
A Performance Comparison of Object and Relational Databases
Using the Sun Benchmark

Joshua Duhl & Craig Damon

Ontologic, Inc.
47 Manning Road

Billerica, MA., 01821

Abstract

A general concern about object-oriented
systems has been whether or not they are able to
meet the performance demands required to be useful
for the development of significant production
software systems. Attempts to evaluate this
assertion have been hampered by a lack of
meaningful performance benchmarks that compare
database operations across different kinds of
databases.

In this paper, we utilize the Sun Benchmark
[Rube87] as a means for assessing the performance of
an object database and comparing it with existing
relational systems. We discuss the benchmark, and
many of the implementation issues involved in
introducing a relationally oriented benchmark into
an object-oriented paradigm. We demonstrate the
performance of an object database using Ontologic’s
Vbase object database platform as an example of a
commercially available object database, and we
compare these benchmark results against those of
existing relational database systems. The results
offer strong evidence tbat object databases are
capable of performing as well as, or better than,
existing relational database systems.

I. Introduction

The promise of object-oriented databases has
been that they can potentially provide faster
performance than traditional database management
systems. This promise has made by many people,
and while not yet verified, it has often been a focus
of discussion. On the one hand, proponents state
that object databases will provide higher
performance for several reasons: Operations can be
Permission 10 copy without fee all or part of this material is granted provided

that the copies are not made or distributed for direct commercial advantage,

the ACM copyright nowe and the tide of the publication and its date appear.

and nctice is given that copying is by permission of the Association for

Computmg Machinery. TO copy othenwsc or to republish. rcqtiiies a fee and]

or specific permission.

@ 1988 ACM O-89791-284-5/88/0009/0153 $1.50

performed on individual objects or classes Of
objects; Sub-components can refer to an object by
object identity rather than by state (key); Object
references can be cached for in-memory access times;
and complex design components can be represented
more directly using objects than with relational
systems l$Ge86]. On the other band, higher levels
of abstraction generally lead to worse performance.
Analogously, one would expect a high level
language, such as PL/l, to be slower than a lower
level language, like Forhan. and Fortran to be
slower than assembler. One of the major attractions
of object systems is the high conceptual level and
abstraction at which users can approach, interact
with, and model their problem domains.
Implementing this high level of abstraction,
following this vein, would lead to poor
performance because the overhead incurred in
supporting the abstraction model will be too great.

Object databases are an emerging and developing
technology. Until last year, object databases
existed either in early stages of development or as
research prototypes. As such they were basically
unsuitable for fair performance comparisons with
established relational systems. In the past year,
however, several object databases have reached a
plateau in their development where they can be
deemed suitable for performance comparisons with
existing relational systems.

Several benchmarks have been developed for
measuring database performance. The common
database benchmarks, such as the Wisconsin
benchmark @3ittS31 and the TPl benchmark [Anon851
are closely targeted at relational database usages,
which emphasize operations specific to the relational
model and high volume transaction processing usages
respectively. These are inappropriate measures for
the kinds of comparisons of interest to users of
object-oriented systems. The Sun benchmark was
developed in an attempt to measure fundamental
database operations in a usage pattern more typical
of enginczring applications. This benchmark more
closely approaches the kind of benchmark suitable

September 2540.1988 OOPSLA ‘88 Proceedings 153

for comparison of object and relational database
systems.

2. The Sun Benchmark

The Sun Benchmark was deveIoped to establish
an acceptable metric for measuring the response time
of simple database operations. While it is strongly
influenced by the relational model, it is intended for
use across different kinds of database systems, and
attempts to provide generic, data model independent
definitions and benchmark tests that are suitable for
benchmarking databases of any data model.

The benchmark itself consists of a simple
schema and a representative set of fundarnentaI
database operations. Each of the seven operations is
measured in terms of its response time, the elapsed
time between the invocation and return of the
operation. The Sun Benchmark is summarized
below. Portions of the summary are taken directly
from [Rube873.

