforms
and languages. As long as the source language can be cap-
tured and output in the form of the Cloud Twin intermediate
language, the source platform application can be supported
on other target platforms.

The intermediate UI form of Cloud Twin resembles the
universal Ul representations of independent UI models, such
as those used in UIML [9] and the aforementioned Phone-
Gap [1]. UIML and PhoneGap enable platform independent



design and development of user interfaces. UIML employs
an XML base language to subsequently generate user inter-
faces in a desired language. However, these and other plat-
form independent approaches require that mobile applica-
tions be constructed using a particular language and the ac-
companying framework. By contrast, Cloud Twin supports
mobile applications that have been constructed using their
native platform APIs. Thus, Cloud Twin enables the execu-
tion of such applications natively on other mobile platforms.

3. Approach and Uniqueness

Cloud Twin presents an approach to natively executing the
functionality of a mobile application written for another plat-
form. The functionality is accessed by means of interactive
cross-platform replay, in which the source application’s ex-
ecution in the cloud is mimicked natively on the target plat-
form. The reference implementation of Cloud Twin natively
emulates the behavior of Android applications on a Windows
Phone. Specifically, Cloud Twin transmits, via web sock-
ets, the UI actions performed on the Windows Phone to the
cloud server, which then mimics the received actions on the
Android emulator. The UI updates on the emulator are effi-
ciently captured by means of Aspect Oriented Programming
and sent back to be replayed on the Windows Phone. In addi-
tion to its basic services, Cloud Twin also specially handles
sensor input as well as time and location services. In other
words, it ensures the target’s environment is used by both
versions of the application.

4. Results and Contributions

The central insight derived from experimenting with the pro-
totype implementation is that the mimicking functionality
of Cloud Twin is quite efficient, with the resulting latencies
not adversely affecting the user experience. With the edge
server running within the same administrative domain and
connected to by a Wi-Fi network, the latencies of executing
common UI actions in a typical application never surpassed
the one second threshold [S] [6], thus making the Cloud
Twin approach feasible and useful. In particular, Cloud Twin
is able to natively execute several small but real Android ap-
plications natively on the Windows Phone, with the users not
suspecting that they were natively interacting with applica-
tions written for a different platform. These initial experi-
ences indicate that Cloud Twin has the potential to become a
practical solution to the problem of making a mobile appli-
cation available on a variety of platforms.

The best measurement to present such results thus far is
the latency of a complete UI update. This was determined by
measuring the total time it took between pressing a button on
the target application and updating a text label in response.
This measurement encompasses the following sequence of
events: (1) the button pressed, (2) the resulting event is cap-
tured and transmitted to the source application, (3) the press
is replayed on the source, (4) the text label update is in-

120

Overall Process Latency Measurements

1000
900
800
700
600
500
400
300
200
100

Time versus Trial

Response Time in Milliseconds

1 11 21 31 41 51 el

Trial Number

71 81 91

Figure 1. Measurements of the latency of the overall Ul
update process.

tercepted, (5) the update is sent back to the target, (6) the
target’s label is updated with the received data. Typical for
modern user interfaces, the measured Ul scenario demon-
strates a realistic response time a user would encounter when
interacting with Cloud Twin.

Figure [I] shows the results from repeating the measured
operation 100 times. The overall average latency was 314
milliseconds, with a maximum of 846 milliseconds and min-
imum of 281 milliseconds. The important insight is that the
response time never exceeded the one second threshold, thus
not compromising the user experience [S]] [6]. Future work
will assess whether Cloud Twin can achieve comparable ef-
ficiency when processing more complex Ul scenarios.

References

[1] R. Ghatol and Y. Patel. Beginning PhoneGap: Mobile Web
Framework for JavaScript and HTMLS. Apress, 2012.

[2] Google. Google Maps Android API. https://developers.
google.com/maps/documentation/android/\

[3] Apple. Map Kit Framework Reference. http://developer.
apple.com/library/ios/documentation/MapKit/
Reference/MapKit_Framework_Reference/|

[4] Microsoft. Bing Maps APIs. http://msdn.microsoft.com/
en-us/library/dd877180.aspxl

[5] R. B. Miller. Response Time in Man-Computer Conversational
Transactions. In AFIPS, 1968.

[6] J. Nielson. Usability Engineering. Morgan Kaufmann, 1968.

[7] E. Shah and E. Tilevich. Reverse-engineering user interfaces
to facilitate porting to and across mobile devices and platforms.
In Workshop on Next-generation Applications of Smartphones,
2011.

[8] Microsoft Technologies. Windows Phone Interoperability.
http://windowsphone. interoperabilitybridges.com.

[9] M. F. Ali and M. Abrams. Simplifying construction of multi-
platform user interfaces using UIML. In UIML Europe 2001
Conference, 2001.


https://developers.google.com/maps/documentation/android/
https://developers.google.com/maps/documentation/android/
http://developer.apple.com/library/ios/documentation/MapKit/Reference/MapKit_Framework_Reference/
http://developer.apple.com/library/ios/documentation/MapKit/Reference/MapKit_Framework_Reference/
http://developer.apple.com/library/ios/documentation/MapKit/Reference/MapKit_Framework_Reference/
http://msdn.microsoft.com/en-us/library/dd877180.aspx
http://msdn.microsoft.com/en-us/library/dd877180.aspx
http://windowsphone.interoperabilitybridges.com

	Research Problem and Motivation
	Background and Related Work
	Approach and Uniqueness
	Results and Contributions



