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ABSTRACT 

There are two major issues to address to achieve 
integration of an object-oriented programming system 
with a database system. One is the language issue: an 
object-oriented programming language must be 
augmented with semantic data modeling concepts to 
provide a robust set of data modeling concepts to allow 
modeling of entities for important real-world applications. 
Another is the computational-model issue: application 
programmers should be able to access and manipulate 
objects as though the objects are in an infinite virtual 
memory: in other words, they should not have to be 
aware of the existence of a database system in their 
computations with the data structures the programming 
language allows. This paper discusses these issues and 
presents the solutions which we have incorporated into 
the ORION object-oriented database system at MCC. 

1. INTRODUCTION 

In the Advanced Computer Architecture Program at 
MCC, we have built a prototype object-oriented database 
system, called ORION. Presently, it is being used in 
supporting the data management needs of PROTEUS, an 
expert system shell also prototyped in the Advanced 
Computer Architecture Program at MCC. In ORION we 
have directly implemented the object-oriented paradigm 
[GOLD81, GOLD83, BOBR83, SYMB84. BOBR85], and 
added persistence and sharability to objects. We have 
two versions of ORION: a single-user, multi-task system 
called ORION-1 ; and a multi-user, multi-task system 
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called ORION-1s. in which a single server provides 
persistent object management on behalf of several 
workstations. ORION is intended for applications from the 
Al [STEF86]. multimedia documents [AHLS84, IEEE85 
WOEL86]. and computer-aided design domains 
[AFSA86], implemented in the object-oriented 
programming paradigm. Functions supported in ORION 
include versions and change notification [CHOU86, 
CHOUSS], composite objects [KIM87], dynamic schema 
evolution[BANE87], transaction management [GARZ88], 
associative queries [BANE88], and multimedia data 
management IWOEL87J. 

ORION has been implemented in Common 
LISP[STEEM] on a Symbolics 3600 LISP machine 
[SYMB85], and has also been ported to the SUN 
workstation under the UNIX operating system. ORION 
extends Common LISP with object-oriented programming 
and database capabilities. (In contrast, the proposed 
Common LISP Object System (CLOS) [CLOSSS] is only 
an object-oriented language extension to Common LISP.) 

The objective of integrating a programming language 
system with a database system has provided much 
impetus to research in both the programming language 
and database communities. This has been motivated by 
the desire to enhance programming language systems 
with the benefits of database systems, such as persistent 
and sharable storage, database integrity control, and 
associative access to the database. One of the major 
objectives of ORION was the integration of a 
programming language (Common LISP) with a database 
system. To achieve this, we had to address two major 
issues. One is the language issue. Programming 
languages in general do not have the primitive semantic 
data modeling concepts which are necessary to model 
real-world entities. These include instantiation (an object 
is an instance of a class), aggregation (an object 
consists of a number of attributes), and generalization (a 
class can have a number of subclasses), composite 
objects (an object consists of a number of exclusive 
component objects), versions (an object may have a 
number of versions), and so on. Object-oriented 
programming languages embody some of these 
concepts. namely, instantiation, aggregation, and 
generalization; and as such., one may say that the gap 
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between objet!-oriented programming languages and 
databases is substantially narrower than that between 
other programming languages (except the logic 
programming language, whose concepts subsume the 
relational model of data) and databases. The semantic 
data modeling concepts that programming languages do 
not have necessarily require language extensions. The 
traditional solution is to define a database language (such 
as SQL [IBM81]), and have the application programmers 
embed database-language statements in the application 
programs (typically written in FORTRAN, COBOL. PUl, 
C, etc.). The trouble with this approach is that the 
programmers must learn to program in more than one 
language, and program the mapping between the data 
structures supported in the programming language and 
those supported in the data model [COPE84]. Clearly, 
database extensions to programming languages must not 
introduce new or conflicting language paradigms, and 
require unproductive mapping of data structures. 

Another issue is the computational model that 
programming languages in general, and object-oriented 
programming languages in particular, imply. Programming 
language systems assume that all objects are in virtual 
memory, and computations are performed by chasing 
memory pointers and storing and referencing objects in 
data structures supported in the programming languages. 
In applications that require a large amount of data to be 
extensively accessed and manipulated, such as 
simulation of a complex assembly of mechanical parts or 
a design of an electronic device, computations cannot be 
offloaded to any traditional database system. This is 
because of the excessive overhead of crossing the 
boundary between the application and the database 
system. One of the important shortcomings of 
conventional database systems is that they are not 
designed to support navigational access over a large set 
of objects in virtual memory. The cost of fetching a single 
object is prohibitively high, especially in relational 
database systems (compared to a few memory lookups 
that it takes an application program manipulating objects 
in virtual memory). If the compute-intensive applications 
are to use the conventional database system simply as a 
repository of persistent objects, and copy objects out of 
the database into the application’s address space for 
computations, it is entirely up to the application to 
manage consistency of the objects in its address space 
and to map the data structures to and from the database. 