The schema consists of 3 record types: a person
record, a document record and an author record. A
record type is defined as a group of records with
the same field types. It is a relation in a relational
system and a class or type in an object-oriented
system. A record is defined as a set of fields. It
corresponds to a tuple in a relational system and an
object in an object-oriented system. Often the fields
of an object may be group or multiple valued. The
Sun Benchmark definition allows for this specific
variation between an object and a record. It also
defines a key as a unique fieid over ah records of a
type. Examples would be a relational primary key
or a unique object identifier (UID).

Each of the three record types consists of a set
of iit:!ds:

I. A Person has three fields: a person ID, a name
and a birthdate. All IDS are 4 byte integers,
serving as keys. Birthdates are randomly
generated 4 byte integers that span a 100 year
interval. Names are randomly generated strings
of up to 40 bytes.

2. A Document has seven fields: a document ID, a
title, a page count, a document type, a
publication date, a publisher, and a description.
Titles, publishers. and descriptions are strings
up to 80 bytes. Page count, document type and
publication date are integers.

3. An Author has two fields: a person ID or key
referencing a person and a document ID or key
referencing a document. It connects each person
to zero or more randomly selected documents
and each document to exactly 3 randomly
selected people.

The Benchmark specifies constructing two
versions of the database: The small database is
populated with 20.000 Persons, 15,000 Authors and
5,ooO Documents. The large database is a factor of
ten larger than the smaI1 version (i.e. 200,000
Persons, etc.).

The benchmark is comprised of seven individual
benchmark operations, defined as follows:

Name Lookup: Fetch the name of a person with a
randomly generated ID.

Range Lookup: Fetch the names of ail people with
birthdates within a part.icuIar randomly
generated 10 day range.

Group Lookup: Fetch the author ID’s for a given
random document ID.

Reference Lookup: Fetch the name and birthdate of
a person referenced by a randomly selected
author record.

Record Insert: Store a new author record.
Sequential Scan: Serially fetch records from the

document table, fetching the title from each,
but without performing any pattern match
computation on the title.

Database Open: Perform aII operations necessary
to open files, database schema information, and
other data structures and overhead to execute
the benchmarks, but not time to load the
application program itself.

Each operation is performed 50 times, and the
entire set, except for database open, is repeated 10
times to simulate an entire session with an
engineering application with a mix of different
database operations. The reported results are
therefore averaged over the entire 500 iterations of
each benchmark operation, or 50 iterations in the
case of database open.

3. Overview of Vbase

Vbase [Andr87, Onto871 is the object-oriented
database platform developed by Ontologic, Inc. It
combines the characteristics of object-oriented

154 OOPSIA ‘88 Proceedings September 25?2.1988

languages, as set forth by [Wegn87], i.e., objects,
classes (types) and inheritance, with the common
DBMS characteristics of persistent storage, i.e.,
multi-user support, concurrency control, and
transactions. Vbase incorporates the notions of data
abstraction and strong type checking, notions which
are both heavily influenced by the CLU
programming language [LiskSl].

Abstract types are specified using the
declarative Type Definition Language (TDL). A TDL
definition specifies the abstract behavior of an
object or class of objects. The behavior of an object,
its state (properties) and the set of operations
defined on that state, is defined by the object’s
abstract type, or inherited from the object’s
supertype. Vbase supports a large hierarchy of
kernel types, including a sub-hierarchy of 13
aggregate types. Aggregate types include arrays,
dictionaries, stacks, and sets. Vbase also supports
user defined types, free operations (operations
unassociated with any specific type), storage class
information, and representation manager
specification through TDL.

Objects are manipulated through a compiled
procedural language, COP, which is an extension of
the C language and is strongly influenced by CLU:
COP extends C by adding iterators (operations
which iterate over an aggregate of objects yielding
each object in turn), exception handling, and
syntactic support for object operation invocation and
property access. Currently all Vbase applications are
written in COP.

In Vbase the specification of an object is
separate from its underlying representation. The
operations specified in TDL . are performed by
methods implemented in COP. This distinction
between specification and representation allows for
changes to be made to the implementation without
altering the abstract model.

