
Design Patterns and Real-time Object-oriented Modeling
Ross McKegney

Dept. of Computing & Information Science
Queen’s University,

Kingston Ontario Canada
mckegney@cs.queensu.ca

Dr. Terry Shepard
Dept. of Electrical & Computer Engineering

Royal Military College of Canada
Kingston Ontario Canada

shepard@rmc.ca

Real-time object-oriented modeling tools (e.g. Rational Rose-RT, i-Logix Rhapsody) allow
developers to focus on software architecture by abstracting away low-level implementation details.
We believe that design patterns can be very beneficial in this context, and present the rationale
and concepts behind a proposal for the extension of such a toolset to support them explicitly.

1. Introduction

The design and development of real-time software (i.e. software
that must ensure timeliness while interacting with an external
environment) is more difficult than most other software. Modeling
tools (e.g. [6,15]) help deal with this complexity, allowing
developers to view the system at various levels of abstraction,
animate the models in a simulation environment, and even
generate the code for a variety of target hardware/ RTOS
configurations. A natural extension to these tools is to provide
support for design patterns (a method of documenting experience
in the form of problem/context/solution triples for recurring
problems). Such an extension provides yet another layer of
abstraction to the models, and makes explicit the application of
design patterns.

Rational Rose-Realtime (Rose-RT) will be used as the basis for a
concrete example of how such an abstraction layer might be
implemented.

2. Rose-RT Toolset

Rose-RT extends the Rational Rose visual modeling tool with
model execution and code generation capabilities from
ObjecTime Limited [13]. Models are built using active objects
(called capsules) that interact with each other through signal-
based boundary objects called ‘ports’. Each capsule has an
associated hierarchical state machine (that specifies its
behaviour); complex capsules can also contain sub-capsules.
Complete C++ based executables can be generated directly from
the models – for a variety of hardware/RTOS targets.

The Rose-RT toolset is an excellent candidate for the extension
proposed for three reasons: first, the tool allows visual modeling
of component structure and behaviour; second, the tool supports
explicit modeling of issues like concurrency, distribution and
timeliness; third, the code generation capability means that the
design can be followed all the way to the target.

3. RTOO Design Patterns

The patterns concept has proved useful among developers of real-
time software (i.e. software that must ensure timeliness while
interacting with an external environment). A survey of design
patterns applicable to real-time object-oriented (RTOO) software
is included in [9], and summarized below.

The existing RTOO patterns can be classified as either general
purpose or domain specific. The general purpose patterns include:
Douglass’ real-time design patterns [5] addressing a variety of
issues such as distribution, state behaviour, safety and reliability;
Schmidt et. al.’s patterns for concurrent, parallel, and distributed
systems [16]; and other patterns (e.g. [2,7]). The domain specific
patterns can be sub-categorized as process control, tele-
communications, or embedded computer systems. The process
control patterns include patterns for assisting the design of
avionics control systems [8], and fire alarm control systems [11].
The telecommunications domain has a rich set of patterns (e.g.
[3,10,14]) for dealing with the performance and robustness
required by such systems. Finally, the embedded computer
systems patterns (e.g. [1,4,12]) discuss issues such as resource
management and optimization, porting issues, and scheduling.

4. Proposal

We present a proposal for extension to Rational Rose-RT to
support design patterns. The following are the features that we
feel are desirable in such a tool:

• Multiple pattern repositories: Provide support for multiple
pattern repositories, with the possibility to share repositories
over a network.

• Improved classification mechanism: An improved
mechanism for structuring the potentially large sets of
patterns to facilitate finding applicable patterns.

• Ease of Expansion: Relatively easy to add or extend
patterns.

• Explicit support for pattern languages: Cross-referencing
between patterns in languages, and the ability to specify
relationships, including integration issues, between patterns.

• Multiple pattern implementations: Associate multiple
concrete implementations with each abstract pattern
specification.

• Multiple implementation types: Allow pattern
implementations to consist of Rose-RT behaviour models
and/or structure models, or files of another type.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
OOPSLA 2000 Companion Minneapolis, Minnesota
© Copyright ACM 2000 1-58113-307-3/00/10...$5.00

55

• Highlight patterns in models: Keep track of where patterns
have been used in a model, and make it easy for a developer
to see where and how these patterns have been applied.

• Pattern verification: Automatically verify whether changes
to the model have ‘broken’ any of the patterns.

• Pattern mining: Automatically detect occurrences of
patterns in a model.

• Three methods of pattern implementation: Support top-
down, bottom-up, or mixed pattern implementation (i.e.
create Capsules/ Protocols/ Data from one of the stored
implementations for the pattern; associate Capsules/
Protocols/ Data from an existing model with those of a stored
implementation for the pattern; or use some combination).

• HTML publishing: Publish the set of patterns to an Internet
or Intranet website so they can be shared with others who do
not have access to the tool.