The objective of this paper is to present our 
approaches to addressing these two major issues in 
integrating a programming language system with a 
database system. In particular, we will outline our 
approach to integrating the object-oriented concepts with 
a programming language, further augmenting them with 
additional semantic data modeling concepts. Further, we 
will describe the architectural concepts and data 
structures we use in ORION to give the application 

programmers the illusion and the performance of an 
infinitely large virtual memory for their objects. 

2. DATABASE EXTENSIONS TO A PROGRAMMING 
LANGUAGE 

In this section, we will outline the ORION 
object-oriented extensions to Common LISP. First. we will 
describe the syntax for capturing the basic 
object-oriented programming concepts. Then we will 
augment the basic syntax with a number of database 
concepts, including associative access to objects and 
application-related data modeling concepts such as 
versions and composite objects. The objective of this 
section is to outline our approach to integrating these 
database concepts into the basic object-oriented 
programming paradigm, and demonstrate that the 
extensions are fairly simple. Therefore, we will not 
provide the full syntax and semantics of the ORION 
interface. The syntax, as presented in an abbreviated 
form in this paper, is similar in principle to that of a 
number of other object-oriented languages, such as 
Flavors [SYMB84] and LOOPS [BOBR83]. 

2.1 BASIC OBJECT-ORIENTED EXTENSIONS 

The following message creates the definition of a 
new class. 

(make-ciass Classname 
:superclasses ListofSuperclasses 
:attributes ListofAttributes 
:methods ListofMethodSpecs) 

Classname is the name of the new class. All keyword 
arguments are optional. The ListofSuperclasses 
associated with the :superclasses keyword is a list of the 
superclasses of the new class. The ListofAttributes 
associated with the :attribute keyword is a list of attribute 
specifications. An attribute specification is a list consisting 
of an attribute name and keywords with associated 
values, as follows: 

(AttributeName (:domain DomainSpeo] 
[:inherit-from Superclass]) 

A DomainSpec is a LISP data type, a class, or a set 
of LISP data types or classes: and is used to specify the 
type(s) of an attribute. If the keyword :inherit-from is 
specified, the associated value is the name of the 
superclass from which the attribute will be inherited. 
Otherwise, the attribute is inherited from the first 
superclass in the ListofSuperclasses. 

The ListofMethodSpecs associated with the 
:methods keyword is a list of pairs (MethodName 
Superclass). The MethodName is the name of a method 
to be inherited from the SuperClass. The Superclass is a 
class name. If the keyword :methods is not specified, 
methods are inherited from superclasses, and conflicts 
are resolved on the basis of superclass ordering. 

An instance can be created by sending a make 
message to the class to which the instance will belong. 
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(make Classname :Attributel value1 
. . . 
:At!ributeN valueN) 

2.2 DATABASE EXTENSIONS 

In this section we outline some important extensions 
to the basic object-oriented concepts. The extensions 
include associative access to objects, semantic data 
modeling concepts, and database control functions. 

2.2.1 Associative Access 

Once the database size exceeds the virtual memory 
size, it is obviously important to bring into virtual memory 
only those objects which the application will need. 
Programming languages in general have traditionally not 
been concerned with queries which will return from the 
database a small subset of the database that satisfies 
search conditions. To select all instances (or any one 
instance) of a class that satisfy a given query expression, 
we use a select (or select-any) message. A set object 
(possibly an empty set) containing these instances is 
returned. The messages for selection have the following 
format, where QueryExpression is a Boolean expression 
of predicates: 

(select Class QueryExpression) 
(select-any Class QueryExpression) 

An example query is to select the instances of a class 
Vehicle whose weight is over 5000 Ibs. 

(select ‘Vehicle ‘(> Weight 5000)) 

To delete all instances of a class that satisfy a given 
query expression, a delete message is used. 

(delete Class QueryExpression) 

To delete a specific object, a delete-object message is 
used. 

(delete-object Object) 
where Object is the object identifier. 

Similarly, a change message is used to replace the 
value of an attribute of all instances of a class that satisfy 
a given Boolean expression. 

(change Class [QueryExpression] 
AttributeName NewValue) 

2.2.2 Semantic Data Modeling Concepts 

ORION supports two semantic data modeling 
concepts which are not part of the conventional 
object-oriented paradigm. 

Composite Objects 

The conventional object-oriented paradigm, although 
powerful, does not capture the IS-PART-OF relationship 
between objects: that an object is a part of another 
object. In [KIM87], we define a composite object as an 
object with a hierarchy of exclusive component objects. 
The classes to which the objects of a composite object 
belong are also organized in a hierarchy. This 
hierarchical collection of classes is called a composite 

object hierarchy. A non-root class on a composite object 
hierarchy is called a component class. Each non-leaf 
class on a composite object hierarchy has one or more 
attributes whose domains are the component classes. 
We call such attributes composite attributes. A 
constituent object of a composite object references an 
instance of its component class through a composite 
attribute. 

