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Abstract 

In the concurrent object-oriented programming 
methodology, a system is described by concur- 
rent objects which communicate with each oth- 
ers by various communication facilities, i.e., syn- 
chronous/asynchronous(future) message passing. 
Those facilities help up to implement application 
programs based on the client/server model. It is, 
however, difficult to describe application programs 
such that concurrent objects may simultaneously 
initiate communication with each other. Such ob- 
jects are called autonomous objects. In this pa- 
per, we propose the notion of the visible and 
intensive sets, and a communication mechanism 
using those sets which enables us to handle com- 
munication among autonomous objects safely and 
easily. 

1 Introduction 

In concurrent object-oriented programming lan- 

guages [5, 6, 3, 4, 11, lo], an application pro- 

gram is described as a set of concurrent ob- 

jects which communicate with ea,ch others by us- 

ing various message passing facilities such as syn- 

chronous/asynchronous(or future) message passing 

forms. The concurrency and synchronization are 

programmed by using those communication facili- 

ties and objects. Indeed, concurrent object- 
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oriented languages help us to describe an ap- 

plication program which can be modeled as the 

client/server or master/slave relation. A client or a 

master always initiates communication to a server 

or a slave. However, it is difficult to program au- 

tonomous objects which have equal rights. The 

autonomous objects may initiate communication 

to other objects at any time. This implies that 

two autonomous objects initiate communication to 

each other simultaneously. For example, an object 

0 sends a message to a.nother object P and at the 

same time P sends another message to 0. If nei- 

ther 0 nor P performs for a message due to waiting 

for the reply message, this causes deadlock. This 

kind of communication inherently causes synchro- 

nization problems. 

To reduce the complexity of the simultaneous re- 

quest/reply among concurrent objects, we usually 

create another object which handles messages from 

both autonomous objects. The party of communi- 

cation may send a request to that object instead of 

the direct communication to the party. For exam- 

ple, Linda[2] supports a mechanism called “tuple 

space” to handle such communication. However, 

the direct communication among autonomous ob- 

jects is required in some applications because we 

can not create any shared resources. 

In order to overcome the limitations of the con- 

current object-oriented languages, a new commu- 

nication mechanism is proposed in this paper. In 

the following section, we discuss issues related to 

communication among autonomous objects by pro- 

gramming an example in two types of concurrent 
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object-oriented languages. Then, we make it clear 

what capabilities are missing in those languages. In 

section 3, we propose the notion of the visible set 

and the intensive set. Then communication and in- 

heritance facilities over those sets are introduced. 

Another facility called transitional method is pro- 

posed in section 4. The facility helps us to handle 

the object behavior according to its states. By us- 

ing those facilities, the programmer easily develop 

autonomous objects. In section 5, some examples 

including the inheritance anomaly problem[7,8] are 

shown to demonstrate the capabilities of the pro- 

posed facilities. 

2 Issues 

Most concurrent object-oriented programming lan- 

guages provide for synchronous/asynchronous mes- 

sage passing forms to specify parallelism among ob- 

jects. In the synchronous message passing, a sender 

object must wait for the reply of the receiver ob- 

ject. In the asynchronous message passing (or fu- 

ture), instead of waiting for the reply message im- 

mediately, a sender object obtains a special object 

called future object which will receive the reply mes- 

sage. The sender object may access the result via 

the future object. 

Those communication facilities help us to de- 

scribe an application program which is modeled 

as the client/server relation. Moreover, the inheri- 

tance mechanism allows us to reuse a program. It 

is, however, difficult to develop an application pro- 

gram which consists of autonomous objects each of 

which communicates with each others simultane- 

ously. To make it clear what are issues related to 

concurrent objects, we show the following simple 

example in this paper: 

There are two autonomous mobile robots 

running. We do not assume that there are 

any shared resources to communicate with 

those robots. When a robot detects that 

it will soon collide with another robot, the 

robot initiates the negotiation action. This 

implies that two robots may initiate the 

Figure 1: Negotiation between Mobile Robots 

negotiation action at the same time. 

For more simplicity, we assume that a 

robot is moving from the east to the west 

while another robot is moving from the 

north to the south as shown in Figure 1. 

