
Communication Mechanism on Autonomous Objects

Yutaka Ishikawa
Electrotechnical Laboratory

l-l-4 Umezono, Tsukuba
Ibaraki, 305 JAPAN

yisikawa@etZ.go.jp

Abstract

In the concurrent object-oriented programming
methodology, a system is described by concur-
rent objects which communicate with each oth-
ers by various communication facilities, i.e., syn-
chronous/asynchronous(future) message passing.
Those facilities help up to implement application
programs based on the client/server model. It is,
however, difficult to describe application programs
such that concurrent objects may simultaneously
initiate communication with each other. Such ob-
jects are called autonomous objects. In this pa-
per, we propose the notion of the visible and
intensive sets, and a communication mechanism
using those sets which enables us to handle com-
munication among autonomous objects safely and
easily.

1 Introduction

In concurrent object-oriented programming lan-

guages [5, 6, 3, 4, 11, lo], an application pro-

gram is described as a set of concurrent ob-

jects which communicate with ea,ch others by us-

ing various message passing facilities such as syn-

chronous/asynchronous(or future) message passing

forms. The concurrency and synchronization are

programmed by using those communication facili-

ties and objects. Indeed, concurrent object-

Permission to copy without fee all or part of this material is

granted provided that the copies are not made or distributed for

direct commercial advantage, the ACM copyright notice and the

title of the publication and its date appear, and notice is given

that copying is by permission of the Association for Computing

Machinery. To copy otherwise, or to republish, requires a fee

and/or specific permission.

@ 1992 ACM O-89791-539-9/92/001 0/0303...$1.50

oriented languages help us to describe an ap-

plication program which can be modeled as the

client/server or master/slave relation. A client or a

master always initiates communication to a server

or a slave. However, it is difficult to program au-

tonomous objects which have equal rights. The

autonomous objects may initiate communication

to other objects at any time. This implies that

two autonomous objects initiate communication to

each other simultaneously. For example, an object

0 sends a message to a.nother object P and at the

same time P sends another message to 0. If nei-

ther 0 nor P performs for a message due to waiting

for the reply message, this causes deadlock. This

kind of communication inherently causes synchro-

nization problems.

To reduce the complexity of the simultaneous re-

quest/reply among concurrent objects, we usually

create another object which handles messages from

both autonomous objects. The party of communi-

cation may send a request to that object instead of

the direct communication to the party. For exam-

ple, Linda[2] supports a mechanism called “tuple

space” to handle such communication. However,

the direct communication among autonomous ob-

jects is required in some applications because we

can not create any shared resources.

In order to overcome the limitations of the con-

current object-oriented languages, a new commu-

nication mechanism is proposed in this paper. In

the following section, we discuss issues related to

communication among autonomous objects by pro-

gramming an example in two types of concurrent

OOPSLA’92, pp. 303-314

303

object-oriented languages. Then, we make it clear

what capabilities are missing in those languages. In

section 3, we propose the notion of the visible set

and the intensive set. Then communication and in-

heritance facilities over those sets are introduced.

Another facility called transitional method is pro-

posed in section 4. The facility helps us to handle

the object behavior according to its states. By us-

ing those facilities, the programmer easily develop

autonomous objects. In section 5, some examples

including the inheritance anomaly problem[7,8] are

shown to demonstrate the capabilities of the pro-

posed facilities.

2 Issues

Most concurrent object-oriented programming lan-

guages provide for synchronous/asynchronous mes-

sage passing forms to specify parallelism among ob-

jects. In the synchronous message passing, a sender

object must wait for the reply of the receiver ob-

ject. In the asynchronous message passing (or fu-

ture), instead of waiting for the reply message im-

mediately, a sender object obtains a special object

called future object which will receive the reply mes-

sage. The sender object may access the result via

the future object.

Those communication facilities help us to de-

scribe an application program which is modeled

as the client/server relation. Moreover, the inheri-

tance mechanism allows us to reuse a program. It

is, however, difficult to develop an application pro-

gram which consists of autonomous objects each of

which communicates with each others simultane-

ously. To make it clear what are issues related to

concurrent objects, we show the following simple

example in this paper:

There are two autonomous mobile robots

running. We do not assume that there are

any shared resources to communicate with

those robots. When a robot detects that

it will soon collide with another robot, the

robot initiates the negotiation action. This

implies that two robots may initiate the

Figure 1: Negotiation between Mobile Robots

negotiation action at the same time.