To support composite: objects, we extend the 
make-class message as follows. 

(AttributeName [:composite TrueOrNil]) 

The keyword :composite declares whether an 
attribute is a composite attribute. 

An instance can be made a part of a composite 
object only at the time of creation of that instance. This is 
done by extending the make message with a parent 
argument: 

(make Classname 
:parent (ParentObject ParentAttributeName) 
:Attributel value1 
. . . 
:AttributeN valueN) 

The keyword :parent is associated with a pair 
(ParentObject ParentAttributeName), where ParentObject 
with an attribute ParentAttributeName is to reference the 
instance being created. The make message, without the 
:parent keyword, is used to create root instances of 
composite objects. 

Versions 

The ORION model of versions and its implementation 
are presented in [CHOUSS]. Here we will outline (not fully 
explain) some of the messages we support for versions. 

An object is either versioned or non-versioned. A 
versioned object is an instance of a class which the 
application declares to be versionable. The make-class 
message was extended with an additional keyword 
argument, versionable, as fatlows. 

(make-class Classname 
:versionable TrueOrNil) 

The keyword :versionable can have a value true or nil, 
indicating whether versions can be created for instances 
of the class. 

Our model distinguishes transient versions 
(temporary versions) from working versions (stable 
versions). A transient version may be created from 
scratch or derived from an existing version. Any number 
of transient versions may be derived at any time from an 
existing version, giving .rise to a version-derivation 
hierarchy for each versioned object. We use the term 
version instance to refer to a specific version, and 
generic instance to refer to the abstract versioned object. 
A generic instance maintains the history of derivation of 
version instances for a versioned object. 
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When the user issues a make message to a 
versionable class, ORION creates a generic object, as 
well as the first version instance of the versionable object. 
The new version instance is a transient version, and 
becomes the root of the version-derivation hierarchy for 
the versionable object. The optional keyword arguments 
of a make-class message supply attribute names and 
values for the version instance. 

To derive a new version from an existing version, a 
derive-version message is sent to a VersionedObject, 
as follows. 

(derive-version VersionedObject) 

The message causes a copy to be made of the 
VersionedObject. The copy becomes a new transient 
version, and is assigned a new version number and an 
object identifier. 

In ORION, both the generic instance and a version 
instance of the generic instance have object identifiers. 
An object, either a version instance or a non-versioned 
object, may reference one or more other objects. If an 
object references a version instance, the reference may 
be the object identifier of a generic instance or that of a 
version instance. If the reference is to a generic instance, 
the system dynamically binds the object to a default 
version instance. 

The delete-object message is used to delete a 
version instance or a generic object. If the message is 
sent to a generic object, the entire version-derivation 
hierarchy is deleted. In other words, all version instances 
of the versionable object, as well as the generic object, 
are deleted. If a delete-object message is sent to a 
version instance, the version instance is deleted. If the 
version instance is a transient version, or a working 
version from which no other versions have been derived, 
the history (or version descriptor) of the version instance 
is deleted as well. (The history of a version instance is 
maintained within the generic object of the version 
instance) If the version instance is the only version 
instance of the versionable object, the generic object is 
also deleted. If the delete-object message is sent to a 
working version that has other derived versions, however, 
the history of the version instance is not deleted. 

To fetch, update, or detete version instances of a 
versionable class based on a QueryExpression, the 
select, change, and delete messages shown earlier 
can be used, without any changes in their syntax or 
semantics. These messages cause all version instances 
of the specified class to be examined. 

2.2.3 Database Control Functions 

ORION provides an extensive set of messages for the 
user to control the integrity and resources of the 
database, including physical clustering of objects, 
schema evolution (changes to the definition of a 
database), secondary index management, and so on. 

Because of space limitations, we will indicate Only Some 
of the messages for transaction management and 
schema evolution here. 

Transactions [GRAY781 are an important capability in 
database systems. A transaction is an atomic sequence 
of database operations that takes the database from one 
consistent state to another consistent state, and is a unit 
of concurrency control and recovery. If a transaction 
aborts, all database changes made by the transaction 
are backed out. A transaction is shielded from the effects 
of other concurrently executing transactions. If a 
transaction commits, all updates are safely recorded in 
stable storage. The messages to r;smmit and abort 
transactions are as follows: 

(commit) 
(abort) 

The schema of an ORION database is a class 
hierarchy (actually a directed acyclic graph): and as 
such two types of changes to the schema are 
meaningful: changes to the definitions of a class 
(contents of a node) in the class hierarchy, and changes 
to the structure (edges and nodes) of the class hierarchy. 
Changes to the class definitions include adding and 
deleting attributes and methods, Changes to the class 
hierarchy structure in&de creation and deletion of a 
class, and alteration of the IS-A relationship between 
classes (adding and deleting the superclass-subclass 
relationship between a pair of classes). The complete 
taxonomy of schema changes we allow in ORION is given 
in [BANE87]. 

