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Abstract 

Numerous classes, complex inheritance and contain- 
ment hierarchies, and diverse patterns of dynamic in- 
teraction all contribute to difficulties in understanding, 
reusing, debugging, and tuning large object-oriented 
systems. To help overcome these difficulties, we intro- 
duce novel views of the behavior of object-oriented sys- 
tems and an architecture for creating and animating 
these views. We describe platform-independent tech- 
niques for instrumenting object-oriented programs, a 
language-independent protocol for monitoring their ex- 
ecution, and a structure for decoupling the execution 
of a subject program from its visualization. Case stud- 
ies involving tuning and debugging of real systems are 
presented to demonstrate the benefits of visualization. 
We believe that visualization will prove to be a valuable 
tool for object-oriented software development. 

I Introduction 

Understanding the structure and internal relationships 
of large class libraries, frameworks, or applications is 
essential for fulfilling the promise of code reuse. More- 
over, discerning global and local patterns of interaction 
among classes is critical for tuning and debugging. Al- 
though the object-oriented paradigm lets programmers 
work at higher levels of abstraction than procedural 
models, the tasks of understanding, debugging, and tun- 
ing large systems remain difficult. This has numerous 
causes: the dichotomy between the code structure as 
hierarchies of classes and the execution structure as 
networks of objects; the atomization of functionality- 
small chunks of functionality dispersed across multiple 
classes; and the sheer numbers of classes and complexity 
of relationships in applications and frameworks. 

Tools for procedural languages are often inappropri- 
ate for object-oriented programs because they work at 
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an inappropriate level of abstraction. Tools that are 
directed at object-oriented software development have 
focused primarily on static code structure (for exam- 
ple, class browsers and inheritance viewers [lo, 4, 151, 
affinity browsers [7]) d an on breakpoint debugging and 
object inspection [l], which provide only microscopic 
views of the program at disjoint points in time. 

We believe tools that focus on the dynamic behav- 
ior of an object-oriented system are essential for under- 
standing, code reuse, debugging, and tuning. We also 
believe that visual tools are most effective for this pur- 
pose. Users are easily overwhelmed by a steady stream 
of text. The fields of scientific visualization and pro- 
gram visualization have demonstrated repeatedly that 
the most effective way to present large volumes of data 
to users is in a continuous visual fashion [17, 14, 111. 
Continuous visual displays allow users to assimilate in- 
formation rapidly and to readily identify trends and 
anomalies. 

This paper introduces a system for dynamic visual 
presentation of the behavior of object-oriented systems. 
Major contributions of this work are a set of novel views 
for displaying system behavior and a flexible distributed 
architecture for animating the views based on program 
executions. The set of views includes displays that clus- 
ter classes based on the degree to which they interact, 
histogram variants showing class instances and their ac- 
tivity levels, and cross-reference matrices indicating the 
degree of various forms of inter- and intra-class refer- 
ences. 

Important goals of the system’s architecture include: 

Versatility. Allow users to observe and visually in- 
spect a system, either in real-time or post-mortem, 
from both a local and global perspective. 

Composability. Allow users to combine different in- 
strumentation, analyses, and views, all to be active 
concurrently. 

Exbensibility. Allow users to add new visualizations 
to the system quickly and easily. The set of visu- 
alizations must not be fixed. This implies a toolkit 
approach to building visualizations. 
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4. Platform and language independence. The in- 
strumentation technique and protocol for describ- 
ing program behavior should be language- and 
platform-independent. Although this paper focuses 
on the visualization of programs written in C++, the 
choice of language is not intrinsic to this architec- 
ture. 

With this system, applications as well as frameworks 
or class libraries are first instrumented by a preproces- 
sor. As an instrumented application executes, it pro- 
duces an event stream that characterizes its progress. 
A visualization system reads this event stream and up- 
dates its model of relevant aspects of the executing 
program. This model then drives a number of user- 
selectable views of program behavior. 