For more simplicity, we assume that a

robot is moving from the east to the west

while another robot is moving from the

north to the south as shown in Figure 1.

The strategy of avoiding collision is just

stopping or going ahead. Here we define a

very simple negotiation protocol:

1. A robot sends a negotiation mes-

sage with a random number to an-

other robot,

2. If the permission to move is received

then

(a) the moving action is proceeded,

(b) After passing the critical area, a

goahead message is sent to the

other robot.

3. Otherwise stop moving until receiving

a goahead message.

4. If a robot receives a negotiation

message from another robot, it deter-

mines whether or not the permission

is given to the sender according to the

number received and its state.

It should be noted that the example includes a

mutual exclusion problem but the central issue is

how communication among autonomous objects is

safely and easily described in this paper. Because

we cannot assume any shared resources, it is impos-

sible to employ the “tuple space” of Linda[2] or a

304

I Communication among

Autonomous Objects I
I

Flat M.A. Complicated Yes

Nested M.A. Easier than Flat M.A. NO

M.A. = Message Acceptance

Table 1: Comparison of Languages based on Flat

and Nested Message Acceptance Mechanisms

similar mechanism. Thus, we have to program con-

current objects each of which communicates with

each other at the same time.

Concurrent object-oriented languages are classi-

fied into two types in terms of the way of mes-

sage acceptance, i.e, i) the flat message acceptance

and ii) the nested message acceptance. By the flat

message acceptance we mean that a method for

a message is defined as the flat way but not de-

fined within another method such as in Smalltalk-

80. Such concurrent object-oriented languages in-

clude Concurrent Smalltalk[lO] and Orient84/K[5].

In the nested message acceptance, a method for a

message is defined within another method such as

ABCL[ll].

Throughout programming the example by two

types of message acceptance in the following sub-

sections, we will show the difficulty of program-

ming the example by those. That is, no concurrent

object-oriented languages provide both suitable

mechanisms of communication among autonomous

objects and inheritance as shown in Table 1.

2.1 Flat Message Acceptance Figure 2: Flat Message Acceptance

Languages based on the Jut message uccep-

tunce such as Concurrent Smalltalk[lO] and

Orient84/K[5] support the single thread of control

within an object since the multiple threads yield

the complexity of programming, e.g., synchroniza-

tion among threads. This implies that incoming

messages of an object are serialized and each mes-

sage is handled at a time. Some languages provide

a mechanism to perform for an express message

when such an express message arrives during the

execution of an object. Because the current execu-

tion is suspended and another message is handled

in this case, we say that the execution is preemp-

tive. A method for an express message is called an

express method in this paper.

We can program the example in those languages.

Instead of using a specific language, the program

is written in a model language because of keeping

the generality of languages of the flat message ac-

1 [class Vehicle

x t
supers Object)
vars

4
5 express method Vehicle negotiation: hisvalue

t

t ,

peer state myvalue)

(vars . ..)
if state = #negotiating then

8 “both robots initiate the negotiation action

1:
:a
13

:i
16
17
18
19

at the same time”
if hisvalue > myValue then

state + #giveaway;
reply #accept

else
reply #notaccept

endif
else

state + #giveaway;
reply #accept

endif
20
21 I method Vehicle run
22 (vars lstate ret)

;9
myValue + Random new;
state + #moving;

25 “movine action is here”

g! [atyf?ke = Smovine then
28
29
30
31

state c”#negoGating;
lstate + #mustwait;
ret + peer negotiation: myValue &

else

E
“state is #giveaway”
lstate + #nowait;

id]
end

36 If lstate = #mustwait then

5:
[waitfor ret]
If ret = #accept then

39 “movine action is here”
40 peer godhead &
41 else
42 ‘waiting for peer’s action”

2
endif

else
45 “waiting for peer’s action”
46 endif
47 “...”
48’
49 I method Vehicle goahead

n moving again”

305

ceptance.

As shown in Figure 2, the Vehicle class is

defined where methods negotiation:, run, and

goahead are defined. The method negotiation:

is defined as an express method in line 5.

A region in lines 26 to 35 is called an atomic

region which is executed without preemption. That

is, even when a negotiation: message arrives, the

execution for the message is postponed during the

execution of the atomic region.