To append a class to the superclass list of an 
existing class, or to remove a superclass from the 
superclass list of an existing class, one can use the 
messages: 

(add-superclass Class Superclass) 
(remove-superclass Class Superclass) 

where the arguments Class and Superclass are the 
names of classes. 

The change-attribute message given below can be 
used to add a new attribute to a class, to change the 
inheritance of an attribute, or to change the properties of 
an attribute. All keyword arguments in the message are 
optional, and they indicate the types of change to be 
made to the attribute. 

(change-attribute Class AttributeName 
[:recursivep TrueOrNil] 
[:domain DomainSpec] 
[:inherit-from Superclass]) 

The keyword :recursivep has a default value T. If nil, it 
indicates that the change to the attribute definition is 
limited to the specified class, and must not be 
propagated to its subclasses. If non-nil, it indicates that 
the change must be propagated. 

To add a new attribute as a locally defined attribute, the 
:inherit-from keyword is used with a nil value. If the 
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attribute name was a previously defined attribute of the 
class, it is simply re-defined. To change the inheritance 
of an attribute, the :inherit-from keyword is used, and its 
associated value is the name of the superclass from 
which the attribute is to be inherited. 

3. IN-MEMORY OBJECT MANAGEMENT 

Conventional database systems allocate a buffer pool 
of page frames in an attempt to pin in virtual memory data 
likely to be. accessed again soon [TRAl82]. The pages in 
the buffer pool are accessed using a fix/unfix protocol 
[TFiAl82, EFFE84]. That is. the caller (various 
components of a database system) must request the 
page buffer manager to pin down a page in memory 
before accessing it. Further, when the caller is done with 
the page, it informs the page buffer manager that the 
buffer page can be re-used. A page is thus guaranteed 
to stay in the same memory location during a fix/unfix 
period; that is, there is no danger that it is swapped out 
while the caller (access manager or storage manager) is 
still working on i!. The page buffer manager typically uses 
an LRU replacement algorithm or its variants [CHOU85]. 
A buffer with a positive fix count, that is, a buffer which is 
still being worked on, is exempt from replacement 
decisions. The page buffer manager keeps track of all 
the pages in the buffer pool through a page table. 

The buffering scheme used in conventional database 
systems is not adequate for supporting a programming 
language environment. One problem with this approach is 
that it tends to force the application programmers to map 
the data structures between the application and the 
database system. In a programming language 
environment, for storage and retrieval efficiency, the 
objects need to be stored on disk in one format (the disk 
format): however, the applications must be able to 
manipulate the objects in their in-memory format. the 
format supported by the programming language. A 
somewhat related problem is that, as we discussed in 
Section 1, database techniques for maintaining database 
consistency do not extend to the objects in virtual 
memory which the applications directly access and 
manipulate. Another problem with the conventional 
buffering scheme is memory utilization. As many 
importent applications need to cache a large number of 
objects in virtual memory to perform extensive 
computations on them, it is often undesirable to keep 
page frames in the database buffer pool which contain 
many unneeded objects. 

To solve the above problems, we have adopted a 
dual-buffer management scheme, in which the available 
database buffer space is partitioned into a page buffer 
pool and an object buffer pool. The workspace discussed 
in the context of the Gemstone database system 
[MAIE86] is similar to the object buffer pool in ORION. TO 
access an object. the page that contains the object is 
brought into a page buffer, and then the object is located. 
retrieved, and placed in an object buffer. ORION SupPOrts 
data structures for efficiently managing objects in the 

object buffer pool, and addresses issues that arise from 
the fact that the object buffer pool and the database may 
contain different copies of the same object during a 
transaction (a sequence of read and write requests 
against the database; this sequence is treated by the 
database system as an atomic action for purposes of 
recovery). Applications can directly access the objects in 
the object buffer pool, and the transaction management 
feature of ORION ensures database consistency 
(concurrency control and crash recovery) for these 
in-memory objects. In this section. we describe the data 
structures ORION has implemented to manage 
in-memory objects, that is, objects in the object buffer 
pool. The impacts of dual buffering on the architecture of 
a database system, and the solutions we have 
implemented in ORION, will be discussed in Section 4. 