This paper describes the visualization architecture in 
general, key aspects of our prototype implementation, 
and some views we have developed. The next section 
presents actual use of the system on a real application 
to give a feel for the system’s effectiveness. Section 3 de- 
scribes the overall visualization architecture and some of 
its unique features. Section 4 presents techniques used 
to instrument code and to record events. Section 5 intro- 
duces the event language Annotalk for communicating 
between elements in this architecture. Sections 6 and 7 
discuss issues in the design of the models that drive the 
views and the Visualizer classes that actually produce 
the views. We conclude with comparisons to related 
work and future directions for this work. An appendix 
describes some predefined views currently available with 
the system. 

2 A Visualization Case Study 

During the development process, a programmer turns to 
visualization either for general inspection to verify that 
a program is running smoothly or to track down the 
cause of a problem that has arisen. Typically, high-level 
views are examined first to get an overview of system 
behavior, and then more specific views are used to focus 
on suspicious behavior. 

This section presents actual experience with visualiza- 
tion in the development of QOCA, a constraint-solving 
toolkit [6]. We begin by examining a high-level view 
that shows overall patterns of communication. 

2.1 Visualizing Communication 

The inter-class call cluster provides a dynamic 
overview of communication patterns between classes. 
Figure 1.1’ shows a snapshot of this view early in the 

’ Color plates of the visualizations in this paper appear at the 
end of the proceedings. 

execution of QOCA. This view shows class names as 
floating labels. The amount of communication between 
instances of two classes determines the distance between 
their labels. The view is animated so that the more 
communication there is between classes, the more their 
labels gravitate towards each other and cluster together. 
Classes that communicate infrequently are repelled to- 
wards the edge of the view. 

For QOCA, the classes Term, Terms, TermsIterator, 
Factor, Factors, and FactorsIterator, concerned with 
representing and manipulating constraints, clearly show 
strong interaction with each other. 

This view also indicates the current call stack by 
showing the classes of instances that have received mes- 
sages on the call stack. A blue path leads from the label 
: :main through each of these classes. The last segment 
of the path, leading to the currently active class, is red. 
In Figure 1.1 the thread of control goes from : :main, 
through Objective, CompoundExpRep, and Terms, and 
finally to the currently active class TermsIterator. 

The inter-class call cluster focuses attention on the 
most active and most cooperative classes at any mo- 
ment. These classes provide a good starting point 
for more detailed study either for optimization or un- 
derstanding the structure of an application-clustered 
classes, for example, are likely to be tightly coupled or 
from the same subsystem [21]. The number of classes in 
a cluster is typically small, on the order of ten classes or 
fewer, probably because systems with broader interac- 
tions are exponentially more complex and are less likely 
to be developed in the first place. 

Object-oriented programs often exhibit distinct exe- 
cution phases. Most programs have at least one initial- 
ization phase as a precursor to a (much longer) commu- 
nication phase; programs may have several such phases. 
Different phases become evident from the dynamics of 
the inter-class call cluster. A new phase starts when 
many new classes burst out of the center of the view. 
Some classes gravitate together quickly; other migrate 
to the edges of the view. The call stack path also reflects 
a new phase when its shape changes drastically after a 

period of relative stability. 

An execution hot-spot often manifests itself when the 
red (active) portion of the call stack path darts between 
the same set of classes for long periods. Such classes 
are prime candidates for optimization. Paying particu- 
lar attention to small but popular classes can be more 
effective than redesigning complex but infrequently used 
classes. In this example, the classes Term, Terms, Term- 
sIterator, Factor, Factors, and FactorsIterator are good 
prospects for performance tuning. 
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2.2 A Closer Look at Communication 

While the inter-class call cluster offers insight into the 
dynamic messaging behavior of the program, the inter- 
class call matrix (Figure 1.2) gives cumulative and 
more quantitative information. Classes appear on the 
axes in the order in which they are instantiated. Base 
classes always appear closer to the origin than their sub- 
classes. A colored square in this visualization represents 
the number of calls from a class on the vertical axis to 
a class on the horizontal axis. The color key along the 
bottom indicates relative number of calls. Colors range 
from red, denoting fewer calls, to violet and ultimately 
black, denoting more calls. 