4. Sun Benchmark on Vbase

The Sun Benchmark is meant to be data model
independent. However, it is evident that its
conceptual basis and construction are strongly
influenced by the relational paradigm. As such
some of the relational constructs or operations do
not. correspond to equivalent object-oriented
counterparts. When introducing this essentially
relationally oriented benchmark into an object-

oriented system, we encountered both modeling and
implementation differences, some of which have
been previously encountered in other similar
efforts[Smit87].

4.1 Modeling Differendes

One of the greatest variances of object-oriented
systems from relational is the object identifier
provided in an object system. In a relational
system, tuple identification is provided by a
fabricated unique key that must be maintained for
each record. Most tuple accesses are performed using
this key. In object-oriented systems, unique
references (UID’s) are generated as a part of object
creation. They provide object identity and can be
freely used at any time (across all time) with
safety, independently of the fieId values of an
object. As explicitly allowed by the benchmark
definition, we have used the Vbase object reference
as the key in all cases where appropriate.

A property that refers to another object usually
holds the UID of object it references. As such,
UID’s allow for direct connectivity between
objects. However, in Vbase, as in many object
systems, an object’s UID also contains information
about the object’s type. This differentiates simple
direct connectivity, such as with pointers and as
found in the network model, from what could be
called typed direct connectivity. This additional
type information embedded in the object reference
can be used to provide information for semantic
validation. Unlike relational systems. object
systems inherently support this notion of direct
connectivity.

Another variance from relational systems is
that object-oriented systems support the notion of
aggregates or aggregate objects. Aggregate objects
allow a group of similarly typed objects to be
referred to and manipulated as a single object They
are container objects. Their behavior may be
subtyped and refined so as to support combinations
of ordering, keyed access, and allowing for multiple
copies of the same instance (i.e.. multisets or bags
vs. sets).

A substantial variance from the relational
model is the disappearance of the Author record
type. In the Sun Benchmark, the Author record type
exists solely to provide a connective relation
between persons and documents. It serves as a many-
to-many connective modeling construct. Vbase

September 2530,1988 OOPSLA ‘88 Proceedings 155

inherently supports the notion of distributed
properties. A distributed property is a multi-
valued property, which refers directly to each
individual object in the set. When used with
inverses, distributed properties provide a direct
implementation of a many-to-one mapping, or in the
case where the inverse property itself is distributed,
a many-to-many mapping. Because distributed
properties can provide direct connectivity between a
single object and many related objects, the need for
an intermediate connective modeling construct
vanishes entirely.

Conceptually, a person can be considered having
authored a document if the person has in fact
written a document. In an object system, this
relationship can be modeled in several ways. An
Author can be modeled as a subtype of type Person
or it can be modeled ‘as an optional property
(relationship) on type Person (between the person
and the documents authored). If Author is modeled
as a subtype of type Person, then when a person
writes a document and has it published he or she
becomes an author. In an object system this could
be modeled with dynamic type acquisition. The type
of the Person object is changed and in fact
specialized to Author, because the Person object has
changed. Since Vbase currently does not support the
notion of dynamic type acquisition, we have modeled
the notion of an author as an optional property. In
this way, the potentiality of becoming an author is
maintained.

Another fundamental modeling difference from
relational systems is found in an object system’s
support for operations. Relational systems generally
perform well when accessing a field in all tuples of
a relation but perform poorly when accessing
individual records. Operations in object systems are
primarily type specific, and are tailored to the type
of object they operate upon, so performance is
generally high. In object systems, operations also
encapsulate behavior, and as such encapsulate code
performing some application function that in
relational systems normally resides in the
application. In Vhase the abstract specification of
an object is separate from its implementation. This
is particularly useful for operations whose
behavioral implementation (their method) can be
refined and optimized without affecting the abstract
specification or operation invocation.

4.2 Implementation Differences

The benchmark can be implemented in two
ways. It can either use all three types and behave
like the table oriented relational model, which we
will refer to as the object-relational (OR) version,
or it can use only two types and can take advantage
of the direct relationships inherent in the object-
oriented paradigm, which we refer to as object
version.