3.1 OBJECT BUFFERING 

Figure la shows a high-level block diagram of the 
ORION architecture. The message handler receives all 

Figure la. ORION Architecture 

Figure lb. ORION Storage Subsystem 

messages sent to ORION objects. The object subsystem 
provides high-level functions, such as schema evolution, 
version control, query optimization, and multimedia 
information management. The storage subsystem 
provides access to objects on disk. It manages the 
allocation and deallocation of pages on disk, finds and 
places objects on the pages, and moves pages to and 
from the disk. The transaction subsystem provides a 
concurrency control and recovery mechanism to protect 
database integrity while allowing concurrent execution of 
multiple transactions. As in conventional database 
systems [GRAY78], concurrency control uses a locking 
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protocol, and a logging mechanism is used for recovery 
from system crashes and aborts. 

The storage subsystem consists of the access 
manager and the storage manager, as shown in Figure 
1 b. The storage manager manipulates objects in their 
disk format and performs the transformation between the 
disk format and the in-memory format. The access 
manager controls the transfer of objects between the 
object buffer pool and the page buffer pool. 

The ORION page buffer manager is similar to the 
buffer manager in conventional database systems 
[TRAl82]. It manages a pool of page frames and 
implements a page replacement algorithm. The page 
buffer pool serves as a staging area for regular (small) 
objects as well as the buffer area for caching portions of 
long multimedia objects. 

The object buffer manager performs two major 
functions: it manages the object buffer pool; and 
maintains a virtual-memory address table (resident 
object table or ROT) for objects in the object buffer pool. 
There is a single physical object buffer pool, and multiple 
applications may concurrently access objects in the 
buffer pool. An application can accumulate objects in the 
object buffer pool by creating new objects or sending 
object requests to ORION. 

A request to access an object through its 
system-wide unique identifier (UID) is directed to the 
access manager. It calls the object manager to first 
search the ROT. If the object is not registered in the table 
(i.e., an object fault occurs), the access manager calls 
the storage manager to retrieve the object from the 
database, and have the object buffer manager register it 
in the table and place the object in an object buffer. 

The most frequent operation to the ROT is looking up 
the location of an object. Since the ROT can grow to a 
substantial size, a hash table is used to speed up 
associative searches based on UIDs. The key of the hash 
table is the UID, and the value is a pointer to the 
descriptor for the object associated with the UID (to be 
discussed shortly). Insertions and deletions of the ROT 
entries are two other frequent operations that are 
necessary for supporting object swapping. Sometimes a 
collection of objects in the buffer pool must be accessed: 
for example, when the modified objects need to be 
flushed to the database to commit a transaction, or when 
the contents of the object buffer pool are invalidated 
because of changes to the database schema (we will 
discuss these in more detail in Section 4). 

Buffer management for objects in the object buffer 
pool is inherently more complex than. that for pages 
because of the variability of object sizes. Placement of a 
newly retrieved object is a nontrivial task, since a free 
block of memory with at least the size of the object must 
be found. Fragmentation of the buffer pool becomes 
more severe as objects of different sizes are swapped in 

and out of memory. Expensive compaction of the object 
buffer pool may be required from time to time. The 
difficulty of object buffering is further compounded by the 
fact that objects in the buffer pool are directly accessible 
to the application. It is difficult, if not impossible. to keep 
track of all the outstanding object references (memory 
pointers) in the application program. Adding the fix/unfix 
protocol to the application interface would make the 
interface too cumbersome. Therefore, we need to rely on 
a garbage collection technique to reclaim space 
occupied by inactive objects. 

3.2 Resident Object Descriptors 

When the application requests an object. ORION 
returns a pointer to a descriptor of the object in the object 
buffer pool, rather than a pointer to the object. This is 
also the approach taken in LOOM [KAEHEll]; however, 
our ROD structure consists of several fields in addition to 
those used in LOOM, because of our consideration for 
the performance and integrity of the database in a 
multiple concurrent-user environment. (The rest of this 
paper will make this clear.) The descriptor, called the 
resident object descriptor (ROD), is illustrated in Figure 
2a. The ROD is an intermediate data structure between 

I. I PID 

-cl . 

Figure 2a. ROD Structure 

Resident Object 
Table (ROT) references 

Figure 2b. Object Buffering 

the ROT and the actual object. The pointer-to-object 
field in the ROD contains a pointer through which the 
contents of the object can be accessed. The UID field 
contains the UID of the object; the PID field contains the 
physical address of the object on disk; and the 
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class-ROD is the pointer to the ROD of the class object of 
which the object is an instance. The status field is used to 
indicate if the object is changed, The registered field is 
used to indicate whether the ROT contains a pointer to 
the ROD. The other fields of the ROD, message-cache 
and lock-cache, are used to speed up message passing 
and concurrency control; their use will be discussed later. 

We have introduced the ROD as a compromise 
between two somewhat conflicting goals that we need to 
satisfy for locating in-memory objects, On one hand, we 
would like to pass back the actual object (actually a 
pointer to the object) when a user requests it through a 
UID. On the other hand, we need to retain the ability to 
swap out any object in memory when such a need arises, 
for example, when the main memory is flooded with too 
many old objects. However, without direct hardware 
support, there is no easy way to catch a direct reference 
to a swapped-out object and take appropriate actions, as 
in a paged virtual memory system. 

