
Panel

The Role of Objects in a Services-obsessed World

John Tibbetts (chair)
KINEXIS

Ward Cunningham
AboutUs.org

Carl Lentz
DTE ENERGY

Jeroen van Tyn
DBI CONSULTING

Abstract
Every half-decade or so, the computing world is infected by
a meme that energizes IT and stimulates architectural
thinking but also distorts discussion and clouds judgment.
A few generations ago it was objects; now it’s services. As
every developer has noticed, SOA is everywhere—even,
perhaps, in some places it shouldn’t be. What has this focus
on services done to the role of objects? Some of the more
extreme SOA proponents maintain that service-reuse
replaces object-reuse across the board. More mainstream
architects view these two models as complementary reuse
strategies at different levels of scale. There are even object
diehards who think that services can’t come close to the
flexibility and durability of objects. This panel will
represent the full range of opinions. Specifically, panelists
and attendees will be challenged to explore such topics as:
Where is the scalability boundary between object responsi-
bilities and service responsibilities? Do we have to
conceptualize, design, or implement differently at different
levels of scale? Where and how do binary components such
as RMI, EJB, or CORBA fit in alongside more loosely-
coupled interfaces such as web services? Panelists will also
be invited to comment on whether some of the new
concepts defined into SOA—orchestration and discovery,
for example—can be profitably fed back into the object
world.

Categories & Subject Descriptors:
D.2 Software Engineering
H.4 Information Technology and Systems
J.9 Computer Applications
K.0 Computing Milieux

General Terms: Design

Keywords: SOA, design, software, architecture, Object-
orientation, Service-orientation, Software components

1. John Tibbetts (chair), john.tibbetts@kinexis.com
JOHN TIBBETTS is president of the consulting firm
Kinexis, the inventor of the open-source WorkThru
framework, and the moving force behind the WorkThru
community. He has specialized throughout his 35-year
career in the application of object concepts to large
transactional systems and has recently become an important
theorist/implementer in the area of agent-based workflow
and automated collaboration. He is a former columnist for
InformationWeek magazine, a Senior Consultant at the

Cutter Consortium, a technology advisor to numerous
startups, a consultant to utility, financial, and telecommuni-
cations companies, and an active developer. He is a past
OOPSLA keynoter.
POSITION: The best way to think lucidly about services is
to think not about ‘architecture’ but about ‘orientation.’
Let’s remember that the term Service-Oriented Architecture
(SOA) was a creation of two Gartner analysts, more skilled
in product positioning (a.k.a. marketecture) than in
software architecture. I find it much more helpful to lower-
case “service-oriented” and use the term to describe not
what you buy but how you think.
With this as a starting point, I see service-orientation and
object-orientation as two orthogonal reuse strategies that
operate at vastly different levels of scale. Objects, small
and single-minded, are at the scale of software atoms. Like
atoms, they tend to be highly collaborative with other
atoms and other types of atoms. Services exist at a much
coarser-grained scale, like biological organisms that have
an independent existence from one another. Services can
collaborate as well as objects can, but in a different way—
one that is relatively indifferent as to the inner workings
and structure of the other services involved. One challenge
for the object practitioner moving into services is to know
when and when not to collaborate.
As an implementer, I would not care to you use any
approach other than objects for building a new service. But
as a service consumer I care little whether the service is
written with objects, with scripts, with rules, or, given the
right glue, with spreadsheets. To me, this is the fundamen-
tal difference between objects and services: Objects are
primarily a development-time phenomenon whereas
services are primarily a run-time phenomenon. A develop-
ment organization is object-oriented when it uses OO
concepts, practices and languages (which are only visible
when one looks under the hood). An organization is
service-oriented when it has developed a culture of
leveraging existing services that are hosted by theirs or
other organizations. In a services-oriented environment,
governance—who is responsible for maintaining and
extending services being used by other consumers, known
and unknown—becomes more important to success than
does development practice. And that is a point that many
development organizations still haven’t absorbed.

Copyright is held by the author/owner(s).
OOPSLA’07 October 21–25, 2007, Montréal, Québec, Canada.
ACM 978-1-59593-865-7/07/0010.

1031

2. Ward Cunningham, ward@c2.com
WARD CUNNINGHAM is the Chief Technology Officer
of AboutUs.org, a growth company hosting the communi-
ties formed by organizations and their constituents. Ward
co-founded the consultancy, Cunningham & Cunningham,
Inc., has served as a Director of the Eclipse Foundation, an
Architect in Microsoft's Patterns & Practices Group, the
Director of R&D at Wyatt Software and as Principle
Engineer in the Tektronix Computer Research Laboratory.
Ward is well known for his contributions to the developing
practice of object-oriented programming, the variation
called Extreme Programming, and the communities
supported by his WikiWikiWeb. Ward hosts the Agile-
Manifesto.org. He is a founder of the Hillside Group and
there created the Pattern Languages of Programs confer-
ences which continue to be held all over the word.