Method run is the main routine of the Vehicle

class. In line 25, the moving action must be pro-

grammed. When the object detects that it will

collide with another vehicle object, the execution

falls into line 26 to negotiate with the other object.

The state variable is keeping the object’s state.

The state has one of #moving, #giveaway, and

#negotiating. State #moving denotes that the

object is moving. State #giveaway denotes that

the object permits another object to move while

#negotiating is the state of the negotiation phase.

In the atomic region on lines 26 to 35, the

object’s action is determined according to the

state variable. The atomic region is needed be-

cause the state variable may be changed by the

negotiation: method which will be invoked at

any time except for during the execution of an

atomic region.

If the state variable is still #moving in line 27,

then the state is changed to #negotiating and

send the negotiation : message to another object

asynchronously. That is, instead of waiting of the

reply message immediately, a special object called

future object is stored in the ret variable in line 30.

It should be noted that we cannot wait for the reply

message here. This is because the other object may

also be sending the negotiation: message to the

object. This is a deadlock case if we wait for the

reply message in the atomic region. The lstate

variable is introduced in order to receive the reply

message outside the atomic region, i.e., in line 37.

The waitfor statement is a facility for the syn-

chronization of the asynchronous message passing.

The asynchronous message passing in line 30 is syn-

chronized in line 37. In other words, the waitfor

statement in line 37 is to wait for receiving the reply

message from the peer object at the future object

stored in the ret variable. Because the waitfor

statement is executed outside of the atomic region,

an express message negotiation : may be handled

when the message arrives.

If the Vehicle object receives the permission

from the peer object, the moving action is pro-

ceeded in line 39 and then the goahead message is

sent to the other robot in order to make the peer

object move.

In this way, to maintain the consistency of a state

variable kept in an object and to avoid a deadlock,

programming is very complicated in languages of

the flat message acceptance.

2.1.1 Inheritance Anomaly

Let us take look at the negotiation: method.

The state variable is checked in line 7 since the

method will be invoked when the object’s state is

#moving or #negotiating. This implies that we

have to rewrite the method if we add another state

into the state variable, e.g., #stopping. Thus, it

is difficult to inherit such a method with adding

new states.

2.2 Nested Message Acceptance

We show a program example written in a language

based on the nested message acceptance. Instead of

using a specific language, we use a model language

again.

Figure 3 shows the program of the example. The

select statement such as Ada is introduced to re-

ceive messages from other objects. In the select

statement in line 7, the object is waiting to re-

ceive the run message defined in line 8 or the

negotiation: message defined in line 42. When

the run message arrives at the object, the run

method defined in line 8 is executed.

The negotiation : method in line 42 is de-

fined with the express keyword. This means

that the negotiation: method may be executed

when message negotiation: arrives while the run

306

5 tmethod Vehicle mainroutine
6

t
vars

7 select
ret)

8 [method run
9 myValue + Random new;

10 state + #moving;
11 “moving action is here”
12 [atomic
13 if state = #moving then
14 eer negotiation: myValue % self &
15 P select-loop
16 [method result: ret
17 if ret = #accept then
18 “moving action is here”
19 peer goahead &

i!
else

state + #giveaway;

Ei
endif
exit-loop]

24 or [method negotiation: hisvalue % dst

if3
“both robots initiate the negotiation
action at the same time”

27 if hisValue > myValue then
28 state + #giveaway;

ii
dst result: #accept &

else
31 dst result: #notaccept &
32 endif]]
33 endif
34
35

1
rf state = #giveaway then

36 n waiting for peer’s action”
37 [method goahead
38 “moving action is here”
39 1
40 endif
41 “....”]
42 or [express method negotiation: tmp % dst
43 state + #giveaway.

dst result: #accept &]

Figure 3: Nested Message Acceptance

method is executed. In the method the sender ob-

ject is kept by the dst variable, so that the reply

message is sent to the sender object explicitly. This

semantics is derived from ABCL/ll.

The semantics of the asynchronous messa.ge ex-

pression in line 14 is based on ABCL/l 2. The

negotiation: message is sent to the peer object

‘In ABCL/l, the message acceptance form is written as
“(=> negotiation: tmp 0 dst . . .I”. Because the “@”
mark is reserved for another meaning in this paper, “%” is
used.