An object may be swapped out when it is not 
referenced in any active transaction, or when the object 
buffer pool becomes full. Then the pointer (to the object) 
in the ROD is changed to nil. The memory pointer to the 
ROD in the ROT is also removed, so that the ROD itself 
can be garbage collected when there are no more 
outstanding pointers to it. However, the ROD stays in 
memory so that the access manager can bring the object 
back in case the object is re-accessed through the ROD. 
There are situations where a ROD may be created before 
the object is brought into memory. For example, the 
result of a query is a set of RODS. There is no need to 
bring all the objects into memory since some of them 
may not be accessed at all. Under this situation, the 
access manager will create the RODS at query time, but 
fetch the objects only on demand. As shown in Figure 2b. 
some objects may have a ROT entry and a ROD that 
points to an in-memory copy of the object. Queried 
objects which have not been brought in have a ROT entry 
and a ROD containing a nil pointer. Swapped-out objects 
may have a ROD but no ROT entry. Finally, there are 
objects that reside only on disk and have no in-memory 
data structures associated with them. 

The ROT is initially empty. The first time an object is 
accessed by a user, the object buffer manager detects 
that the object is not in the table and the access manager 
brings it in from the database. The access manager 
creates a ROD for the object and has the object buffer 
manager register it in the ROT with the UID as the key. 
The access manager passes a pointer to the ROD to the 
user, who can then directly access the contents of the 
object through the ROD. When another request comes in 
for the same object, the object buffer manager will locate 
the ROD (through the ROT) and pass back a pointer to 
the ROD. As shown in Figure 3, object y is referenced by 
both objects x and z through the same ROD. 

The object buffering and ROD manipulation 
discussed above are all transparent to ORION users. An 

Figure 3. Concurrent References to an Object 

ORION user simply sends a message to an object and 
expects a return message as in any object-oriented 
system. The objects that a user sees are actually 
pointers to RODS. To process a message sent to an 
object, the ORION message handler first examines the 
ROD and have the object read in from the database, if 
necessary. 

ROT ROT 
I 

Under our scheme for managing objects in the object 
buffer pool, it is possible for an extraneous ROD to be 
created for the same object while a ROD for the object 
already exists. Figure 4a illustrates this situation. Object i 
is swapped out, and its ROD, il, is “de-registered” from 
the ROT: however, the ROD il is still being pointed to by 
a memory pointer, and is thus not garbage collected. 
Now another request causes object i to be swapped in 
(again), creating a second ROD, i2, as well as an entry in 
the ROT. To minimize the number of obsolete RODS, the 
next time object i is accessed through the old ROD il, 
ORION converts the ROD into an indirection (forwarding) 
pointer, called an invisible pointer [SYMB85], to the new 
ROD i2, as shown in Figure 4b. The Symbolics machine 
garbage collects invisible pointers (Figure 4c), making 
the memory pointer to the old ROD a direct pointer to the 
new ROD. 

When the access manager receives a request to 
fetch an object based on its UID or ROD, it calls first the 
object buffer manager to see if the object is already in the 
object buffer pool. If it is, the access manager returns a 
pointer to the object’s ROD. Otherwise, it directs the 
storage manager to determine the PID of the object by 
hashing into UID-PID table for all objects in the database 
(this is different from the ROT), fetch the page containing 
the object, isolate the object within the page, and 
transform the object from its disk format to the in-memory 
format. Finally, the access manager calls the object 
buffer manager to place the transformed object in the 
object buffer pool, and returns a pointer to the object’s 
ROD. The PID of the object is recorded in the PID field of 
the ROD, shown in Figure 2a. This is to avoid the 
UID-to-PID translation overhead, when the object has to 
be flushed (written) to disk, or fetched again after it has 
been swapped out. To insert new objects. the storage 
manager determines the PlDs of the objects so as to 
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Figure 4. Handling Duplicate RODS 

cluster instances of the same class in the same physic al 
segment, registers the objects in the UID-PID hash table 
for all database objects. 

3.3 MESSAGE CACHE 

ORION supports four types of messages: instance 
attribute messages, class attribute messages, instance 
method messages, and class method messages. We will 
use the term attribute messages to stand for both 
instance and class attribute messages, and the term 
method messages for both instance and class method 
messages. The function that is placed in the function cell 
of a message symbol in the LISP system is called a 
message function (this is called a discriminating function 
in CommonLoops, and a generic function in Flavors). A 
message function simply dispatches a message: it 
contains no knowledge of how the message is 
implemented. 