The strategy of avoiding collision is just 

stopping or going ahead. Here we define a 

very simple negotiation protocol: 

1. A robot sends a negotiation mes- 

sage with a random number to an- 

other robot, 

2. If the permission to move is received 

then 

(a) the moving action is proceeded, 

(b) After passing the critical area, a 

goahead message is sent to the 

other robot. 

3. Otherwise stop moving until receiving 

a goahead message. 

4. If a robot receives a negotiation 

message from another robot, it deter- 

mines whether or not the permission 

is given to the sender according to the 

number received and its state. 

It should be noted that the example includes a 

mutual exclusion problem but the central issue is 

how communication among autonomous objects is 

safely and easily described in this paper. Because 

we cannot assume any shared resources, it is impos- 

sible to employ the “tuple space” of Linda[2] or a 
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I Communication among 

Autonomous Objects I 
I 

Flat M.A. Complicated Yes 

Nested M.A. Easier than Flat M.A. NO 

M.A. = Message Acceptance 

Table 1: Comparison of Languages based on Flat 

and Nested Message Acceptance Mechanisms 

similar mechanism. Thus, we have to program con- 

current objects each of which communicates with 

each other at the same time. 

Concurrent object-oriented languages are classi- 

fied into two types in terms of the way of mes- 

sage acceptance, i.e, i) the flat message acceptance 

and ii) the nested message acceptance. By the flat 

message acceptance we mean that a method for 

a message is defined as the flat way but not de- 

fined within another method such as in Smalltalk- 

80. Such concurrent object-oriented languages in- 

clude Concurrent Smalltalk[lO] and Orient84/K[5]. 

In the nested message acceptance, a method for a 

message is defined within another method such as 

ABCL[ll]. 

Throughout programming the example by two 

types of message acceptance in the following sub- 

sections, we will show the difficulty of program- 

ming the example by those. That is, no concurrent 

object-oriented languages provide both suitable 

mechanisms of communication among autonomous 

objects and inheritance as shown in Table 1. 

2.1 Flat Message Acceptance Figure 2: Flat Message Acceptance 

Languages based on the Jut message uccep- 

tunce such as Concurrent Smalltalk[lO] and 

Orient84/K[5] support the single thread of control 

within an object since the multiple threads yield 

the complexity of programming, e.g., synchroniza- 

tion among threads. This implies that incoming 

messages of an object are serialized and each mes- 

sage is handled at a time. Some languages provide 

a mechanism to perform for an express message 

when such an express message arrives during the 

execution of an object. Because the current execu- 

tion is suspended and another message is handled 

in this case, we say that the execution is preemp- 

tive. A method for an express message is called an 

express method in this paper. 

We can program the example in those languages. 

Instead of using a specific language, the program 

is written in a model language because of keeping 

the generality of languages of the flat message ac- 

1 [class Vehicle 

x t 
supers Object) 
vars 

4 
5 express method Vehicle negotiation: hisvalue 

t 

t , 

peer state myvalue) 

(vars . ..) 
if state = #negotiating then 

8 “both robots initiate the negotiation action 

1: 
:a 
13 

:i 
16 
17 
18 
19 

at the same time” 
if hisvalue > myValue then 

state + #giveaway; 
reply #accept 

else 
reply #notaccept 

endif 
else 

state + #giveaway; 
reply #accept 

endif 
20 
21 I method Vehicle run 
22 (vars lstate ret) 

;9 
myValue + Random new; 
state + #moving; 

25 “movine action is here” 

g! [atyf?ke = Smovine then 
28 
29 
30 
31 

state c”#negoGating; 
lstate + #mustwait; 
ret + peer negotiation: myValue & 

else 

E 
“state is #giveaway” 
lstate + #nowait; 

id ] 
end 

36 If lstate = #mustwait then 

5: 
[waitfor ret] 
If ret = #accept then 

39 “movine action is here” 
40 peer godhead & 
41 else 
42 ‘waiting for peer’s action” 

2 
endif 

else 
45 “waiting for peer’s action” 
46 endif 
47 “...” 
48’ 
49 I method Vehicle goahead 

n moving again” 
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ceptance. 

As shown in Figure 2, the Vehicle class is 

defined where methods negotiation:, run, and 

goahead are defined. The method negotiation: 

is defined as an express method in line 5. 