2The expression is equivalent to
“peer <= [negotiation: myValue 6 self” in ABCL/l.

asynchronously with explicitly asserting the reply

destination, i.e., the sender itself in this case. Then

the select-loop statement in line 15 waits for

two events: i) receiving the reply message from

the peer object in line 16, and ii) receiving the

negotiation: message in line 24.

As shown in Figure 3, we do not need state

#negotiation and the lstate variable. This is

because the negotiation: message acceptance is

multiply defined in this program. The first mes-

sage reception in line 42 is active at state #moving

while the second message reception in line 24 is

enable during the negotiation phase.

In the nested message acceptance mechanism, an

extra state and variables are not needed. However,

we can not reuse such a program because we can

not overwrite the behavior of a nested message ac-

ceptance.

2.3 Summaries and Requirements

Generally speaking, a problem we have considered

arises in the following scenario: when an object 0

performs some actions as shown below and at the

same time an object P sends a message M2 to 0

and blocks for the reply.

1. object 0 checks a variable V, which reflects the

object’s state,

2. 0 sends a message Ml to object P according to

variable V,, and then

3. changing

from P.

the value of V, according to the reply

If actions 1 through 3 are executed without pre-

emption, i.e., not performing for M2, then 0 and P

may cause a deadlock. If those actions are executed

with preemption, then the mutual exclusion prob-

lem occurs. That is, variable V, might be changed

by another method which is invoked at the accep-

tance of message Al2 during the execution.

To avoid the problem, we have shown two pro-

gramming examples. Actions 1 and 2 are per-

formed with non-preemptive and then action 3 is

realized by the synchronization of the asynchronous

307

message passing (or the future communication), so

that the execution is preemptive. Thus, the ob-

ject 0 can receive the M2 message and performs for

the message while the object waits for the reply of

Mr. It is, however, rather complicated program-

ming. In order to program such communication

safely and easily, the following mechanisms must

be supported by a programming language.

l

l

0

3

State and Method Behavior

The behavior of a method depends on the

object’s state. However, if we introduce an

explicit state variable in order to program a

method, it is difficult to inherit the method

as described in section 2.1.1. A mechanism to

control the behavior without accessing an ex-

tra state variable in a method is required.

Communication and State

During communication with another object,

the object’s state may be changed by perform-

ing for an incoming message. A communica-

tion mechanism is demanded to handle such

communication safely.

Inheritance

The inheritance mechanism is needed to reuse

a program. Since we can not redefine a method

which has been defined as a nested method in

a parent object, a language based on the flat

message acceptance is chosen.

Dynamic Method Scoping

To control the behavior of a method without any

extra state variables, we propose the notion of vis-

ible set in this section. Then, intensive set is intro-

duced in order to handle express messages during

communication with other objects safely. Finally,

an inheritance mechanism with visibEe set is intro-

duced in this section.

3.1 Method Set

First, a method set is introduced in order to de-

fine several actions of a method in several states.

1 [class ExampleObject
2 supers nil)
3 vars . . .
4
5 I

I 1

mset #Al method ExampleObject Ml
f

8 I

/* method body : bmll */

mset #Al method ExampleObject M2
9 /* method body : bm21 */

10
11 I mset #A2 method ExampleObject Ml
12 /* method body : bm12 */
13
14 I method ExampleObject MO
15 /* method body : bmO0 */
16
17 1

anobject msg 0 #Al;

Figure 4: ExampleObj ect

Let a method be represented by a pair of (n, b)

where n denotes a method name and b denotes the

method’s body. The pair is called method name-

body pair. A member of a method set is a method

name-body pair or another method set. A method

set is denoted by a symbol name. For example,

method sets {(Ml, b,ll), (M2, b,zl)} denoted by #Al

and {(Ml,h2)) d enoted by #A2 are represented as

follows:

[#Al, {(Ml, brim), (M2,bmn))]

[#A27 {(Ml, bmlz>N

A program of the above example is shown in Fig-

ure 4. To define a method included in a method

set, the mset keyword is added before the method

keyword.

The method Ml is multiply defined in this ex-

ample. The method name Ml is defined with the

method body brnll in the #Al method set while the

same name is defined with another method body

b mr2 in the #A2 method set.

