
INTEGRATING AN OBJECT-ORIENTED PROGRAMMlNG SYSTEM
WITH A DATABASE SYSTEM

Won Kim, Nat Ballou,Hong-Tai Chou, Jorge F. Garza,
Darrell Woe/k

Microelectronics and Computer Technology Corporation
3500 West Balcones Center Drive

Austin, Texas 78759

Jay Banerjee’

Unisys Corporation
P.O. Box 64942, M.S. WE-3C

St. Paul, MN 55164

ABSTRACT

There are two major issues to address to achieve
integration of an object-oriented programming system
with a database system. One is the language issue: an
object-oriented programming language must be
augmented with semantic data modeling concepts to
provide a robust set of data modeling concepts to allow
modeling of entities for important real-world applications.
Another is the computational-model issue: application
programmers should be able to access and manipulate
objects as though the objects are in an infinite virtual
memory: in other words, they should not have to be
aware of the existence of a database system in their
computations with the data structures the programming
language allows. This paper discusses these issues and
presents the solutions which we have incorporated into
the ORION object-oriented database system at MCC.

1. INTRODUCTION

In the Advanced Computer Architecture Program at
MCC, we have built a prototype object-oriented database
system, called ORION. Presently, it is being used in
supporting the data management needs of PROTEUS, an
expert system shell also prototyped in the Advanced
Computer Architecture Program at MCC. In ORION we
have directly implemented the object-oriented paradigm
[GOLD81, GOLD83, BOBR83, SYMB84. BOBR85], and
added persistence and sharability to objects. We have
two versions of ORION: a single-user, multi-task system
called ORION-1 ; and a multi-user, multi-task system

” Banerjee was a member of the MCC ORION group
when this work was done.

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the ACM copyright notice and the title of the publicarion and its date appear.
and notice is given that copying is by permission of the Association for
Computing Machinery. To copy otherwise. or to republish, requires a fee and/
or specific permission.

C 1988 ACM O-8979 l-284-5/88/0009/0 142 $1.50

called ORION-1s. in which a single server provides
persistent object management on behalf of several
workstations. ORION is intended for applications from the
Al [STEF86]. multimedia documents [AHLS84, IEEE85
WOEL86]. and computer-aided design domains
[AFSA86], implemented in the object-oriented
programming paradigm. Functions supported in ORION
include versions and change notification [CHOU86,
CHOUSS], composite objects [KIM87], dynamic schema
evolution[BANE87], transaction management [GARZ88],
associative queries [BANE88], and multimedia data
management IWOEL87J.

ORION has been implemented in Common
LISP[STEEM] on a Symbolics 3600 LISP machine
[SYMB85], and has also been ported to the SUN
workstation under the UNIX operating system. ORION
extends Common LISP with object-oriented programming
and database capabilities. (In contrast, the proposed
Common LISP Object System (CLOS) [CLOSSS] is only
an object-oriented language extension to Common LISP.)

The objective of integrating a programming language
system with a database system has provided much
impetus to research in both the programming language
and database communities. This has been motivated by
the desire to enhance programming language systems
with the benefits of database systems, such as persistent
and sharable storage, database integrity control, and
associative access to the database. One of the major
objectives of ORION was the integration of a
programming language (Common LISP) with a database
system. To achieve this, we had to address two major
issues. One is the language issue. Programming
languages in general do not have the primitive semantic
data modeling concepts which are necessary to model
real-world entities. These include instantiation (an object
is an instance of a class), aggregation (an object
consists of a number of attributes), and generalization (a
class can have a number of subclasses), composite
objects (an object consists of a number of exclusive
component objects), versions (an object may have a
number of versions), and so on. Object-oriented
programming languages embody some of these
concepts. namely, instantiation, aggregation, and
generalization; and as such., one may say that the gap

142 VOW-A ‘AR Proceedings September 25-30, 1988

between objet!-oriented programming languages and
databases is substantially narrower than that between
other programming languages (except the logic
programming language, whose concepts subsume the
relational model of data) and databases. The semantic
data modeling concepts that programming languages do
not have necessarily require language extensions. The
traditional solution is to define a database language (such
as SQL [IBM81]), and have the application programmers
embed database-language statements in the application
programs (typically written in FORTRAN, COBOL. PUl,
C, etc.). The trouble with this approach is that the
programmers must learn to program in more than one
language, and program the mapping between the data
structures supported in the programming language and
those supported in the data model [COPE84]. Clearly,
database extensions to programming languages must not
introduce new or conflicting language paradigms, and
require unproductive mapping of data structures.

Another issue is the computational model that
programming languages in general, and object-oriented
programming languages in particular, imply. Programming
language systems assume that all objects are in virtual
memory, and computations are performed by chasing
memory pointers and storing and referencing objects in
data structures supported in the programming languages.
In applications that require a large amount of data to be
extensively accessed and manipulated, such as
simulation of a complex assembly of mechanical parts or
a design of an electronic device, computations cannot be
offloaded to any traditional database system. This is
because of the excessive overhead of crossing the
boundary between the application and the database
system. One of the important shortcomings of
conventional database systems is that they are not
designed to support navigational access over a large set
of objects in virtual memory. The cost of fetching a single
object is prohibitively high, especially in relational
database systems (compared to a few memory lookups
that it takes an application program manipulating objects
in virtual memory). If the compute-intensive applications
are to use the conventional database system simply as a
repository of persistent objects, and copy objects out of
the database into the application’s address space for
computations, it is entirely up to the application to
manage consistency of the objects in its address space
and to map the data structures to and from the database.