A region in lines 26 to 35 is called an atomic 

region which is executed without preemption. That 

is, even when a negotiation: message arrives, the 

execution for the message is postponed during the 

execution of the atomic region. 

Method run is the main routine of the Vehicle 

class. In line 25, the moving action must be pro- 

grammed. When the object detects that it will 

collide with another vehicle object, the execution 

falls into line 26 to negotiate with the other object. 

The state variable is keeping the object’s state. 

The state has one of #moving, #giveaway, and 

#negotiating. State #moving denotes that the 

object is moving. State #giveaway denotes that 

the object permits another object to move while 

#negotiating is the state of the negotiation phase. 

In the atomic region on lines 26 to 35, the 

object’s action is determined according to the 

state variable. The atomic region is needed be- 

cause the state variable may be changed by the 

negotiation: method which will be invoked at 

any time except for during the execution of an 

atomic region. 

If the state variable is still #moving in line 27, 

then the state is changed to #negotiating and 

send the negotiation : message to another object 

asynchronously. That is, instead of waiting of the 

reply message immediately, a special object called 

future object is stored in the ret variable in line 30. 

It should be noted that we cannot wait for the reply 

message here. This is because the other object may 

also be sending the negotiation: message to the 

object. This is a deadlock case if we wait for the 

reply message in the atomic region. The lstate 

variable is introduced in order to receive the reply 

message outside the atomic region, i.e., in line 37. 

The waitfor statement is a facility for the syn- 

chronization of the asynchronous message passing. 

The asynchronous message passing in line 30 is syn- 

chronized in line 37. In other words, the waitfor 

statement in line 37 is to wait for receiving the reply 

message from the peer object at the future object 

stored in the ret variable. Because the waitfor 

statement is executed outside of the atomic region, 

an express message negotiation : may be handled 

when the message arrives. 

If the Vehicle object receives the permission 

from the peer object, the moving action is pro- 

ceeded in line 39 and then the goahead message is 

sent to the other robot in order to make the peer 

object move. 

In this way, to maintain the consistency of a state 

variable kept in an object and to avoid a deadlock, 

programming is very complicated in languages of 

the flat message acceptance. 

2.1.1 Inheritance Anomaly 

Let us take look at the negotiation: method. 

The state variable is checked in line 7 since the 

method will be invoked when the object’s state is 

#moving or #negotiating. This implies that we 

have to rewrite the method if we add another state 

into the state variable, e.g., #stopping. Thus, it 

is difficult to inherit such a method with adding 

new states. 

2.2 Nested Message Acceptance 

We show a program example written in a language 

based on the nested message acceptance. Instead of 

using a specific language, we use a model language 

again. 

Figure 3 shows the program of the example. The 

select statement such as Ada is introduced to re- 

ceive messages from other objects. In the select 

statement in line 7, the object is waiting to re- 

ceive the run message defined in line 8 or the 

negotiation: message defined in line 42. When 

the run message arrives at the object, the run 

method defined in line 8 is executed. 

The negotiation : method in line 42 is de- 

fined with the express keyword. This means 

that the negotiation: method may be executed 

when message negotiation: arrives while the run 
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5 tmethod Vehicle mainroutine 
6 

t 
vars 

7 select 
ret) 

8 [method run 
9 myValue + Random new; 

10 state + #moving; 
11 “moving action is here” 
12 [atomic 
13 if state = #moving then 
14 eer negotiation: myValue % self & 
15 P select-loop 
16 [method result: ret 
17 if ret = #accept then 
18 “moving action is here” 
19 peer goahead & 

i! 
else 

state + #giveaway; 

Ei 
endif 
exit-loop] 

24 or [method negotiation: hisvalue % dst 

if3 
“both robots initiate the negotiation 
action at the same time” 

27 if hisValue > myValue then 
28 state + #giveaway; 

ii 
dst result: #accept & 

else 
31 dst result: #notaccept & 
32 endif ] ] 
33 endif 
34 
35 

1 
rf state = #giveaway then 

36 n waiting for peer’s action” 
37 [method goahead 
38 “moving action is here” 
39 1 
40 endif 
41 “....” ] 
42 or [express method negotiation: tmp % dst 
43 state + #giveaway. 

dst result: #accept &] 

Figure 3: Nested Message Acceptance 

method is executed. In the method the sender ob- 

ject is kept by the dst variable, so that the reply 

message is sent to the sender object explicitly. This 

semantics is derived from ABCL/ll. 