3. Carl Lentz lentzw@dteenergy.com
Carl Lentz is a technical architect and software developer.
He is currently responsible for promoting and deploying a
service oriented development strategy and architecture at
DTE Energy, a diversified energy company involved in the
development and management of energy-related businesses
and services nationwide.
Carl has been working in the IT industry for the past 17
years. He started his career in IT at Ford Motor Company,
working in a divisional data center as a Computer Operator.
For the past 6 years he has worked as a software developer
and architect at the company’s nuclear power plant working
on business support systems. He recently transferred to the
Quality Management Group to work with other Technical
and Enterprise Architects or a wider range of applications.
Carl is also the process owner for the Technical Solutions
aspect of the Solution Delivery Process, an in house
developed agile project management methodology. In that
role he helps guide and direct the development efforts and
processes for both software and infrastructure projects.
POSITION: I work for Detroit’s DTE Energy, a company
that has a long history of commitment to software engineer-
ing best practices. In particular we’re unusual in our dual
interest in both Agile methods and formal process meas-
urement using the Software Engineering Institute’s
Common Maturity Model Improvement (CMMI). After a
decade of refineing our object-orientation practice we have
over the last few years embraced service-orientation as
well. This has given us a good viewpoint for seeing where
they’re similar and where they’re different. We look at
these comparisons from the point of view of underlying
concept, skills, process, testing.
The same development teams build applications, binary
components and services. But since we recognize the
inherent differences between these tasks, we find that we
need to inform the teams on their characteristics with
regards to coupling, transaction support, ease of reuse, and

reuse benefit. We have refined our formal Software
Development Process (SDP) to add new processes to
capture service metadata as a development artifact, and we
have added a review to consider reuse as either a compo-
nent or a service. Overall, the development aspects of
objects versus services are relatively simple to deal with.
But when it comes to testing, service testing is considerably
different than object testing. On the one hand, service tests
can be created by non-developers, since the service request
and response can be easily captured with a few tools that
have been built or bought. This can greatly simplify test
construction. On the other hand, we’ve found a new testing
responsibility. Since our services can be used by many
different constituencies we find that they require us to
support the testing of their own test cases. The service
consumer wants to make sure that a subsequent change by
the service owner doesn’t break some specific function of
the service that they need to work.
This brings us to governance issues. The governance of
objects and components is relatively straightforward: We
create the gadget and put into a repository and fix it when
we need to. But a service is only a service if it’s running
somewhere. Someone in the organization has to be
motivated to keep it running, keep it correct, extend its
behavior if need be, and keep test instances always
available so that new consumers can try them out.

4. Jeroen van Tyn, jeroenvantyn@dbiconsulting.com
Jeroen van Tyn is an Enterprise Architect with DBI
Consulting, a business technology consulting firm that
specializes in integrating business operations. He is also a
Senior Consultant with the Cutter Consortium, an interna-
tional IT advisory firm. His principal focus is on business
architecture and its relationship to enterprise IT architecture
and software development methodology. This stems from
his repeated observation that, while technological capabili-
ties continue to explode, organizations struggle with
applying technology in a way that really matters to their
business.
Jeroen has over fifteen years of experience in information
technology and business analysis. He has served as
enterprise IT architect, business architect, business analyst,
project manager, team lead, developer, consultant and
mentor on a wide variety of enterprise architecture,
software development and business analysis projects for
global corporations. He has led and mentored teams in
industries ranging from finance, insurance and health care
to manufacturing and telecommunications.
Jeroen has delivered formal training in enterprise architec-
ture, requirements management, the Rational Unified
Process and object-oriented analysis and design to software
development professionals across the U.S. and in Canada.
He has been a presenter at a number of regional and

1032

national conferences. Jeroen van Tyn may be reached at
the above address or at jvantyn@cutter.com.
POSITION: Let me state at the outset that I speak from
within the context of enterprise architecture. That is, I
mostly work with large organizations that are trying to get
the pieces of their enterprise (business units, processes,
systems, information and so on) to function as a coherent
whole.
From a technology perspective, services and particularly
Service-Oriented Architecture (SOA) are perhaps what
objects always wanted to grow up to be. The hype says
that we can create large-grained, business-meaningful
services that can be dynamically coordinated to quickly
construct and deploy business processes that are responsive
to ever-changing business needs and innovation. (Buzz-
word count, please!)
Objects, despite an early period of bluster and fancy, never
quite made the cut in providing easily shareable, enterprise-
level functionality – take IBM’s San Francisco/Shareable
Frameworks project as a notorious example. Services, on
the other hand, are specifically supposed to deliver on this.
Here’s a dirty little secret: about two-thirds of companies
use web services for local application-specific purposes.
I’m not making this up: this is based on real research. In
other words, a lot of people are using services to do object
stuff. Now what’s the point of using this standards-based,
cross-platform capability in order to build things that by
definition will be playing inside the same sandbox?

Now on to the enterprise. To me, SOA is, or should be,
inherently an enterprise concern. If the hype-phrase I spun
just a minute ago doesn’t speak to an enterprise context,
then what does? In order for large-grained business-
meaningful services to be worth a whit to the enterprise,
they must be based upon concisely articulated shared
business semantics. In other words, the service-enabled
enterprise at a minimum requires a shared enterprise
domain model. Now if there’s a better way to get at a
shared domain model than using an object-oriented
approach, I’d sure like to know what that is! SOA thus
requires us to apply all of the object-oriented analytical
methods we’ve worked so hard on over the years.
That brings me to my last point: the biggest problem I’ve
seen over and over with object orientation, and now service
orientation, has nothing to do with technology. We’ve got
all this great technology: so what? The difficulty always
has been and still is, how do you make a “good” ob-
ject/service? Before you start talking about reuse, you have
to be able to create something useful. This requires
analytical skill and development discipline. Remember
“spaghetti-O’s”, the OO version of spaghetti code? And
now the pressure is even greater, because the whole thrust
of service-orientation is is centered around the hubris of the
dynamically served business enterprise. The analysis
required to do that well is hard, and no amount of XML,
WSDL, virtual machines and application servers is going to
do you a bloody bit of good in getting there.

1033