The main data structure of the message handler is 
the message cache. The message cache consists of two 
arrays. The first array is the instance message cache: 
the instance message cache holds instance attribute 
messages and instance method messages. The second 
array of the message cache is the class message cache: 
the class message cache holds class attribute messages 
and class method messages. Each entry in the message 
cache contains a vector that holds either class messages 
or instance messages for a particular class. The entries 
in the message cache are called class caches. There 

are exactly two class caches for any class: one for class 
messages, and another for instance messages. 

When a message is sent to an ORION object, the 
message-cache field in the ROD (Figure 2a) is first 
checked to see if the class cache has already been 
checked for the object. If the class cache is present, the 
message is dispatched on the cache. If it is not, the 
message handler looks up the object’s class cache in the 
appropriate message cache. That is, if the object is a 
class, the class message cache is used; if it is an 
instance, the instance message cache is used). If the 
cache entry is found, it is recorded in the ROD for the 
object, and the message is dispatched. If it is not found, 
a cache entry is created, recorded in the appropriate 
message cache, and placed in the ROD for the object. 

3.4 LOCK CACHE 

Most commercial database systems use a locking 
protocol to control access to a shared database by more 
than one concurrent transactions (applications) 
[GRAY78]. A transaction must set a lock in an 
appropriate mode on an object before it can access the 
object. If a transaction has already set a lock on an 
object, another transaction attempting to access the 
same object in a conflicting mode is forced to wait until 
the first transaction releases the lock. (A read or write 
request by a transaction conflicts with a write lock set by 
another transaction.) ORION uses a sophisticated locking 
protocol [KIM871 based on that used in IBM’s SQUDS 
[lBM81]. 

Unlike LOOM, ORION supports multiple concurrent 
transaction. This means that before the access manager 
can return the ROD pointer of an object to a requesting 
transaction, it must check whether another transaction is 
accessing the object in a conflicting mode. This check is 
relatively expensive, since the access manager must call 
the lock manager in the transaction subsystem, and the 
lock manager must search the lock table. 

To avoid this overhead whenever possible, when the 
access manager first creates or retrieves an object from 
the database, it encodes in the lock-cache field of the 
object’s ROD the mode of the lock which is set on the 
object. In this way, the access manager needs to call the 
lock manager only the first time the object must be 
locked, and when a read lock on the object must be 
upgraded to a write lock (i.e., the object was first 
retrieved from the database with a read lock, and now 
object must be updated). In all other situations, calls to 
the lock manager may be avoided. 

4. CONSEQUENCES OF OBJECT BUFFERING ON THE 
DATABASE SYSTEM ARCHITECTURE 

Dual buffering has significant consequences on the 
architecture of a database system. These have to do with 
the fact that an object may have two different copies 
during a transaction: one in the object buffer pool and 
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another in the database. One consequence is obviously 
the need for a translator to transform an object between 
its disk format and the in-memory format. A second 
consequence is the need to invalidate the in-memory 
objects, when certain types of changes are made to the 
database schema. A third consequence is the need to 
screen the database copy of an object from the result of 
a query, if the object has an in-memory copy. 

4.1 OBJECT FORMAT TRANSLATION 

To support efficient storage and retrieval, an object 
has to be packaged into a form that is suitable for disk 
storage. An object transformer is a part of the storage 
subsystem in ORION. The storage format for 
disk-resident objects is as shown in Figure 5. 

Figure 5. Storage iormat for Disk Objects 

The uid consists of two parts: the unique identifier of 
the class to which the object belongs, and the unique 
identifier of the object within the class. The object-length 
and attribute-count record the total length of the object 
and the number of attributes s&red in the disk format. 
The attribute vector consists of the identifiers vi of all 
attributes for which the object has explicitly specified 
values. The values-offset vector consists of the offsets 
oi, in the values part of the object storage format, of the 
values’ of the attributes vi. A value can be a primitive 
value (such as an integer, string, etc.), or a reference to 
another instance, namely, the uid of the referenced 
object. 

4.2 OBJECT BUFFER FLUSHING 

Applications accumulate objects in the object buffer 
pool by creating new objects, fetching and updating 
objects from the database. The new objects and updated 
copies of objects need to be written to the database 
when the transaction which has created or updated the 
objects commits (successfully finishes). Of course, the 
objects are transformed to their disk format before being 
written to the database. New objects are registered in the 
UID-PID hash table for database objects, and updated 
objects replace their old copies in the database. 

Further, when changes are made to the database 
schema (i.e., class definitions and the structure of the 
class hierarchy) which add or drop an attribute trom a 
class, instances of the affected class which reside in the 
object buffer pool become invalid and must be purged 
from the object buffer pool. Of the 20 or so schema 
change operations ORION allows, the following invalidate 
objects in the object buffer pool. 