The semantics of the asynchronous messa.ge ex- 

pression in line 14 is based on ABCL/l 2. The 

negotiation: message is sent to the peer object 

‘In ABCL/l, the message acceptance form is written as 
“(=> negotiation: tmp 0 dst . . .I”. Because the “@” 
mark is reserved for another meaning in this paper, “%” is 
used. 

2The expression is equivalent to 
“peer <= [negotiation: myValue 6 self” in ABCL/l. 

asynchronously with explicitly asserting the reply 

destination, i.e., the sender itself in this case. Then 

the select-loop statement in line 15 waits for 

two events: i) receiving the reply message from 

the peer object in line 16, and ii) receiving the 

negotiation: message in line 24. 

As shown in Figure 3, we do not need state 

#negotiation and the lstate variable. This is 

because the negotiation: message acceptance is 

multiply defined in this program. The first mes- 

sage reception in line 42 is active at state #moving 

while the second message reception in line 24 is 

enable during the negotiation phase. 

In the nested message acceptance mechanism, an 

extra state and variables are not needed. However, 

we can not reuse such a program because we can 

not overwrite the behavior of a nested message ac- 

ceptance. 

2.3 Summaries and Requirements 

Generally speaking, a problem we have considered 

arises in the following scenario: when an object 0 

performs some actions as shown below and at the 

same time an object P sends a message M2 to 0 

and blocks for the reply. 

1. object 0 checks a variable V, which reflects the 

object’s state, 

2. 0 sends a message Ml to object P according to 

variable V,, and then 

3. changing 

from P. 

the value of V, according to the reply 

If actions 1 through 3 are executed without pre- 

emption, i.e., not performing for M2, then 0 and P 

may cause a deadlock. If those actions are executed 

with preemption, then the mutual exclusion prob- 

lem occurs. That is, variable V, might be changed 

by another method which is invoked at the accep- 

tance of message Al2 during the execution. 

To avoid the problem, we have shown two pro- 

gramming examples. Actions 1 and 2 are per- 

formed with non-preemptive and then action 3 is 

realized by the synchronization of the asynchronous 
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message passing (or the future communication), so 

that the execution is preemptive. Thus, the ob- 

ject 0 can receive the M2 message and performs for 

the message while the object waits for the reply of 

Mr. It is, however, rather complicated program- 

ming. In order to program such communication 

safely and easily, the following mechanisms must 

be supported by a programming language. 

l 

l 

0 

3 

State and Method Behavior 

The behavior of a method depends on the 

object’s state. However, if we introduce an 

explicit state variable in order to program a 

method, it is difficult to inherit the method 

as described in section 2.1.1. A mechanism to 

control the behavior without accessing an ex- 

tra state variable in a method is required. 

Communication and State 

During communication with another object, 

the object’s state may be changed by perform- 

ing for an incoming message. A communica- 

tion mechanism is demanded to handle such 

communication safely. 

Inheritance 

The inheritance mechanism is needed to reuse 

a program. Since we can not redefine a method 

which has been defined as a nested method in 

a parent object, a language based on the flat 

message acceptance is chosen. 

Dynamic Method Scoping 

To control the behavior of a method without any 

extra state variables, we propose the notion of vis- 

ible set in this section. Then, intensive set is intro- 

duced in order to handle express messages during 

communication with other objects safely. Finally, 

an inheritance mechanism with visibEe set is intro- 

duced in this section. 

3.1 Method Set 

First, a method set is introduced in order to de- 

fine several actions of a method in several states. 