3.2 Visible Set

In a visible set whose member is a method set or

a method name-body pair, all method name-body

pairs in the visible set are visible in the runtime rou-

tine. An auxiliary set called invisible set which is

another method set is introduced in order to define

operations over the visible set of an object, Let a

method scope be a pair of the visible and invisible

308

V = { (MO,bmoo),

[#AI,((M1,b,ll),(M2,b,nl)}],

[#A27 {(Ml, bmn>H >
IV ={}

Figure 5: Initial Visible and Invisible Sets in

ExampleOb j ect

sets. An object has method scope M, = (V,IV)

where I and IV are a visible and an invisible sets,

respectively. For example, the ExampleObj ect de-

fined in Figure 4 has the initial visible and invisible

sets shown in Figure 5.

The basic operations over the method scope are

include and exclude. To describe the semantics

of the include and exclude operations, we assume

that the following scenario is performed in the ini-

tial visible and invisible sets shown in Figure 5.

1 include #Al;
2 include #A2;
3 exclude #A2;

After the execution in line 1, the visible and in-

visible sets are changed below. The object may

perform for messages MO, Ml, and M2 at this point.

V = { (MO, Loo), (Ml, Lll), (MT bmn),

[#A% {(Ml, bm12>>1 1
11’ = {[#AL {[#Al, {(Ml,bmll), (M2,bm2l))l)])

In this way, the include operation taking a sym-

bol name is to add all members of a method set de-

noted by the symbol name into V. The method set

denoted by the symbol name is excluded from V.

The set is included in a new method set denoted

by the same symbol name and the new set is added

in IV.

After the execution in line 2, the visible and in-

visible sets are changed as follows:

= { (MO, boo), (MLbmn), (M2,L21) }

I”Ii = {[#A% {(Ml,bnll), [#A% {(Ml,Ln>)])]

[#Al, {[#Al, {(Ml,bnl1),(M2,bm2~)}1}~}

That is, method (Ml, bmll) is hidden and method

(Ml, bm12) is visible. In this way, if the same name

of a method name-body pair is already included in

V, the method name-body pair is replaced. The

old method name-body pairs and the method set

denoted by the parameter of the include operation

are included in a new method set. The new set is

added in IV.

Issuing the exclude operation in line 3, the sets

are changed as follows:

V = { (MO,b,oo),(Ml,b,ll),(M2,b,21>,

[#A& {(Ml, bm12>)1 1
IV = {[#Al, {[#Al, {(Ml,b,ll),(M2,b,zl))])l)

The exclude operation taking a symbol name

performs the following tasks: i) finding a method

set denoted by the symbol name in IV and ex-

cluding the set from IV (let the set be ms), ii)

for all method name-body pairs in ms, replacing a

method name-body pair in V with another method

name-body pair in ms such that those are the same

method name, and iii) method sets which are mem-

bers of ms are added in V. The semantics of

include and exclude operations is formally de-

scribed in the appendix.

The initial visible set is modified by the include

statement in the object definition. For example, if

the ExampleObj ect definition is modified as below,

the initial visible and invisible sets are the same as

the result of issuing the include operation taking

#Al.

1 [class ExampleObject
2 (supers nil)
3 (vars . ..)

4 (include #Al)

51
The visible set and operations over the set enable

us to write a program in which the behavior(or

body) of a method is changed without introducing

any explicit variables accessed in the method. In

other words, by those facilities it is easy to program

the same functionality written in a language of the

nested message acceptance.

It should be emphasized that we can define other

operators over the visible set, e.g., an operation

which replaces all members of the visible set with

all members of a method set.

309

1 [class ExampleDerived
2
3 I

supers ExampleObject sset #Pl)
vars . . .)

4
5 I method ExampleDerived Ml
6 /* method body : bm31 */
7 scope #Pl;
8 . . .
9 scope;

101

Figure 6: ExampleDerived

3.3 Intensive Set

It is required that an object should perform for a

message on the way to communicate with another

object. To handle such a case, the intensive set

is proposed. Let intensive set I be a set whose

member is a method set or a method name-body

pair. Methods represented by method name-body

pairs in I are immediately executed when messages

for those methods arrive at the object. In other

words, all the express methods described in section

2 are managed in the intensive set.