1, Add a new attribute to a class 

2. Drop an existing attribute from a class 
3. Change the inheritan& of an attribute (if any 

previously inherited attributes are lost) 
4. Make a class S a superclass of a class C 
5. Remove a class S from the superclass list of a class C 
6. Drop an existing class 

4.3 QUERY PROCESSING 

The access manager applies search predicates 
specified in a query to instances of a class. Our 
dual-buffering scheme complicates the implementation of 
a predicate-based access of objects. The two copies of 
the same object have the same identifier, but may differ 
in contents. Under an architecture which supports dual 
buffering, there are two fundamental approaches for 
processing a predicate-based access. One, which we 
will call a dual-buffer evaluation scheme, is to evaluate 
the predicates on a class twice: once against the objects 
of the class in the object buffer pool, and then against 
those objects of the class in the database whose copies 
are not in the object buffer pool. Another, which we will 
call a single-buffer evaluation scheme, is to flush 
(move) the new and updated objects in the object buffer 
pool to the database, transforming them into the disk 
format, and then to evaluate the predicates against the 
database. 

Let us discuss the two options in more detail. 
Consider the situation shown in Figure 6. Objects X, Y, 

database 

Figure 6. Dual-Buffer Query Evaluation 

and Z, all of which are instances of the same class, have 
been placed in the object buffer pool, and X and Y have 
subsequently been updated and a new instance V 
created. We can see that predicates should not be 
evaluated against X and Y in the database, since 
updated copies of the objects, x’ and Y’, exist in the 
object buffer pool. Also if Z satisfies the predicate, it 
should not be brought into the object buffer pool, since a 
copy already exists in the object buffer pool. Further, in 
the case of a deletion, if X’ or Y’ satisfies the predicate, 
its older copy, X or Y, must also be deleted. 
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The dual-buffer evaluation scheme may proceed in 
a number of different ways. One reasonable algorithm is 
as follows, assuming that the access request is confined 
to a single class C. 

SUMMARY 

(1) Evaluate the predicates against the instances of class 
C in the object buffer pool, generating a set 0 of 
object identifiers that satisfied the predicates. 

(2) Evaluate the predicates against the instances of class 
C in the database, generating a set D of object 
identifiers that satisfied the predicates. On this step, 
instances with copies in the object buffer pool are not 
evaluated again, 

(3) The result of the access request is the union of steps 
1 and 2. 

We note that on step 2 above the predicates need be 
evaluated against only those objects in the object buffer 
pool that have been marked as new or updated, since 
objects that have not been updated after their retrieval 
from the database have already been evaluated on step 
1. When objects get flushed to the database, copies of 
the updated objects are sent to the access manager and 
applied to the database. The update flags for the new or 
updated objects in the object buffer pool are then reset 
(cleared). 

In this paper, we discussed two major issues in 
integrating a programming language system with a 
database system, and presented the solution we have 
implemented in integrating an object-oriented extension 
to Common LISP with the ORION object-oriented 
database system. One is the language issue. A 
programming language does not provide the primitive 
semantic data modeling concepts which are necessary to 
model real-world entities and the relationships among 
them. Database extensions to a programming language 
must not introduce a new or conflicting paradigm, or 
force the programmers to map between data structures in 
the programming language and those understood by the 
database system. Another issue is the computational 
model. A database system must support the illusion 
(along with adequate performance) that an application 
program has at its disposal an infinite virtual memory, in 
which it may access and manipulate the objects in the 
data structures supported by the programming language. 

[AFSA86] 

The single-buffer evaluation scheme proceeds as 
follows, again assuming that objects that satisfy 
predicates on the attributes of a single class C are to be 
determined and retrieved. [AHLS84] 

(1) Select those objects of class C in the object buffer 
pool that have been marked as new or updated since 
their retrieval from the database, and force copies of 
them to the database. This will make the two copies 
of each new or updated object identical. 

(2) Evaluate the predicates against objects of class C in 
the database, generating a set D of object identifiers 
that satisfied the predicates. D is the set of all objects 
to be retrieved. 

[BANE871 

(3) Eliminate from D those objects of class C that are in 
the object buffer pool. Retrieve into the object buffer 
pool only those objects in the resulting set 0’. 

One major problem with the dual-buffer evaluation 

[ BANE881 

scheme is that the objects in the object buffer pool are in 
a different storage format from that used for objects in the 
database. As such, we need two different 
implementations of object search and predicate 
evaluation algorithms. We also need to support efficient 
access paths for the objects in the object buffer pool, so 
that we may avoid sequential searches of all objects. The 
shortcoming of the single-buffer evaluation scheme is of 
course that updates must be flushed to the database, and 
that the objects must be transformed from their 
in-memory format to the disk format for predicate 
evaluation. The overhead incurred in object 
transformation in a LISP environment led us to adopt the 
dual-buffer evaluation scheme for ORION: under a 
different environment, the single-buffer evaluation 
scheme may be superior. 

[BOBR83] 

[BOBR85] 

[CHOU85] 

[CHOU86] 
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