1 [class ExampleObject 
2 supers nil) 
3 vars . . . 
4 
5 I 

I 1 

mset #Al method ExampleObject Ml 
f 

8 I 

/* method body : bmll */ 

mset #Al method ExampleObject M2 
9 /* method body : bm21 */ 

10 
11 I mset #A2 method ExampleObject Ml 
12 /* method body : bm12 */ 
13 
14 I method ExampleObject MO 
15 /* method body : bmO0 */ 
16 
17 1 

anobject msg 0 #Al; 

Figure 4: ExampleObj ect 

Let a method be represented by a pair of (n, b) 

where n denotes a method name and b denotes the 

method’s body. The pair is called method name- 

body pair. A member of a method set is a method 

name-body pair or another method set. A method 

set is denoted by a symbol name. For example, 

method sets {(Ml, b,ll), (M2, b,zl)} denoted by #Al 

and {(Ml,h2)) d enoted by #A2 are represented as 

follows: 

[#Al, {(Ml, brim), (M2,bmn))] 

[#A27 {(Ml, bmlz>N 

A program of the above example is shown in Fig- 

ure 4. To define a method included in a method 

set, the mset keyword is added before the method 

keyword. 

The method Ml is multiply defined in this ex- 

ample. The method name Ml is defined with the 

method body brnll in the #Al method set while the 

same name is defined with another method body 

b mr2 in the #A2 method set. 

3.2 Visible Set 

In a visible set whose member is a method set or 

a method name-body pair, all method name-body 

pairs in the visible set are visible in the runtime rou- 

tine. An auxiliary set called invisible set which is 

another method set is introduced in order to define 

operations over the visible set of an object, Let a 

method scope be a pair of the visible and invisible 
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V = { (MO,bmoo), 

[#AI,((M1,b,ll),(M2,b,nl)}], 

[#A27 {(Ml, bmn>H > 
IV ={} 

Figure 5: Initial Visible and Invisible Sets in 

ExampleOb j ect 

sets. An object has method scope M, = (V,IV) 

where I and IV are a visible and an invisible sets, 

respectively. For example, the ExampleObj ect de- 

fined in Figure 4 has the initial visible and invisible 

sets shown in Figure 5. 

The basic operations over the method scope are 

include and exclude. To describe the semantics 

of the include and exclude operations, we assume 

that the following scenario is performed in the ini- 

tial visible and invisible sets shown in Figure 5. 

1 include #Al; 
2 include #A2; 
3 exclude #A2; 

After the execution in line 1, the visible and in- 

visible sets are changed below. The object may 

perform for messages MO, Ml, and M2 at this point. 

V = { (MO, Loo), (Ml, Lll), (MT bmn), 

[#A% {(Ml, bm12>>1 1 
11’ = {[#AL {[#Al, {(Ml,bmll), (M2,bm2l))l)]) 

In this way, the include operation taking a sym- 

bol name is to add all members of a method set de- 

noted by the symbol name into V. The method set 

denoted by the symbol name is excluded from V. 

The set is included in a new method set denoted 

by the same symbol name and the new set is added 

in IV. 

After the execution in line 2, the visible and in- 

visible sets are changed as follows: 

= { (MO, boo), (MLbmn), (M2,L21) } 

I”Ii = {[#A% {(Ml,bnll), [#A% {(Ml,Ln>)])] 

[#Al, {[#Al, {(Ml,bnl1),(M2,bm2~)}1}~} 

That is, method (Ml, bmll) is hidden and method 

(Ml, bm12) is visible. In this way, if the same name 

of a method name-body pair is already included in 

V, the method name-body pair is replaced. The 

old method name-body pairs and the method set 

denoted by the parameter of the include operation 

are included in a new method set. The new set is 

added in IV. 

Issuing the exclude operation in line 3, the sets 

are changed as follows: 

V = { (MO,b,oo),(Ml,b,ll),(M2,b,21>, 

[#A& {(Ml, bm12>)1 1 
IV = {[#Al, {[#Al, {(Ml,b,ll),(M2,b,zl))])l) 

The exclude operation taking a symbol name 

performs the following tasks: i) finding a method 

set denoted by the symbol name in IV and ex- 

cluding the set from IV (let the set be ms), ii) 

for all method name-body pairs in ms, replacing a 

method name-body pair in V with another method 

name-body pair in ms such that those are the same 

method name, and iii) method sets which are mem- 

bers of ms are added in V. The semantics of 

include and exclude operations is formally de- 

scribed in the appendix. 