The communication facility over the intensive set

is called intensive communication. The following

statement is an example of the intensive commu-

nication, which is extracted from line 16 in Figure

4.

anobject msg @ #Al;

In this statement, all members of the method set

denoted by #Al are added in intensive set I during

the communication with anobject. That is,

I= {(Ml, bmd, (MT bra)}

During the communication, the object may ac-

cept and execute methods included in the intensive

set, i.e., methods Ml and M2. After the commu-

nication is done, the intensive set is changed to

empty.

An example below is the short form of the in-

tensive communication. In this program, the ob-

ject sends the msg message to anobject and at the

same time it can receive messages do : and e : . It is

easy to expand this form to the original form. The

method set name might be created by a compiler.

Ms = (~(MLb-ndh 0)

I= 0

[#PI, ({(MWnoo),

[#AI, (Ml, bm), (M2,bm)],

[#A27 (Ml, bdl~,
0)I

Figure 7: MS, I, and method scope #PI in

ExampleOb j ect

1 anobject msg @ [
2 [method do: arg . . .]
3 [method e: ..]

4 I
The intensive communication supports the exe-

cution of express methods during the communica-

tion. We will describe the notion of the transitional

method in section 4 to provide for the execution of

express methods during the method execution.

3.4 Inheritance

When we define an object 0 inheriting from an-

other object P, we sometimes need a mechanism

such that methods defined in P are inherited and

those methods are encapsulated. The visibility of

those methods should be controlled at the runtime.

To realize the capability, we provide for a mecha-

nism to create a method scope whose visible set is a

set of all method sets defined in a superclass. The

scope statement is introduced in order to replace

the visible and invisible sets of MS with ones of

such a method scope.

An example shown in Figure 6

defines the ExampleDerived object inheriting from

ExampleObj ect defined in Figure 4. The sset key-

word followed by symbol name #PI is added in the

declaration of superclass ExampleObj ect in line 2

so that all methods defined in the superclass are

included in a method scope denoted by #PI. The

initial MS = (V,IV), I, and method scope #PI are

shown in Figure 7. At the object creation, method

Ml is only visible.

To show how to change MS of the

310

1 [class Vehicle
2 supers Object)
3 vars peer myvalue)
4 include #normal)
5
6 I

1

mset #negotiating method Vehicle negotiation: hisValue

i!3
“both robots initiate negotiation at the same time”
if hisValue > myValue then

9 reply #accept
10 else
11 reply #notaccept

i

12 endif
13
14 I mset #normal method Vehicle negotiation: hisvalue

:i
reply #accept
transit run-gave;

17
18 I mset #normal transitional method Vehicle run
19 (vars a)
20 “moving action is here”
21 myValue + Random new;
22 a + peer negotiation: myValue 0 #negotiating;

%i
if a == #accept then

“moving action is here”
25 peer goahead &
26 else
27 “waiting for peer’s action”
28 endif
29
30 I mset #normal local method Vehicle run-gave

;1
“Action is moving”
“waiting for peer’s action”

33
34 I mset #normal method Vehicle goahead

“moving”

Figure 8: Programming in the Proposed Facilities

ExampleDerived object, suppose that the object

performs for Ml. After the scope statement taking

#Pi is issued in line 7, MS is changed as follows:

Ms = ({ (Wbnoo),

[#Al, (MLhm), (Wbm21)1,

[#A% (ML bm12)1),

0)

That is, method MO is only visible at this point.

In line 9, the scope statement taking no arguments

is issued. This means that MS is changed to the

original one:

Ms = ({ (Wbn31)),{>>

4 Transit ional Met hod

In communication among autonomous concurrent

objects, an object needs to receive and perform for

a message while a method of the object is executed.

In this case, the state of the object may be changed

and the object’s behavior is changed according to

those changes. We propose the notion of the trun-

sitional method to describe such a program. An

example is shown below:

1 [transitional method Example normal-run
23 [protect . ..]

. . .
t [protect . ..]

. . .
6
7 I method Example abnormal-run
8 . . .
9

10 I method Example negotiation:
11 . . .
12 transit abnormal-run
13 I
In this example, the normal-run method is de-

fined with the keyword transitional in line 1.