The OR version models the original three types,
Person, Author and Document. l’be Person and
Document types link directly to the Author type,
which models the intermediate table necessary for
the many-toone, one-to-many and many-to-many
relationships in a relational system. Type Author
has two properties, personlink and documentlink
that are both optional multi-valued inverse
properties. The documentlink property, denoted
author$documentlink links directly to the
DocumentSauthorlink property on type Document.
The Author$personIink property links to the
Person$authorlink property on type Person. If
either property is modified the inversely linked
property is also modified automatically by Vbase.
The TDL is listed below.

define type person
import Document, Author;
supertypes = (Entity);
classtype = $ExpIicitClass;
properties = (

name : String;
birthdate: Integer

authorlink: distributed Set[Author] inverse
Author$personlirk

1;
end Person:

define Type Document
import Person, Author;
supertypes = (Entity) ;
classtype = $ExplicitClass;

propelties = [
title : String;
pages : Integer,
type : Integer
date : Integer;
publisher : String;
description : String;

authorlink: distributed Set [Author] inverse
Author$document.link,

1;
end document

t58 OOPSIA ‘88 Proceedings September 2530, t 988

define type Author
import Person, Document;
supertypcs = (Entity) ;
classtype = $ExplicitClass;

properties = (
documentlink : optional Document inverse

DocumentSauthorlink,
personlink : optional Person inverse

Person$authorlink;
I;

end author;

The object version models only two of the three
types, Person and Document, taking advantage of
distributed properties available in the Vbase object
model to eliminate the intermediate Author type.
The notion of authorship is fulfilled through an
inverse relationship property. The many-to-many
mapping is accomplished by a set of direct inverse
links between the document’s authors property,
denoted Document$authors, and the publications
property on Person, Person$publications.

With this combination of modeling constructs,
the semantics of authorship can be modeled quite
naturally: if it has a value, then the person has
authored a document, and if it is empty, then the
person has not authored anything. Direct, inverse,
and optionai properties are modeling features
inherent in Vbase that also result in significant
performance advantages, both in size and speed.
Other than the elimination of the Author type, the
object version TDL differs only slightly from the
OR version:

define type Person
import Document
supertypes = (Entity) ;
classtype = $ExplicitClass;

properties = (
name : String;
birthdate: Integer;
publications : distributed SetlDocument] inverse

Document$authors;
1:

end Person;

define Type Document
import Person;
supertypes = [Entity) ;

classtype = $ExplicitClass;

properties = (
title : String;
pages : Integer.
type : Integer;
date : Integer;
publisher : String;
description : String;
authors : distributed Set(Person] inverse

Person$publications;
1;.

end Document;

Note: The full TDL can be found in Appendix A.

In both versions, optimized implementations of
the create operation (the create method) have been
written to achieve faster performance.
Additionally, a special iterator method has been
written to yield people whose birthdays fell within
the 10 day range of birthdays as required by the
range lookup operation. Birthdates are stored as
keys into a B-Tree holding objects of type Person.
The iterator made use of a prerelease functional
interface to the B-Trees that is to be integrated into
the 2.0 release of Vbase.

The aggregate classes containing all People or
Documents have been implemented in the small
version of the benchmark as Lists. In the large
version they will be implemented as B-Trees.

The group lookup is implemented as an iteration
over the set of Authors on a given random document.

The name Iookup is performed as a property
access on the name property on the random people.

The reference lookup is performed as two
property accesses on each random Person.

5. Results

5.1 Benchmark Environment

The Benchmark encourages performance
optimization. It suggests taking advantage of cache
memory, permitting caching of as much of the
database as the database system allows, and utilizing
the fastest and most efficient data structures and
access methods for each benchmark operation. The
Vbase cache size is user determinable with a current

September 2!xo, 1988 OOPSLA ‘88 Proceedings

OOPSLA ‘88 Procmdings

limit of about 8 megabytes. We found 6 megabytes
to be optimal for the small database. At the
writing of this paper, the large database benchmark
has not yet been completed.

The original Sun benchmark was performed on a
Sun 3/160 processor, with 8 megabytes and a local
database stored on disk. Our version was executed on
a Sun 3/160 processor with 16 megabytes of physical
memory, and the database stored on a local disk,
using version 1.1 of vbase.