The initial visible set is modified by the include 

statement in the object definition. For example, if 

the ExampleObj ect definition is modified as below, 

the initial visible and invisible sets are the same as 

the result of issuing the include operation taking 

#Al. 

1 [class ExampleObject 
2 (supers nil) 
3 (vars . ..) 

4 (include #Al) 

51 
The visible set and operations over the set enable 

us to write a program in which the behavior(or 

body) of a method is changed without introducing 

any explicit variables accessed in the method. In 

other words, by those facilities it is easy to program 

the same functionality written in a language of the 

nested message acceptance. 

It should be emphasized that we can define other 

operators over the visible set, e.g., an operation 

which replaces all members of the visible set with 

all members of a method set. 
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1 [class ExampleDerived 
2 
3 I 

supers ExampleObject sset #Pl) 
vars . . . ) 

4 
5 I method ExampleDerived Ml 
6 /* method body : bm31 */ 
7 scope #Pl; 
8 . . . 
9 scope; 

101 

Figure 6: ExampleDerived 

3.3 Intensive Set 

It is required that an object should perform for a 

message on the way to communicate with another 

object. To handle such a case, the intensive set 

is proposed. Let intensive set I be a set whose 

member is a method set or a method name-body 

pair. Methods represented by method name-body 

pairs in I are immediately executed when messages 

for those methods arrive at the object. In other 

words, all the express methods described in section 

2 are managed in the intensive set. 

The communication facility over the intensive set 

is called intensive communication. The following 

statement is an example of the intensive commu- 

nication, which is extracted from line 16 in Figure 

4. 

anobject msg @ #Al; 

In this statement, all members of the method set 

denoted by #Al are added in intensive set I during 

the communication with anobject. That is, 

I= {(Ml, bmd, (MT bra)} 

During the communication, the object may ac- 

cept and execute methods included in the intensive 

set, i.e., methods Ml and M2. After the commu- 

nication is done, the intensive set is changed to 

empty. 

An example below is the short form of the in- 

tensive communication. In this program, the ob- 

ject sends the msg message to anobject and at the 

same time it can receive messages do : and e : . It is 

easy to expand this form to the original form. The 

method set name might be created by a compiler. 

Ms = ( ~(MLb-ndh 0 ) 

I= 0 

[#PI, ( {(MWnoo), 

[#AI, (Ml, bm), (M2,bm)], 

[#A27 (Ml, bdl~, 
0 )I 

Figure 7: MS, I, and method scope #PI in 

ExampleOb j ect 

1 anobject msg @ [ 
2 [method do: arg . . . ] 
3 [method e: ..] 

4 I 
The intensive communication supports the exe- 

cution of express methods during the communica- 

tion. We will describe the notion of the transitional 

method in section 4 to provide for the execution of 

express methods during the method execution. 

3.4 Inheritance 

When we define an object 0 inheriting from an- 

other object P, we sometimes need a mechanism 

such that methods defined in P are inherited and 

those methods are encapsulated. The visibility of 

those methods should be controlled at the runtime. 

To realize the capability, we provide for a mecha- 

nism to create a method scope whose visible set is a 

set of all method sets defined in a superclass. The 

scope statement is introduced in order to replace 

the visible and invisible sets of MS with ones of 

such a method scope. 

An example shown in Figure 6 

defines the ExampleDerived object inheriting from 

ExampleObj ect defined in Figure 4. The sset key- 

word followed by symbol name #PI is added in the 

declaration of superclass ExampleObj ect in line 2 

so that all methods defined in the superclass are 

included in a method scope denoted by #PI. The 

initial MS = (V,IV), I, and method scope #PI are 

shown in Figure 7. At the object creation, method 

Ml is only visible. 