The objective of this paper is to present our
approaches to addressing these two major issues in
integrating a programming language system with a
database system. In particular, we will outline our
approach to integrating the object-oriented concepts with
a programming language, further augmenting them with
additional semantic data modeling concepts. Further, we
will describe the architectural concepts and data
structures we use in ORION to give the application

programmers the illusion and the performance of an
infinitely large virtual memory for their objects.

2. DATABASE EXTENSIONS TO A PROGRAMMING
LANGUAGE

In this section, we will outline the ORION
object-oriented extensions to Common LISP. First. we will
describe the syntax for capturing the basic
object-oriented programming concepts. Then we will
augment the basic syntax with a number of database
concepts, including associative access to objects and
application-related data modeling concepts such as
versions and composite objects. The objective of this
section is to outline our approach to integrating these
database concepts into the basic object-oriented
programming paradigm, and demonstrate that the
extensions are fairly simple. Therefore, we will not
provide the full syntax and semantics of the ORION
interface. The syntax, as presented in an abbreviated
form in this paper, is similar in principle to that of a
number of other object-oriented languages, such as
Flavors [SYMB84] and LOOPS [BOBR83].

2.1 BASIC OBJECT-ORIENTED EXTENSIONS

The following message creates the definition of a
new class.

(make-ciass Classname
:superclasses ListofSuperclasses
:attributes ListofAttributes
:methods ListofMethodSpecs)

Classname is the name of the new class. All keyword
arguments are optional. The ListofSuperclasses
associated with the :superclasses keyword is a list of the
superclasses of the new class. The ListofAttributes
associated with the :attribute keyword is a list of attribute
specifications. An attribute specification is a list consisting
of an attribute name and keywords with associated
values, as follows:

(AttributeName (:domain DomainSpeo]
[:inherit-from Superclass])

A DomainSpec is a LISP data type, a class, or a set
of LISP data types or classes: and is used to specify the
type(s) of an attribute. If the keyword :inherit-from is
specified, the associated value is the name of the
superclass from which the attribute will be inherited.
Otherwise, the attribute is inherited from the first
superclass in the ListofSuperclasses.

The ListofMethodSpecs associated with the
:methods keyword is a list of pairs (MethodName
Superclass). The MethodName is the name of a method
to be inherited from the SuperClass. The Superclass is a
class name. If the keyword :methods is not specified,
methods are inherited from superclasses, and conflicts
are resolved on the basis of superclass ordering.

An instance can be created by sending a make
message to the class to which the instance will belong.

September 2530,1988 OOPSlA ‘88 Proceedings 143

(make Classname :Attributel value1
. . .
:At!ributeN valueN)

2.2 DATABASE EXTENSIONS

In this section we outline some important extensions
to the basic object-oriented concepts. The extensions
include associative access to objects, semantic data
modeling concepts, and database control functions.

2.2.1 Associative Access

Once the database size exceeds the virtual memory
size, it is obviously important to bring into virtual memory
only those objects which the application will need.
Programming languages in general have traditionally not
been concerned with queries which will return from the
database a small subset of the database that satisfies
search conditions. To select all instances (or any one
instance) of a class that satisfy a given query expression,
we use a select (or select-any) message. A set object
(possibly an empty set) containing these instances is
returned. The messages for selection have the following
format, where QueryExpression is a Boolean expression
of predicates:

(select Class QueryExpression)
(select-any Class QueryExpression)

An example query is to select the instances of a class
Vehicle whose weight is over 5000 Ibs.

(select ‘Vehicle ‘(> Weight 5000))

To delete all instances of a class that satisfy a given
query expression, a delete message is used.

(delete Class QueryExpression)

To delete a specific object, a delete-object message is
used.

(delete-object Object)
where Object is the object identifier.

Similarly, a change message is used to replace the
value of an attribute of all instances of a class that satisfy
a given Boolean expression.

(change Class [QueryExpression]
AttributeName NewValue)

2.2.2 Semantic Data Modeling Concepts

ORION supports two semantic data modeling
concepts which are not part of the conventional
object-oriented paradigm.

Composite Objects

The conventional object-oriented paradigm, although
powerful, does not capture the IS-PART-OF relationship
between objects: that an object is a part of another
object. In [KIM87], we define a composite object as an
object with a hierarchy of exclusive component objects.
The classes to which the objects of a composite object
belong are also organized in a hierarchy. This
hierarchical collection of classes is called a composite

object hierarchy. A non-root class on a composite object
hierarchy is called a component class. Each non-leaf
class on a composite object hierarchy has one or more
attributes whose domains are the component classes.
We call such attributes composite attributes. A
constituent object of a composite object references an
instance of its component class through a composite
attribute.

To support composite: objects, we extend the
make-class message as follows.

(AttributeName [:composite TrueOrNil])

The keyword :composite declares whether an
attribute is a composite attribute.

An instance can be made a part of a composite
object only at the time of creation of that instance. This is
done by extending the make message with a parent
argument:

(make Classname
:parent (ParentObject ParentAttributeName)
:Attributel value1
. . .
:AttributeN valueN)

The keyword :parent is associated with a pair
(ParentObject ParentAttributeName), where ParentObject
with an attribute ParentAttributeName is to reference the
instance being created. The make message, without the
:parent keyword, is used to create root instances of
composite objects.