• Allow patterns and modeling tool to exist independently:
Use the patterns tool without Rose-RT, or use Rose-RT
without the patterns extension.

Convergence of design patterns tools with RTOO modeling tools
has great potential; however, there are some significant issues to
be addressed.

• Compression: A single class may participate in multiple
patterns; this issue will complicate the pattern detection,
verification, and highlighting functionalities.

• Rose-RT Classes: Rose-RT models consist of capsule,
protocol and data classes; not all patterns will have structure/
behaviour that can reconcile with these class types.
Developers may have other patterns that they want included
in the repository, but that don’t map well to Rose-RT models
(e.g. process/ organizational patterns, or design patterns/
idioms for components of systems not implemented in a
language supported by Rose-RT).

• Abstract nature of patterns: The mining and verification
functions will be very difficult if flexibility of
implementation is allowed.

Based on the previous two sections, what appears to be a feasible
and appropriate extension to Rose-RT is proposed. It is presented
in terms of the major design decisions that must be made.

• Where should the patterns functionality reside?
• What is the recommended initial set of features?
• What other features should be considered?
• What pattern template should be used?
• How should patterns be classified?
• How should pattern implementations be represented?
• How will pattern language members be linked together?
• How will adding patterns to a model in top-down, bottom-up

and mixed fashions be implemented?
• How can the tool facilitate keeping track of where patterns

are used in a model?
• What will be published to HTML?

5. Conclusions

RTOO modeling tools abstract away the low-level details of
systems, allowing developers to focus on the design model –
precisely the area where design patterns can be useful. The
extension to Rose-RT proposed is meant as a basis for a
prototype; the complexity of the problem is such that more than

one iteration of prototypes will be needed. This proposal is a
starting point for that experimentation.

Initially, the goal of the proposed tool was to extend pattern
repository functionality to support Rose-RT models (that can be
used to capture both the structure and the underlying source code
for pattern implementations). However, as the research progressed
it became increasingly apparent that tool support can also be
beneficial for describing the inter-relationships between patterns.
The proposal thus included repository functionality, and pattern
grouping, organization and relationship functionality.

The result is a proposal for a tool that not only makes the
application of individual patterns easier and more explicit, but
also encourages the systematic application of multiple related
patterns. The refinement and implementation of this proposal is a
logical next step.

References

[1] Bottomley, M. “A Pattern Language for Simple Embedded
Systems”. In Proceedings of PLoP ’99. 1999

[2] Buschmann, F. “Real-time Constraints as Strategies,” In
Proceedings of EuroPLoP ‘98. 1998.

[3] DeBruler, D.L. “Telecommunications distributed processing
patterns.” http://www.belllabs.com/people/cope/Patterns/
DistributedProcessing/DeBruler/index.html. Avail. 2000.

[4] de Champlain, M. “Patterns to ease the port of micro-kernels
in embedded systems.” In Proceedings of PLoP ’96. 1996.

[5] Douglass, B.P. Doing Hard Time: Developing Real-time
Systems with UML, Objects, Frameworks, and Patterns.
Addison-Wesley, Reading, Mass. 1999.

[6] i-Logix Rhapsody Toolset. http://www.i-Logix.com. Avail.
2000.

[7] Jiménez-Peris, R. M. Patiño-Martínez, and S. Arévalo.
“Multithreaded Rendezvous: A Design Pattern for
Distributed Rendezvous.” In Proceedings of SAC ‘99. 1999.

[8] Lea, D. “Design Patterns for Avionics Control Systems.”
http://g.oswego.edu/dl/acs/acs/acs.html. Avail. 2000.

[9] McKegney, Ross. “Application of Patterns to Real-time
Object-oriented Software Design”, MSc. Thesis. Department
of Computing & Information Sciences, Queen’s University.
July 2000.

[10] Meszaros, G. “A Pattern Language for Improving the
Capacity of Reactive Systems” in Vlissides, J.M., J.O.
Coplien, and N.L. Kerth. (eds.) Pattern Languages of
Program Design 2. Addison-Wesley, USA, 1996.

[11] Molin, P. and L. Ohlsson. “Points & Deviations - A pattern
language for fire alarm systems.” In Proceedings of PLoP
‘96. 1996.

[12] Noble, J., & C. Weir. “Proceedings of the Memory
Preservation Society.” In Proceedings of EuroPLoP ‘98.
1998.

[13] ObjecTime Corp. http://www.ObjecTime.com. Avail. 2000.
[14] Petriu, D. & G. Somadder. “A Pattern Language for

Improving the Capacity of Layered Client/Server Systems
with Multi-Threaded Servers.” In Proceedings of EuroPLoP
‘97. 1997.

[15] Rational Rose-Realtime Toolset. http://www.rational.com.
Avail. 2000.

[16] Schmidt, D.C. “Patterns for Concurrent, Parallel, and
Distributed Systems Home Page”. http://www.cs.wustl.edu/
~schmidt/patterns-ace.html. Avail. 2000.

56