To show how to change MS of the 
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1 [class Vehicle 
2 supers Object) 
3 vars peer myvalue) 
4 include #normal) 
5 
6 I 

1 

mset #negotiating method Vehicle negotiation: hisValue 

i!3 
“both robots initiate negotiation at the same time” 
if hisValue > myValue then 

9 reply #accept 
10 else 
11 reply #notaccept 

i 

12 endif 
13 
14 I mset #normal method Vehicle negotiation: hisvalue 

:i 
reply #accept 
transit run-gave; 

17 
18 I mset #normal transitional method Vehicle run 
19 (vars a) 
20 “moving action is here” 
21 myValue + Random new; 
22 a + peer negotiation: myValue 0 #negotiating; 

%i 
if a == #accept then 

“moving action is here” 
25 peer goahead & 
26 else 
27 “waiting for peer’s action” 
28 endif 
29 
30 I mset #normal local method Vehicle run-gave 

;1 
“Action is moving” 
“waiting for peer’s action” 

33 
34 I mset #normal method Vehicle goahead 

“moving” 

Figure 8: Programming in the Proposed Facilities 

ExampleDerived object, suppose that the object 

performs for Ml. After the scope statement taking 

#Pi is issued in line 7, MS is changed as follows: 

Ms = ({ (Wbnoo), 

[#Al, (MLhm), (Wbm21)1, 

[#A% (ML bm12)1), 

0) 

That is, method MO is only visible at this point. 

In line 9, the scope statement taking no arguments 

is issued. This means that MS is changed to the 

original one: 

Ms = ({ (Wbn31) ),{>> 

4 Transit ional Met hod 

In communication among autonomous concurrent 

objects, an object needs to receive and perform for 

a message while a method of the object is executed. 

In this case, the state of the object may be changed 

and the object’s behavior is changed according to 

those changes. We propose the notion of the trun- 

sitional method to describe such a program. An 

example is shown below: 

1 [transitional method Example normal-run 
23 [protect . ..] 

. . . 
t [protect . ..] 

. . . 
6 
7 I method Example abnormal-run 
8 . . . 
9 

10 I method Example negotiation: 
11 . . . 
12 transit abnormal-run 
13 I 
In this example, the normal-run method is de- 

fined with the keyword transitional in line 1. 

Such a method is called transitional method. In a 

transitional method, the execution of the method 
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1 [class Lock 
i 

4 I 

(include #free) 

mset #free method Lock lock 
5 exclude #free 

t 
I 

include #lock 

8 mset #lock method Lock unlock 
9 exclude #lock 

::, 
include #free 

12- 
13 [class Buffer 
14 vars . . . 1 
15 
16 1 

include #notfull) 

ii fmset #notfull method Buffer put 
18 . . . 
19 
20 I mset #full method Buffer get 

Figure 9: Lock and Buffer 

may be suspended and the control is changed to 

another method except for the execution of the 

protect statement. In other words, during the ex- 

ecution of a transitional method, all members of the 

visible set are included in the intensive set. 

For example, when the negotiation: mes- 

sage arrives during the execution of method 

normal-run, the execution is changed to the 

negotiation: method. When the transit state- 

ment in line 12 is issued, then the execution is 

changed to the abnormal-run method instead of 

resuming the execution of method normal-run. If 

the execution of method negotiation: is termi- 

nated without issuing the transit statement, the 

execution of method normal-run is resumed. 

5 Examples 

In this section, two programming examples are 

shown to demonstrate the capabilities of our pro- 

posed communication fa.cilities. 

5.1 Negotiation Protocol 

The Autonomous Mobile Robots example de- 

scribed in section 2 is programmed in Figure 8. 

In this program, two method sets are defined, i.e., 

#negotiating and #normal. As you can see, no 

1 [class LockBuffer 
2 (supers Lock sset #visible #normal 
3 ~ 

6 I 

(scope #vF~e, sset iwsible) 

after method LockBuffer lock 

i 
scope #normal 

9 I after method LockBuffer unlock 
scope #visible 

Figure 10: LockBuff er 

explicit state variables are programmed to control 

the behavior of a method, and programming by 

using the facilities proposed is very simple. More- 

over, it is easy to modify the behavior of a method. 

For example, if the #stopping state is added in the 

object, the action of the negotiation: method in 

the #stopping state is programmed as follows: 

1 [mset #stopping method Vehicle negotiation: hisVal 

iI ... 

5.2 Inheritance Anomaly 

If a language supports the after method mechanism 

like in CLOS, the visible set helps the program- 

mer to overcome some of the inheritance anomaly 

problems in concurrent objects [l, 7, 81. In the in- 

heritance anomaly problems in concurrent objects, 

inheritance can not be employed due to the syn- 

chronization constraints. For example, if we want 

to create an object 0 inheriting from another ob- 

ject P, it is sometimes impossible because the con- 

straints of the methods execution in P can not be 

changed in 0. Here we program one of inheritance 

anomaly problems[7, 81. 