Such a method is called transitional method. In a

transitional method, the execution of the method

311

1 [class Lock
i

4 I

(include #free)

mset #free method Lock lock
5 exclude #free

t
I

include #lock

8 mset #lock method Lock unlock
9 exclude #lock

::,
include #free

12-
13 [class Buffer
14 vars . . . 1
15
16 1

include #notfull)

ii fmset #notfull method Buffer put
18 . . .
19
20 I mset #full method Buffer get

Figure 9: Lock and Buffer

may be suspended and the control is changed to

another method except for the execution of the

protect statement. In other words, during the ex-

ecution of a transitional method, all members of the

visible set are included in the intensive set.

For example, when the negotiation: mes-

sage arrives during the execution of method

normal-run, the execution is changed to the

negotiation: method. When the transit state-

ment in line 12 is issued, then the execution is

changed to the abnormal-run method instead of

resuming the execution of method normal-run. If

the execution of method negotiation: is termi-

nated without issuing the transit statement, the

execution of method normal-run is resumed.

5 Examples

In this section, two programming examples are

shown to demonstrate the capabilities of our pro-

posed communication fa.cilities.

5.1 Negotiation Protocol

The Autonomous Mobile Robots example de-

scribed in section 2 is programmed in Figure 8.

In this program, two method sets are defined, i.e.,

#negotiating and #normal. As you can see, no

1 [class LockBuffer
2 (supers Lock sset #visible #normal
3 ~

6 I

(scope #vF~e, sset iwsible)

after method LockBuffer lock

i
scope #normal

9 I after method LockBuffer unlock
scope #visible

Figure 10: LockBuff er

explicit state variables are programmed to control

the behavior of a method, and programming by

using the facilities proposed is very simple. More-

over, it is easy to modify the behavior of a method.

For example, if the #stopping state is added in the

object, the action of the negotiation: method in

the #stopping state is programmed as follows:

1 [mset #stopping method Vehicle negotiation: hisVal

iI ...

5.2 Inheritance Anomaly

If a language supports the after method mechanism

like in CLOS, the visible set helps the program-

mer to overcome some of the inheritance anomaly

problems in concurrent objects [l, 7, 81. In the in-

heritance anomaly problems in concurrent objects,

inheritance can not be employed due to the syn-

chronization constraints. For example, if we want

to create an object 0 inheriting from another ob-

ject P, it is sometimes impossible because the con-

straints of the methods execution in P can not be

changed in 0. Here we program one of inheritance

anomaly problems[7, 81.

We have already the Lock and Buffer ob-

jects shown in Figure 9. Now we want

to program the LockBuffer object inher-

iting from both Lock and Buffer objects.

The behavior of LockBuf f er is as follows:

put and get messages are accepted till the

lock message arrives at LockBuff er. Af-

ter the execution of method lock, the ex-

ecution of methods put and get are post-

312

poned until the unlock method is exe-

cuted.

Figure 10 shows the programming example. Two

method scopes #visible and #normal are defined.

All methods in Lock and Buffer are included in

the #visible method scope while all methods in

Lock are included in the #normal method scope.

The lock and unlock methods are defined as after

method. Those methods control the M, method

scope of the object shown in lines 7 and 10. Though

two methods are defined in LockBuffer but those

are not totally redefined.

6 Concluding Remarks

Our major motivation in this paper was to de-

velop a significant communication mechanism for

programming autonomous objects. At a glance, it

seems that the visible set is almost the same as the

enable set [9]. The major difference is that sev-

eral actions of a method are defined in different

method sets. By defining method sets, we can pro-

gram several method’s actions depending on an ob-

ject’s state across the inheritance hierarchy. More-

over, communication among autonomous objects is

safely and easily programmed by using the visible

and intensive sets.

Examples shown in this paper give us the demon-

stration of the capabilities of the functionalities

proposed in this paper. We believe that the visible

and intensive sets and its related communication

and inheritance facilities are not only for a specific

language but also adapted into other concurrent

object-oriented programming languages. We are

currently implementing those facilities on a reflec-

tive language called AL-1[3, 41 to realize them.

Acknowledgements

The author would like to thank Professor Mario

Tokoro for comments and suggestions on the draft

of this paper.

References

[l] D. Decouchant, S. Krakowiak, M. Meysem-

bourg, M. Riveill, and X. Rousset de Pina.

A Synchronization Mechanism for Typed Ob-

jects in a Distributed System. Sigplun Notice,

Vol. 24, No. 4, pp. 105-107, April 1989.