The difference in the physical memory size
affected the ability to cache more of the database in
main memory. With more physical memory
available, a larger cache siie is also possible. Thus
physical memory size indirectly affects benchmark
performance through the cache size. When the cache
size remained constant and the benchmark was
executed on machines with different sized physical
memories there was no noticeable difference in the
benchmark timings.

In implementing the benchmark support code,
the most awkward phase is randomly generating the
UID references, since they are not simply
consecutive integers. Instead, we build an in-
memory array containing all of the references to a
given type, and randomly chose an entry in this
array. To ensure that building this array does not
bias the results in any sense, we close the database
and flush all remnants of this activity (save these
arrays) before running any of the tests. Loading this
array is not included in the actual benchmark
timings.

5.2 Discussion

The table in Figure 1 summarizes the results of
the small database version of the Sun Benchmark,
and allows for comparison of both Vbase models to
the existing relational versions. The large version
has yet to be completed at the time of the writing
of this paper. Rad-Unify, developed by Rubenstein,
et. al., is an in-memory version of Unify. It caches
as much of the database as possible, which in the
small benchmark is the entire database. It also
utilizes a simplified locking mechanism that allows
for only one writer at a time. Vbase also caches the
entire database for the small benchmark, as well as
providing full multi-user support.

Overall, these numbers indicate that an object
system can meet and in many cases exceed the

performance of a fast relational system, even in a
problem clearly from the relational domain. The
results also indicate that an object system can model
a relational implementation and achieve response
times comparable to the relational systems. Note
that it is possible to achieve improvements in
performance by using an alternative schema
definition.

52.1 Trends

For several of these tests, the early timings
dominated the averages, themselves being dominated
by the disk transfer time of the schema objects as
well as the data itself. All the tests show
continual improvement in the timings over the
course of the benchmark, particularly after the first
100 iterations and even more so after 200 iterations.

The name lookup test drops dramatically over
the course of the benchmark coming to a constant
0.8 milliseconds (ms) after 350 iterations. The
reference lookup follows a similar trend, dropping
to approximately 3.2 ms after 300 iterations. This
trend occurs because more of the referenced objects
have been brought into the cache and can be found in
the cache as the benchmark proceeds. The trend
applies, but to a lesser extent, to all of the tests
except the Sequential Scan test, which maintains a
fairly constant timing after the first 50 iterations.
It should be noted ‘that Rad Unify exhibits similar
behavior.

For the record insert test, we provided two
numbers for the object version. To implement the
behavior described in the benchmark using Vbase, no
creation was required. Instead, an extra value was
placed 4n the distributed (multi-valued) property on
both the selected Person and the selected Document.
While this is a meaningful distinction between
relational and object systems (many of the tuples
created in a relational system exist only to express
relationships and would not be required on an object
system), creates remain a necessary and important
component of any database system. As the timings
indicate, this is the one area where the performance
of Vbase is relatively slow. This is not a
commentary on object databases, but a limitation in
the current implementation of Vbase.

Vbase supports a generic create method that is
called to create any new entity. The original timing
for the alternative record insert, using a create, was

September 25-30,1988 OOPSLA ‘88 Proceedings

290.6 milliseconds, Rewriting the create method
resulted in an average time of 75.7ms. (a peak time
of 66.8ms) which is nearly a factor of four
improvement in create performance riming. This
ability to modify and enhance the implementation
without affecting the abstract specification is a
capability entirely unavailable in relational systems,
and is clearly a significant advantage for object
systems.

Like many of the tests, the range lookup showed
a trend of steady improvements in performance with
each group of 50, reaching a constant plateau of 54.4
milliseconds after 300 iterations. The average time
is comparable to the Rad Unify rime.

Performance was not significantly affected -by
using a remote database. The initial 100 iterations
were most affected, as they performed the majority
of disk access. Later iterations were unaffected as
most of the database had been already cached in
memory.

6. Sun Benchmark Criticisms

The Sun Benchmark is useful as a performance
metric for comparisons between relational systems,
and between relational and object systems.
However, it is weak when attempting to provide
truly meaningful comparisons between object
systems.