Versions

The ORION model of versions and its implementation
are presented in [CHOUSS]. Here we will outline (not fully
explain) some of the messages we support for versions.

An object is either versioned or non-versioned. A
versioned object is an instance of a class which the
application declares to be versionable. The make-class
message was extended with an additional keyword
argument, versionable, as fatlows.

(make-class Classname
:versionable TrueOrNil)

The keyword :versionable can have a value true or nil,
indicating whether versions can be created for instances
of the class.

Our model distinguishes transient versions
(temporary versions) from working versions (stable
versions). A transient version may be created from
scratch or derived from an existing version. Any number
of transient versions may be derived at any time from an
existing version, giving .rise to a version-derivation
hierarchy for each versioned object. We use the term
version instance to refer to a specific version, and
generic instance to refer to the abstract versioned object.
A generic instance maintains the history of derivation of
version instances for a versioned object.

144 OOPSLA ‘88 Proceedings September 2530, 1988

When the user issues a make message to a
versionable class, ORION creates a generic object, as
well as the first version instance of the versionable object.
The new version instance is a transient version, and
becomes the root of the version-derivation hierarchy for
the versionable object. The optional keyword arguments
of a make-class message supply attribute names and
values for the version instance.

To derive a new version from an existing version, a
derive-version message is sent to a VersionedObject,
as follows.

(derive-version VersionedObject)

The message causes a copy to be made of the
VersionedObject. The copy becomes a new transient
version, and is assigned a new version number and an
object identifier.

In ORION, both the generic instance and a version
instance of the generic instance have object identifiers.
An object, either a version instance or a non-versioned
object, may reference one or more other objects. If an
object references a version instance, the reference may
be the object identifier of a generic instance or that of a
version instance. If the reference is to a generic instance,
the system dynamically binds the object to a default
version instance.

The delete-object message is used to delete a
version instance or a generic object. If the message is
sent to a generic object, the entire version-derivation
hierarchy is deleted. In other words, all version instances
of the versionable object, as well as the generic object,
are deleted. If a delete-object message is sent to a
version instance, the version instance is deleted. If the
version instance is a transient version, or a working
version from which no other versions have been derived,
the history (or version descriptor) of the version instance
is deleted as well. (The history of a version instance is
maintained within the generic object of the version
instance) If the version instance is the only version
instance of the versionable object, the generic object is
also deleted. If the delete-object message is sent to a
working version that has other derived versions, however,
the history of the version instance is not deleted.

To fetch, update, or detete version instances of a
versionable class based on a QueryExpression, the
select, change, and delete messages shown earlier
can be used, without any changes in their syntax or
semantics. These messages cause all version instances
of the specified class to be examined.

2.2.3 Database Control Functions

ORION provides an extensive set of messages for the
user to control the integrity and resources of the
database, including physical clustering of objects,
schema evolution (changes to the definition of a
database), secondary index management, and so on.

Because of space limitations, we will indicate Only Some
of the messages for transaction management and
schema evolution here.

Transactions [GRAY781 are an important capability in
database systems. A transaction is an atomic sequence
of database operations that takes the database from one
consistent state to another consistent state, and is a unit
of concurrency control and recovery. If a transaction
aborts, all database changes made by the transaction
are backed out. A transaction is shielded from the effects
of other concurrently executing transactions. If a
transaction commits, all updates are safely recorded in
stable storage. The messages to r;smmit and abort
transactions are as follows:

(commit)
(abort)

The schema of an ORION database is a class
hierarchy (actually a directed acyclic graph): and as
such two types of changes to the schema are
meaningful: changes to the definitions of a class
(contents of a node) in the class hierarchy, and changes
to the structure (edges and nodes) of the class hierarchy.
Changes to the class definitions include adding and
deleting attributes and methods, Changes to the class
hierarchy structure in&de creation and deletion of a
class, and alteration of the IS-A relationship between
classes (adding and deleting the superclass-subclass
relationship between a pair of classes). The complete
taxonomy of schema changes we allow in ORION is given
in [BANE87].

To append a class to the superclass list of an
existing class, or to remove a superclass from the
superclass list of an existing class, one can use the
messages:

(add-superclass Class Superclass)
(remove-superclass Class Superclass)

where the arguments Class and Superclass are the
names of classes.

The change-attribute message given below can be
used to add a new attribute to a class, to change the
inheritance of an attribute, or to change the properties of
an attribute. All keyword arguments in the message are
optional, and they indicate the types of change to be
made to the attribute.

(change-attribute Class AttributeName
[:recursivep TrueOrNil]
[:domain DomainSpec]
[:inherit-from Superclass])

The keyword :recursivep has a default value T. If nil, it
indicates that the change to the attribute definition is
limited to the specified class, and must not be
propagated to its subclasses. If non-nil, it indicates that
the change must be propagated.

To add a new attribute as a locally defined attribute, the
:inherit-from keyword is used with a nil value. If the

September 2530,1988 OOPSIA ‘88 Proceedings 145

attribute name was a previously defined attribute of the
class, it is simply re-defined. To change the inheritance
of an attribute, the :inherit-from keyword is used, and its
associated value is the name of the superclass from
which the attribute is to be inherited.