[2] D. Gelernter. Generative Communication in

Linda. A CM Transactions on Programming

Languages and Systems, Vol. 1, No. 7, pp. 80-

112, January 1985.

[3] Yutaka Ishikawa. Reflection Facilities and Re-

alistic Programming. Sigplun Notice, Vol. 26,

No. 8, pp. 101-110, August 1991.

[4] Yutaka Ishikawa and Hideaki Okamura. A

New Reflective Architecture: AL-l Approach.

In The Second OOPSLA 91 Workshop on Re-

flection and Metalevel Architecures, 1991.

[5] Yutaka Ishikawa and Mario Tokoro. A Concur-

rent Object-Oriented Knowledge Representa-

tion Language Orient84/K: Its Features and

Implementation. In Proceedings of OOPSLA-

86, pp. 232-241, September 1986.

[6]Ytk Ihk u a a s i awa, Hideyuki Tokuda, and Clif-

ford W. Mercer. Object-Oriented Real-Time

Langua.ge Design: Constructs for Timing

Constraints. In Proceedings of OOPSLA-90,

pp. 289-298, October 1990.

[7] Satoshi Matsuoka, Ken Wakita, and Akinori

Yonezawa. Inheritance in Concurrent Object-

Oriented Language. In 7th Conference Pro-

ceedings Japan Society for Software Science

and Technology, pp. 65-68, 1990.

[8] Satoshi Matsuoka and Akinori

Yonezawa. Analysis of Inheritance Anomaly

in Object-Oriented Concurrent Programming

Languages. In G. A. Agha, editor, To be pub-

lished in a forthcomming book on Concurrent

Object-Oriented Computing. 1992.

313

[9] C. Tomlinson and V. Singh. Inheirtance and

synchronization with Enabled-Sets. In Pro-

ceedings of OOPSLA '89, pp. 103-112, Octo-

ber 1989.

[lo] Yasuhiko Yokote and Mario’ Tokoro. Experi-

ence and Evolution of ConcurrentSmalltalk. In

Proceedings of OOPSLA-87, pp. 406-415, Oc-

tober 1987.

[ll] Akinori Yonezawa, editor. ABCL An Object-

Oriented Concurrent System. MIT Press,

1990.

A Formal Description of Dy-

namic Method Scoping

Let a method be represented by a pair of (n, b)

where n denotes a method name and b denotes its

body. The pair is called method name-body pair.

Let a method set be a set of method name-body

pairs and other method sets. A method set is de-

noted by a symbol name. For example,

[#msyq, {(mm bh), @my bbz),
[#msym2, {(mm, bbl)~l~l

is a method set whose name is “#ms ymr ”

and members are method name-body pairs

“(mml, bbl)“, “(mm2, bbz)“, and method set

“[#msy~, {(mw, bbl))]“.
Let visible set V be a set of method sets and

method name-body pairs. Let invisible set IV be a

method set. Method scope A$ is a pair of the visi-

ble and invisible sets, i.e., M, = (V,IV). Function

vf : M, + V is defined to extract the visible set

from method scope M,. Function ivf : MS + IV

is defined to extract the invisible set from method

scope M,.

The basic operations over the method scope are

visible and invisible. Let N be a variable over

the method names and let B and C be a variable

over the method bodies. Let S and T be a vari-

able over the symbol names and let X and Y be

variables over the method sets.

visible S

After the execution, new M, becomes:

M, = (nV, nIV)

where

‘X [%X1 E VW,),
nV = {(K B) I (KB) E vf(M,),

not(‘C (N,C) E X)}

U {[TJI I KY1 E vfW),T# S>
u wm I VW E w
u WY Yl I K Yl E XI

nJV = {IV, [s, WV) I (KB) E vf(M,),
3c (KC) E X}

U {[T Yl I IT, Yl E VfWs),
T = w

Figure 11: The semantics of visible

invisible S
After the execution, new M, becomes:

M, = (nV, nIV)
where

‘X [S, X] E ivf(M,),

nV = WV) I (WV E Xl

u WY Yl I KY1 E XI
U {(KB) I VW E W&), VW) $ XI
u WJI I KY1 E VfW~), KY1 # XI

nIV = {[T, Y]) [T, Y] E ivf(M,), T # S}

Figure 12: The semantics of invisible

Then, the semantics of the “visible S” and

“invisible S” operations is given in Figure 11

and Figure 12.

314