The working set is atypical for object
applications. By a wor&rg sef we mean the set of
objects touched or used by the application at any
given time during the course of application
execution. In this Benchmark each individual
benchmark strictly called for objects to be randomly
selected and operated upon. Objects could only be
clustered with objects of a similar type, but could
be kept in the cache over the entire benchmark. In
many engineering applications closely related objects
are accessed successively, with greater frequency and
to a much higher degree than are random, disjoint
objects. Because of this general usage pattern,
semantically related objects are often physically
clustered together in the database. This “semantic
clustering” usually results in much higher
performance because many of the related objects are
brought into cache memory at the time a requested
object is brought in, thereby improving the overall
access times for related objects.

The Benchmark model (i.e. Person, Author,
Document) is quite simplistic and does not attempt
to approach the complexity or exercise the usual
features that an object-oriented application normally
includes. One of the promises of object systems is
that they provide features for abstractly modeling
complex real world objects and their behavior. To
this end, these systems provide things like type
hierarchies, inheritance models, complex
relationships like A-Part-Of (APO), A-Kind-Of
(AKO), An-Instance-Of (AIO). aggregates, inverse
properties, versions and alternatives, as well as
traditional database features such as concurrency
control and multi-user support,

In this simple relational benchmark model there
is no need for any dynamic behavior. Modeling
dynamic behavior, such as in some kind of event
simulation application, is something- object systems
can perform well; and are frequently called upon to
model.

These initial criticisms begin to give form to
the general criticism that while the benchmark
allows database assessment and comparison at a low
level of fundamental and common database
operations, it does not attempt to address what may
be more interesting and meaningful comparisons
such as the performance at the level of the
application. There may be certain kinds of
applications such as engineering design, complex
modeling, hypermedia and CASE applications, which
are better addressed by object databases. The work
by Smith and Zdonik on Intermedia [Smit87] points
us in this direction.

To this end, we would like to suggest that
future benchmarks allow for examination and
assessment of databases at a higher, more complex
level. Perhaps they can measure performance more
at the level of the application. We would like to
suggest that such a benchmark include measurements
for the access of large and complex data objects such
as documents, and images; that it measure graph or
associative traversal operations such closure
operations; and that it operate in an environment
that more closely approximates an engineering
environment with remote databases, and possibly
distributed data. Furthermore this application
benchmark would need to take into account the
kinds of compIex modeling relationships object
databases have been created to model. Work on just
such a benchmark is currently being pursued by
IBeml.

160 OOPSLA ‘88 Proceedings September 2530,19$8

7. Closing Remarks

The is paper has offered results for a small
version of the Sun Benchmark database. At the time
of the writing of this paper, the large version is
under construction but is not yet complete.

We have found the Sun Benchmark to be a useful
benchmark for measuring simple database operations
across different kinds of databases. To some degree,
this paper stands as “proof of concept”, to the
benchmark author’s intent of developing a
benchmark that can be used for measurements across
different kinds of databases. Furthermore, it has
allowed us to test and give light to the critical
assertion that object databases, such as Vbase, are
capable of performing at rates comparable to or
faster than existing relational systems.

Lastly, it is evident, that benchmarks that more
closely address and assess the capabilities of object
databases are needed to properly measure this new
and developing technology.

September 2530,1988

References

[Andr87] Andrew& Tim, Harris, Craig, “Combining
Language and Database Advances in an
Object Oriented Development Environ-
ment”, OOPSLA ‘87 Conference Proceed-
ings, SigPlan Notices, Volume 22, Number
12, December 1987.

[Anon851 Anon. et al., “A Measure of Transaction

Bitt831

Processing Power”, Datamation. April 1,
1985.

Berre, Ame J. Anderson, T. Lougenia,
Porter, Harry, Schneider, Bruce, “The
HyperModel Benchmark”, Unpublished
Work Oregon Graduate Center, Beaverton
Oregon.

Bitton. D., Dewitt, D. J., Turbfdl, C.,
“Benchmarking Database Systems: A System-
atic Approach”, Proceedings of the 1983
VWB, 1983.