3. IN-MEMORY OBJECT MANAGEMENT

Conventional database systems allocate a buffer pool
of page frames in an attempt to pin in virtual memory data
likely to be. accessed again soon [TRAl82]. The pages in
the buffer pool are accessed using a fix/unfix protocol
[TFiAl82, EFFE84]. That is. the caller (various
components of a database system) must request the
page buffer manager to pin down a page in memory
before accessing it. Further, when the caller is done with
the page, it informs the page buffer manager that the
buffer page can be re-used. A page is thus guaranteed
to stay in the same memory location during a fix/unfix
period; that is, there is no danger that it is swapped out
while the caller (access manager or storage manager) is
still working on i!. The page buffer manager typically uses
an LRU replacement algorithm or its variants [CHOU85].
A buffer with a positive fix count, that is, a buffer which is
still being worked on, is exempt from replacement
decisions. The page buffer manager keeps track of all
the pages in the buffer pool through a page table.

The buffering scheme used in conventional database
systems is not adequate for supporting a programming
language environment. One problem with this approach is
that it tends to force the application programmers to map
the data structures between the application and the
database system. In a programming language
environment, for storage and retrieval efficiency, the
objects need to be stored on disk in one format (the disk
format): however, the applications must be able to
manipulate the objects in their in-memory format. the
format supported by the programming language. A
somewhat related problem is that, as we discussed in
Section 1, database techniques for maintaining database
consistency do not extend to the objects in virtual
memory which the applications directly access and
manipulate. Another problem with the conventional
buffering scheme is memory utilization. As many
importent applications need to cache a large number of
objects in virtual memory to perform extensive
computations on them, it is often undesirable to keep
page frames in the database buffer pool which contain
many unneeded objects.

To solve the above problems, we have adopted a
dual-buffer management scheme, in which the available
database buffer space is partitioned into a page buffer
pool and an object buffer pool. The workspace discussed
in the context of the Gemstone database system
[MAIE86] is similar to the object buffer pool in ORION. TO
access an object. the page that contains the object is
brought into a page buffer, and then the object is located.
retrieved, and placed in an object buffer. ORION SupPOrts
data structures for efficiently managing objects in the

object buffer pool, and addresses issues that arise from
the fact that the object buffer pool and the database may
contain different copies of the same object during a
transaction (a sequence of read and write requests
against the database; this sequence is treated by the
database system as an atomic action for purposes of
recovery). Applications can directly access the objects in
the object buffer pool, and the transaction management
feature of ORION ensures database consistency
(concurrency control and crash recovery) for these
in-memory objects. In this section. we describe the data
structures ORION has implemented to manage
in-memory objects, that is, objects in the object buffer
pool. The impacts of dual buffering on the architecture of
a database system, and the solutions we have
implemented in ORION, will be discussed in Section 4.

3.1 OBJECT BUFFERING

Figure la shows a high-level block diagram of the
ORION architecture. The message handler receives all

Figure la. ORION Architecture

Figure lb. ORION Storage Subsystem

messages sent to ORION objects. The object subsystem
provides high-level functions, such as schema evolution,
version control, query optimization, and multimedia
information management. The storage subsystem
provides access to objects on disk. It manages the
allocation and deallocation of pages on disk, finds and
places objects on the pages, and moves pages to and
from the disk. The transaction subsystem provides a
concurrency control and recovery mechanism to protect
database integrity while allowing concurrent execution of
multiple transactions. As in conventional database
systems [GRAY78], concurrency control uses a locking

146 OOPSLA ‘88 Proceedings September 25-30, 1 YLW

protocol, and a logging mechanism is used for recovery
from system crashes and aborts.

The storage subsystem consists of the access
manager and the storage manager, as shown in Figure
1 b. The storage manager manipulates objects in their
disk format and performs the transformation between the
disk format and the in-memory format. The access
manager controls the transfer of objects between the
object buffer pool and the page buffer pool.

The ORION page buffer manager is similar to the
buffer manager in conventional database systems
[TRAl82]. It manages a pool of page frames and
implements a page replacement algorithm. The page
buffer pool serves as a staging area for regular (small)
objects as well as the buffer area for caching portions of
long multimedia objects.

The object buffer manager performs two major
functions: it manages the object buffer pool; and
maintains a virtual-memory address table (resident
object table or ROT) for objects in the object buffer pool.
There is a single physical object buffer pool, and multiple
applications may concurrently access objects in the
buffer pool. An application can accumulate objects in the
object buffer pool by creating new objects or sending
object requests to ORION.

A request to access an object through its
system-wide unique identifier (UID) is directed to the
access manager. It calls the object manager to first
search the ROT. If the object is not registered in the table
(i.e., an object fault occurs), the access manager calls
the storage manager to retrieve the object from the
database, and have the object buffer manager register it
in the table and place the object in an object buffer.

The most frequent operation to the ROT is looking up
the location of an object. Since the ROT can grow to a
substantial size, a hash table is used to speed up
associative searches based on UIDs. The key of the hash
table is the UID, and the value is a pointer to the
descriptor for the object associated with the UID (to be
discussed shortly). Insertions and deletions of the ROT
entries are two other frequent operations that are
necessary for supporting object swapping. Sometimes a
collection of objects in the buffer pool must be accessed:
for example, when the modified objects need to be
flushed to the database to commit a transaction, or when
the contents of the object buffer pool are invalidated
because of changes to the database schema (we will
discuss these in more detail in Section 4).