We have already the Lock and Buffer ob- 

jects shown in Figure 9. Now we want 

to program the LockBuffer object inher- 

iting from both Lock and Buffer objects. 

The behavior of LockBuf f er is as follows: 

put and get messages are accepted till the 

lock message arrives at LockBuff er. Af- 

ter the execution of method lock, the ex- 

ecution of methods put and get are post- 
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poned until the unlock method is exe- 

cuted. 

Figure 10 shows the programming example. Two 

method scopes #visible and #normal are defined. 

All methods in Lock and Buffer are included in 

the #visible method scope while all methods in 

Lock are included in the #normal method scope. 

The lock and unlock methods are defined as after 

method. Those methods control the M, method 

scope of the object shown in lines 7 and 10. Though 

two methods are defined in LockBuffer but those 

are not totally redefined. 

6 Concluding Remarks 

Our major motivation in this paper was to de- 

velop a significant communication mechanism for 

programming autonomous objects. At a glance, it 

seems that the visible set is almost the same as the 

enable set [9]. The major difference is that sev- 

eral actions of a method are defined in different 

method sets. By defining method sets, we can pro- 

gram several method’s actions depending on an ob- 

ject’s state across the inheritance hierarchy. More- 

over, communication among autonomous objects is 

safely and easily programmed by using the visible 

and intensive sets. 

Examples shown in this paper give us the demon- 

stration of the capabilities of the functionalities 

proposed in this paper. We believe that the visible 

and intensive sets and its related communication 

and inheritance facilities are not only for a specific 

language but also adapted into other concurrent 

object-oriented programming languages. We are 

currently implementing those facilities on a reflec- 

tive language called AL-1[3, 41 to realize them. 
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A Formal Description of Dy- 

namic Method Scoping 

Let a method be represented by a pair of (n, b) 

where n denotes a method name and b denotes its 

body. The pair is called method name-body pair. 

Let a method set be a set of method name-body 

pairs and other method sets. A method set is de- 

noted by a symbol name. For example, 

[#msyq, {(mm bh), @my bbz), 
[#msym2, {(mm, bbl)~l~l 

is a method set whose name is “#ms ymr ” 

and members are method name-body pairs 

“(mml, bbl)“, “(mm2, bbz)“, and method set 

“[#msy~, {(mw, bbl))]“. 
Let visible set V be a set of method sets and 

method name-body pairs. Let invisible set IV be a 

method set. Method scope A$ is a pair of the visi- 

ble and invisible sets, i.e., M, = (V,IV). Function 

vf : M, + V is defined to extract the visible set 

from method scope M,. Function ivf : MS + IV 

is defined to extract the invisible set from method 

scope M,. 

The basic operations over the method scope are 

visible and invisible. Let N be a variable over 

the method names and let B and C be a variable 

over the method bodies. Let S and T be a vari- 

able over the symbol names and let X and Y be 

variables over the method sets. 

visible S 

After the execution, new M, becomes: 

M, = (nV, nIV) 

where 

‘X [%X1 E VW,), 
nV = {(K B) I (KB) E vf(M,), 

not( ‘C (N,C) E X)} 

U {[TJI I KY1 E vfW),T# S> 
u wm I VW E w 
u WY Yl I K Yl E XI 

nJV = {IV, [s, WV) I (KB) E vf(M,), 
3c (KC) E X} 

U {[T Yl I IT, Yl E VfWs), 
T = w 

Figure 11: The semantics of visible 

invisible S 
After the execution, new M, becomes: 

M, = (nV, nIV) 
where 

‘X [S, X] E ivf( M,), 

nV = WV) I (WV E Xl 

u WY Yl I KY1 E XI 
U {(KB) I VW E W&), VW) $ XI 
u WJI I KY1 E VfW~), KY1 # XI 

nIV = {[T, Y] ) [T, Y] E ivf(M,), T # S} 

Figure 12: The semantics of invisible 

Then, the semantics of the “visible S” and 

“invisible S” operations is given in Figure 11 

and Figure 12. 
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