[Codd70] E.F. Codd, “A Relational Model of Data
for Large Shared Data Banks”, CACM, Vol.
13,6 (June, 1970) pp 377-387.

Lisk81] Liskov, B., Atkinson, R., Bloom, T., Moss,
E., Schaffert, C., ScheifIer, R., Snyder, A.,
CLU Reference Manual, Springer-Verlag
1981.

&Iaie86] Maier, David, “Why Object-Oriented
Databases Can Succeed where Others Have
Failed”, Proceedings of the 1986 Interna-
tiO?Kll Workshop on Object-Oriented
Database Systems, 1986.

[Onto81 Vbase Programmer’s Guide, Ontologic,
Inc., Billerica MA. 1987.

(Rube87] Rubenstein, W. B., Kubicar, M. S., Cat-
tell, R. G. G., “Benchmarking Simple
Database Operations”, SIGMOD ‘87 Pro-
ceedings, SIGMOD Record, Volume 16,
Number 3, December 1987.

[Smit87] Smith, Karen E.. Zdonik, Stanley B., Inter-
media: A Case Study of the Differences
Between Relational and Object-Oriented
Database Systems”, OOPSLA $87 Confer-
ence Proceedings, SigPlan Notices, Vol-
ume 22, Number 12, December 1987.

lWegn871 Wegner, Peter, “Dimensions of Object-
Based Language Design”, OOPSLA ‘87 Con-

OOPSLA ‘88 Proceedings 161

ference Proceedings, SigPlan Notices, Vol-
ume 22, Number 12, December 1987.

Appendix A

Object Version TDL

define type Person
import Document;
supertypes = (Entity);
classtype = $ExpIicitClass;

properties = (
name : String;
birth- Integer,
publications : distributed SetCDocument] inverse

Documen$authors;
1;

operations = (
refines Dekte(e%rson)
triggers (RemoveFkmDates);

1;

define Iterator BirthRange(low : Integer,
high : Integer)

yields (person)
method (Birth&s)

end BirthRangq

deline F?ocedure Create(T: Type,
keywords
name : String,
birthdate : Integer,
optional publications : Array [Document],
optional where: Entity,
optional hownear Clustering)
returns (Person)
raises (Bad&ate)
method (Person-Create)
triggers (AddToDates)

end Create;

end Person;

defme Variable Birthdays: btree;

define Type Document
import Person;
supertypes = (Entity};
classtype = $ExplicitClass;

properties = (
title : String;
pages : Integer,
type : Integer;

OOPSIA ‘88 Proceedings september25-30.1988

date : Integer;
publisher : String;
description : Suing;
authors : distributed SetPPersonl inverse

Person$publications;
1;

end Document

Relational Version TDL

define type person
import Document, Author;
super-types = (Entity} ;
classtype = $ExplicitClass;
properties = (

name : String;
birthdate: Integer;

authorlink: distributed Set[Author] inverse
Author$personlink;

1;

operations = (
refines Delete(e:Person)
triggers (RemoveFromDates);

define Iterator BirthBange(low : Integer,
high : Integer)

yields (Person)
method (Birthher)

end BirthRange;

define Procedure Create(T: Type,
keywords
name : String,
birthdate : Integer,
optional authorlink : Array mument],
optional where: Entity,
optional hownear: Clustering)
returns (Person)
raises (Bad&ate)
method (Person-Create)
triggers (AddToDates)

end Create;
end Person:

define Variable Birthdays: btree;

define Type Document
import Person, Author;
supertypes = (Entity);
classtype = $ExplicitClass;

September 2.530,1988

properties = {
title : String:
pages : Integer:
type : Integer;
date : Integer;
publisher : String;
description : String;

authorlink: distributed Set[Author] inverse
Author$documentlink;

1;
end document;

defme type Author
import Person, Document
supertypes = [Entity) :
classtype = $ExplicitClass;

properties = {
documentlink : optional Document inverse

DocumentSauthorlink;
personlink : optional Person inverse

Person$authorlink,
1;

end author;

OOPSLA ‘88 Proceedings 163