Buffer management for objects in the object buffer
pool is inherently more complex than. that for pages
because of the variability of object sizes. Placement of a
newly retrieved object is a nontrivial task, since a free
block of memory with at least the size of the object must
be found. Fragmentation of the buffer pool becomes
more severe as objects of different sizes are swapped in

and out of memory. Expensive compaction of the object
buffer pool may be required from time to time. The
difficulty of object buffering is further compounded by the
fact that objects in the buffer pool are directly accessible
to the application. It is difficult, if not impossible. to keep
track of all the outstanding object references (memory
pointers) in the application program. Adding the fix/unfix
protocol to the application interface would make the
interface too cumbersome. Therefore, we need to rely on
a garbage collection technique to reclaim space
occupied by inactive objects.

3.2 Resident Object Descriptors

When the application requests an object. ORION
returns a pointer to a descriptor of the object in the object
buffer pool, rather than a pointer to the object. This is
also the approach taken in LOOM [KAEHEll]; however,
our ROD structure consists of several fields in addition to
those used in LOOM, because of our consideration for
the performance and integrity of the database in a
multiple concurrent-user environment. (The rest of this
paper will make this clear.) The descriptor, called the
resident object descriptor (ROD), is illustrated in Figure
2a. The ROD is an intermediate data structure between

I. I PID

-cl .

Figure 2a. ROD Structure

Resident Object
Table (ROT) references

Figure 2b. Object Buffering

the ROT and the actual object. The pointer-to-object
field in the ROD contains a pointer through which the
contents of the object can be accessed. The UID field
contains the UID of the object; the PID field contains the
physical address of the object on disk; and the

September 25-30,1988 OOPSLA ‘88 Proceedings 147

class-ROD is the pointer to the ROD of the class object of
which the object is an instance. The status field is used to
indicate if the object is changed, The registered field is
used to indicate whether the ROT contains a pointer to
the ROD. The other fields of the ROD, message-cache
and lock-cache, are used to speed up message passing
and concurrency control; their use will be discussed later.

We have introduced the ROD as a compromise
between two somewhat conflicting goals that we need to
satisfy for locating in-memory objects, On one hand, we
would like to pass back the actual object (actually a
pointer to the object) when a user requests it through a
UID. On the other hand, we need to retain the ability to
swap out any object in memory when such a need arises,
for example, when the main memory is flooded with too
many old objects. However, without direct hardware
support, there is no easy way to catch a direct reference
to a swapped-out object and take appropriate actions, as
in a paged virtual memory system.

An object may be swapped out when it is not
referenced in any active transaction, or when the object
buffer pool becomes full. Then the pointer (to the object)
in the ROD is changed to nil. The memory pointer to the
ROD in the ROT is also removed, so that the ROD itself
can be garbage collected when there are no more
outstanding pointers to it. However, the ROD stays in
memory so that the access manager can bring the object
back in case the object is re-accessed through the ROD.
There are situations where a ROD may be created before
the object is brought into memory. For example, the
result of a query is a set of RODS. There is no need to
bring all the objects into memory since some of them
may not be accessed at all. Under this situation, the
access manager will create the RODS at query time, but
fetch the objects only on demand. As shown in Figure 2b.
some objects may have a ROT entry and a ROD that
points to an in-memory copy of the object. Queried
objects which have not been brought in have a ROT entry
and a ROD containing a nil pointer. Swapped-out objects
may have a ROD but no ROT entry. Finally, there are
objects that reside only on disk and have no in-memory
data structures associated with them.

The ROT is initially empty. The first time an object is
accessed by a user, the object buffer manager detects
that the object is not in the table and the access manager
brings it in from the database. The access manager
creates a ROD for the object and has the object buffer
manager register it in the ROT with the UID as the key.
The access manager passes a pointer to the ROD to the
user, who can then directly access the contents of the
object through the ROD. When another request comes in
for the same object, the object buffer manager will locate
the ROD (through the ROT) and pass back a pointer to
the ROD. As shown in Figure 3, object y is referenced by
both objects x and z through the same ROD.

The object buffering and ROD manipulation
discussed above are all transparent to ORION users. An

Figure 3. Concurrent References to an Object

ORION user simply sends a message to an object and
expects a return message as in any object-oriented
system. The objects that a user sees are actually
pointers to RODS. To process a message sent to an
object, the ORION message handler first examines the
ROD and have the object read in from the database, if
necessary.

ROT ROT
I

Under our scheme for managing objects in the object
buffer pool, it is possible for an extraneous ROD to be
created for the same object while a ROD for the object
already exists. Figure 4a illustrates this situation. Object i
is swapped out, and its ROD, il, is “de-registered” from
the ROT: however, the ROD il is still being pointed to by
a memory pointer, and is thus not garbage collected.
Now another request causes object i to be swapped in
(again), creating a second ROD, i2, as well as an entry in
the ROT. To minimize the number of obsolete RODS, the
next time object i is accessed through the old ROD il,
ORION converts the ROD into an indirection (forwarding)
pointer, called an invisible pointer [SYMB85], to the new
ROD i2, as shown in Figure 4b. The Symbolics machine
garbage collects invisible pointers (Figure 4c), making
the memory pointer to the old ROD a direct pointer to the
new ROD.

When the access manager receives a request to
fetch an object based on its UID or ROD, it calls first the
object buffer manager to see if the object is already in the
object buffer pool. If it is, the access manager returns a
pointer to the object’s ROD. Otherwise, it directs the
storage manager to determine the PID of the object by
hashing into UID-PID table for all objects in the database
(this is different from the ROT), fetch the page containing
the object, isolate the object within the page, and
transform the object from its disk format to the in-memory
format. Finally, the access manager calls the object
buffer manager to place the transformed object in the
object buffer pool, and returns a pointer to the object’s
ROD. The PID of the object is recorded in the PID field of
the ROD, shown in Figure 2a. This is to avoid the
UID-to-PID translation overhead, when the object has to
be flushed (written) to disk, or fetched again after it has
been swapped out. To insert new objects. the storage
manager determines the PlDs of the objects so as to

148 OOPSlA ‘88 Proceedings September 25-30, 1988

r

(a) After object i is brought (b) After accessing object i
in for the second time through Pl

Pl P2

1 f

(c) After garbage
collection

Figure 4. Handling Duplicate RODS

cluster instances of the same class in the same physic al
segment, registers the objects in the UID-PID hash table
for all database objects.

3.3 MESSAGE CACHE

ORION supports four types of messages: instance
attribute messages, class attribute messages, instance
method messages, and class method messages. We will
use the term attribute messages to stand for both
instance and class attribute messages, and the term
method messages for both instance and class method
messages. The function that is placed in the function cell
of a message symbol in the LISP system is called a
message function (this is called a discriminating function
in CommonLoops, and a generic function in Flavors). A
message function simply dispatches a message: it
contains no knowledge of how the message is
implemented.

The main data structure of the message handler is
the message cache. The message cache consists of two
arrays. The first array is the instance message cache:
the instance message cache holds instance attribute
messages and instance method messages. The second
array of the message cache is the class message cache:
the class message cache holds class attribute messages
and class method messages. Each entry in the message
cache contains a vector that holds either class messages
or instance messages for a particular class. The entries
in the message cache are called class caches. There

are exactly two class caches for any class: one for class
messages, and another for instance messages.

When a message is sent to an ORION object, the
message-cache field in the ROD (Figure 2a) is first
checked to see if the class cache has already been
checked for the object. If the class cache is present, the
message is dispatched on the cache. If it is not, the
message handler looks up the object’s class cache in the
appropriate message cache. That is, if the object is a
class, the class message cache is used; if it is an
instance, the instance message cache is used). If the
cache entry is found, it is recorded in the ROD for the
object, and the message is dispatched. If it is not found,
a cache entry is created, recorded in the appropriate
message cache, and placed in the ROD for the object.

3.4 LOCK CACHE

Most commercial database systems use a locking
protocol to control access to a shared database by more
than one concurrent transactions (applications)
[GRAY78]. A transaction must set a lock in an
appropriate mode on an object before it can access the
object. If a transaction has already set a lock on an
object, another transaction attempting to access the
same object in a conflicting mode is forced to wait until
the first transaction releases the lock. (A read or write
request by a transaction conflicts with a write lock set by
another transaction.) ORION uses a sophisticated locking
protocol [KIM871 based on that used in IBM’s SQUDS
[lBM81].

Unlike LOOM, ORION supports multiple concurrent
transaction. This means that before the access manager
can return the ROD pointer of an object to a requesting
transaction, it must check whether another transaction is
accessing the object in a conflicting mode. This check is
relatively expensive, since the access manager must call
the lock manager in the transaction subsystem, and the
lock manager must search the lock table.

To avoid this overhead whenever possible, when the
access manager first creates or retrieves an object from
the database, it encodes in the lock-cache field of the
object’s ROD the mode of the lock which is set on the
object. In this way, the access manager needs to call the
lock manager only the first time the object must be
locked, and when a read lock on the object must be
upgraded to a write lock (i.e., the object was first
retrieved from the database with a read lock, and now
object must be updated). In all other situations, calls to
the lock manager may be avoided.

4. CONSEQUENCES OF OBJECT BUFFERING ON THE
DATABASE SYSTEM ARCHITECTURE

Dual buffering has significant consequences on the
architecture of a database system. These have to do with
the fact that an object may have two different copies
during a transaction: one in the object buffer pool and

September 25-30,1988 OOPSLA ‘88 Proceedings 149

another in the database. One consequence is obviously
the need for a translator to transform an object between
its disk format and the in-memory format. A second
consequence is the need to invalidate the in-memory
objects, when certain types of changes are made to the
database schema. A third consequence is the need to
screen the database copy of an object from the result of
a query, if the object has an in-memory copy.

4.1 OBJECT FORMAT TRANSLATION

To support efficient storage and retrieval, an object
has to be packaged into a form that is suitable for disk
storage. An object transformer is a part of the storage
subsystem in ORION. The storage format for
disk-resident objects is as shown in Figure 5.

Figure 5. Storage iormat for Disk Objects

The uid consists of two parts: the unique identifier of
the class to which the object belongs, and the unique
identifier of the object within the class. The object-length
and attribute-count record the total length of the object
and the number of attributes s&red in the disk format.
The attribute vector consists of the identifiers vi of all
attributes for which the object has explicitly specified
values. The values-offset vector consists of the offsets
oi, in the values part of the object storage format, of the
values’ of the attributes vi. A value can be a primitive
value (such as an integer, string, etc.), or a reference to
another instance, namely, the uid of the referenced
object.

4.2 OBJECT BUFFER FLUSHING

Applications accumulate objects in the object buffer
pool by creating new objects, fetching and updating
objects from the database. The new objects and updated
copies of objects need to be written to the database
when the transaction which has created or updated the
objects commits (successfully finishes). Of course, the
objects are transformed to their disk format before being
written to the database. New objects are registered in the
UID-PID hash table for database objects, and updated
objects replace their old copies in the database.

Further, when changes are made to the database
schema (i.e., class definitions and the structure of the
class hierarchy) which add or drop an attribute trom a
class, instances of the affected class which reside in the
object buffer pool become invalid and must be purged
from the object buffer pool. Of the 20 or so schema
change operations ORION allows, the following invalidate
objects in the object buffer pool.

1, Add a new attribute to a class

2. Drop an existing attribute from a class
3. Change the inheritan& of an attribute (if any

previously inherited attributes are lost)
4. Make a class S a superclass of a class C
5. Remove a class S from the superclass list of a class C
6. Drop an existing class

4.3 QUERY PROCESSING

The access manager applies search predicates
specified in a query to instances of a class. Our
dual-buffering scheme complicates the implementation of
a predicate-based access of objects. The two copies of
the same object have the same identifier, but may differ
in contents. Under an architecture which supports dual
buffering, there are two fundamental approaches for
processing a predicate-based access. One, which we
will call a dual-buffer evaluation scheme, is to evaluate
the predicates on a class twice: once against the objects
of the class in the object buffer pool, and then against
those objects of the class in the database whose copies
are not in the object buffer pool. Another, which we will
call a single-buffer evaluation scheme, is to flush
(move) the new and updated objects in the object buffer
pool to the database, transforming them into the disk
format, and then to evaluate the predicates against the
database.

Let us discuss the two options in more detail.
Consider the situation shown in Figure 6. Objects X, Y,

database

Figure 6. Dual-Buffer Query Evaluation

and Z, all of which are instances of the same class, have
been placed in the object buffer pool, and X and Y have
subsequently been updated and a new instance V
created. We can see that predicates should not be
evaluated against X and Y in the database, since
updated copies of the objects, x’ and Y’, exist in the
object buffer pool. Also if Z satisfies the predicate, it
should not be brought into the object buffer pool, since a
copy already exists in the object buffer pool. Further, in
the case of a deletion, if X’ or Y’ satisfies the predicate,
its older copy, X or Y, must also be deleted.

150 OOPSLA ‘88 Proceedings September 25-30,1988

The dual-buffer evaluation scheme may proceed in
a number of different ways. One reasonable algorithm is
as follows, assuming that the access request is confined
to a single class C.

SUMMARY

(1) Evaluate the predicates against the instances of class
C in the object buffer pool, generating a set 0 of
object identifiers that satisfied the predicates.

(2) Evaluate the predicates against the instances of class
C in the database, generating a set D of object
identifiers that satisfied the predicates. On this step,
instances with copies in the object buffer pool are not
evaluated again,

(3) The result of the access request is the union of steps
1 and 2.

We note that on step 2 above the predicates need be
evaluated against only those objects in the object buffer
pool that have been marked as new or updated, since
objects that have not been updated after their retrieval
from the database have already been evaluated on step
1. When objects get flushed to the database, copies of
the updated objects are sent to the access manager and
applied to the database. The update flags for the new or
updated objects in the object buffer pool are then reset
(cleared).

In this paper, we discussed two major issues in
integrating a programming language system with a
database system, and presented the solution we have
implemented in integrating an object-oriented extension
to Common LISP with the ORION object-oriented
database system. One is the language issue. A
programming language does not provide the primitive
semantic data modeling concepts which are necessary to
model real-world entities and the relationships among
them. Database extensions to a programming language
must not introduce a new or conflicting paradigm, or
force the programmers to map between data structures in
the programming language and those understood by the
database system. Another issue is the computational
model. A database system must support the illusion
(along with adequate performance) that an application
program has at its disposal an infinite virtual memory, in
which it may access and manipulate the objects in the
data structures supported by the programming language.

[AFSA86]

The single-buffer evaluation scheme proceeds as
follows, again assuming that objects that satisfy
predicates on the attributes of a single class C are to be
determined and retrieved. [AHLS84]

(1) Select those objects of class C in the object buffer
pool that have been marked as new or updated since
their retrieval from the database, and force copies of
them to the database. This will make the two copies
of each new or updated object identical.

(2) Evaluate the predicates against objects of class C in
the database, generating a set D of object identifiers
that satisfied the predicates. D is the set of all objects
to be retrieved.

[BANE871

(3) Eliminate from D those objects of class C that are in
the object buffer pool. Retrieve into the object buffer
pool only those objects in the resulting set 0’.

One major problem with the dual-buffer evaluation

[BANE881

scheme is that the objects in the object buffer pool are in
a different storage format from that used for objects in the
database. As such, we need two different
implementations of object search and predicate
evaluation algorithms. We also need to support efficient
access paths for the objects in the object buffer pool, so
that we may avoid sequential searches of all objects. The
shortcoming of the single-buffer evaluation scheme is of
course that updates must be flushed to the database, and
that the objects must be transformed from their
in-memory format to the disk format for predicate
evaluation. The overhead incurred in object
transformation in a LISP environment led us to adopt the
dual-buffer evaluation scheme for ORION: under a
different environment, the single-buffer evaluation
scheme may be superior.

[BOBR83]

[BOBR85]

[CHOU85]

[CHOU86]

Sppternber 25-30,1988 OOfSM ‘88 Proceedings

REFERENCES

Afsarmanesh, H., Knapp, D., McLeod. D.,
and Parker, A. “An Object-Oriented
Approach to VLSI/CAD.” in Proc. Intl Conf.
on Very large Data Bases, August 1985,
Stockholm, Sweden.
Ahlsen M., A. Bjornerstedt, S. Britts, C.
Huften, and L. Soderlund. “An Architecture
for Object Management in OIS,” ACM Trans.
on Office Information Systems, vol. 2, no. 3,
July 1984, pp. 173-196.
Banerjee, J., W. Kim, H.J. Kim, and H.F,
Korth. “Semantics and Implementation of
Schema Evolution in Object-Oriented
Databases,” in Proc. ACM SIGMOD Conf.
on the Management of Data, San
Francisco, Calif.. May 1987.
Banerjee, J., W. Kim, and K.C. Kim.
“Queries in Object-Oriented Databases, ” in
Proc. 4th Intl. Conf. on Data Engineering,
Los Angeles, Calif. Feb. 1988.
Bobrow. D.G.. and M. Stefik. The LOOPS
Manual, Xerox PARC, Palo Alto, CA., 1983.
Bobrow, D.G., K. Kahn, G. Kiczales, L.
Masinter, M. Stefik, and F. Zdybel.
CommonLoops: Merging Common Lisp and
Object-Oriented Programming, Intelligent
Systems Laboratory Series ISL-85-8, Xerox
PARC, Palo Alto, CA., 1985.
Hong-Tai Chou and D. Dewitt. “An
Evaluation of Buffer Management Strategies
for Relaiional Database Systems,” in Proc.
17th Intl Conf. on Very Large Data Bases,
August 1985.
Chou, H.T., and W. Kim. “A Unifying
Framework for Versions in a CAD

[CHOU88]

[CLOS88]

[COPE841

[EFFE84]

[GARZ88]

[GOLD81]

[GOLD831

(GRAY781

[IBMBt]

[lEEE85]

[KAEH81]

[KIM871

[MAlE86]

[STEE84]

[STEF86]

Environment,” in Proc. Intl Conf. on Very
Large Data Bases, August 1986, Kyoto,
Japan.

Chou. H.T., and W. Kim. “Versions and
Change Notification in an Object-Oriented
Database System,” to appear in Proc. 25th
Design Automation Conference, June 1988.
X3J13 Standards Committee Documents
88-002 and 88-003, 1988.

Copeland, G. and D. Maier. “Making
Smalltalk a Database System,” ACM
SIGMOD, June 1984, pp. 316-325.

W. Effelsberg and T. Haerder. “Principles of
Database Buffer Management,” ACM Trans.
on Database Systems, vol. 9. no. 4, pp.
560-595, December 1984.

Garza, J.F., and W. Kim. “Transaction
Management in an Object-Oriented
Database System,” in Proc. ACM SIGMOD,
June 1988.

Goldberg, A. “Introducing the Smalltalk-
System,” Byte, vol. 6, no. 8, August 1981,
pp. 14-26.

Goldberg, A.. and D. Robson. Smalltalk-80:
The Language and its Implementation,
Addison-Wesley, 1983
Gray, J.N. Notes on Data Base Operating
Systems, IBM Research Report: RJ2188, IBM
Research, San Jose, Calif. 1978.

SQL/Data System: Concepts and Facilities.
GH24-5013-0, File No. S370-50, IBM
Corporation, Jan. 1981.

Database Engineering, IEEE Computer
Society, vol. 8, no. 4, December 1985
special issue on Object-Oriented Systems
(edited by F. Lochovsky).

T. Kaehler. “Virtual Memory for an
Object-Oriented Language.” BYTE, pp.
378-387, August 1981.

Kim, W., et al. “Composite Object Support in
an Object-Oriented Database System, “ in
Proc. 2nd Intl. Conf. on Object-Oriented
Programming Systems, Languages, and
Applications, Orlando, Florida, Oct. 1987.

Maier, D., J. Stein, A. Otis, and A. Purdy.
“Development of an Object-Oriented
DBMS,” in Proc OOPSLA-86 Conference,
1986, pp. 472-482.

Guy L. Steele Jr., Scott E. Fahlman, Richard
P. Gabriel, David A. Moon, and Daniel L.
Weinreb, “Common Lisp”, Digital Press,
1984.

Stefik, M., and D.G. Bobrow.
“Object-Oriented Programming: Themes
and Variations,” The AI Magazine, January
1986. pp. 40-62.

[SYMB84] FLAV Objects, Message Passing, and
Flavors, Symbolics, Inc., Cambridge, MA,
1984.

[SYMB85] Symbolics Inc., “User’s Guide to Symbolics
Computers,” Symbolics Manual # 996015.
March 1985.

[TRAl82] 1. Traiger. “Virtual Memory Management for
Database Systems,” ACM Operating
Systems Reviews, vol. 16, no. 4. pp. 26-48.
October 1982.

[WOEL86] Woelk, D., W. Kim, and W. Luther. “An
Object-Oriented Approach to Multimedia
Databases,” in Proc. ACM SIGMOD Conf.
on the Management of Data, Washington
D.C., May 1986.

[WOEL87] Woelk. D., and W. Kim. “Multimedia
Information Management in an
Object-Oriented Database System,” in Proc.
Very Large Data Bases, Brighton, England,
Sept. 1987.

152 OOPSIA ‘88 Proceedings September 25-30, 1988