The dark squares in this view confirm our impres- 
sion from the inter-class call cluster that Term, Terms, 
TermsIterator, Factor, Factors, and FactorsIterator are 
called most frequently. As mentioned, it often pays to 
take a closer look at classes showing high activity. Such 
classes are often the key to understanding larger parts 
of the system and to optimizing its performance. More- 
over, unexpectedly high activity can be symptomatic of 
bugs in the program. 

Many inter-class dependencies can appear as macro- 
scopic features in the inter-class call matrix. Vertical 
stripes indicate classes that are called by many other 
classes. Vertical stripes appearing above the diagonal 
tend to indicate key abstract classes in the framework 
or library. Horizontal stripes indicate a class that calls 
many other classes, typically the classes of its instance 
variables. Clusters close to the diagonal may indicate 
tightly coupled classes or subsystems. The appendix 
discusses this visualization in more detail. 

2.3 Insight from Instances 

The two previous visualizations primarily concern dis- 
playing relationships between classes. Focusing on in- 
stances shows program structure at finer levels of gran- 
ularity. 

The histogram of instances (Figure 1.3) displays 
all instances of each class. Rows of small colored squares 
form the bars of the histogram. Each bar represents all 
instances of the class whose label appears to its left. 
Again, a square’s color indicates the number of mes- 
sages an instance has received. Colored squares ap- 
pear and disappear as objects are instantiated and de- 
stroyed. White squares indicate objects that have been 
destroyed; these squares will be reused by newly cre- 
ated instances. This visualization lets us see how many 
instances exist at a given time and their level of messag- 
ing activity. It also shows relative object lifetimes and 
anomalies such as undesired copy constructor calls that 
are manifest as extremely short-lived objects. 

Consider again the classes Term, Terms, TermsIter- 
ator, Factor, Factors, and FactorsIterator. This view 
shows clearly that Term, Factor, and Factors have unex- 
pectedly large numbers of instances, possibly indicating 
a memory leak. Indeed, waiting until the application 
terminates verifies that most instances of these classes 
are never reclaimed. 

2.4 Pinpointing the Problem 

To correct, this memory leak, a first step might be to find 
the classes responsible for allocating these unreclaimed 
instances. The allocation matrix (Figure 1.4) plots 
classes that allocate new objects versus the classes they 
instantiate. This view shows allocation dependencies 
and the most frequently allocated objects. We can use 
this information both to pinpoint the sources of alloca 
tions and to subsequently reduce storage and construc- 
tion costs. 

In this case it appears that Term is allocating most 
instances of Term and Factors. This is good evidence 
that the class Term fails to reclaim these instances. 

Glancing back at the inter-class call matrix (Fig- 
ure 1.2), we see that two classes send messages to Term 
most frequently: Term itself and Terms. Inspecting the 
code we find that Term passes the unreclaimed instances 
to Terms, which never deletes them. Correcting this 
bug by adding a missing “delete” statement leads to the 
healthier histogram of instances in Figure 1.5, shown at 
the same point in the program’s execution. 

3 Architectural Overview 

Program visualization involves instrumenting a subject 
program so that it generates events of interest during 
execution. As the subject runs, a visualization ap- 
plication interprets these events and builds models of 
the subject’s state. The visualization application uses 
these models to drive visualizers that present views 
reflecting the subject’s behavior. 

Our visualization architecture provides versatile, 
platform-independent, composable, and extensible vi- 
sualizations of object-oriented systems by partitioning 
functionality into four components: 

1. Instrumentation augments the subject program 
with code that generates events. It also adds an 
instrumentation run-time that transmits events 
to the visualization application and lets it access 
and explore the subject’s internal state and control 
the subject’s execution. 

2. Communication defines a language-independent 
protocol and transport mechanism between the 
subject and its visualization application. 
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Figure 1: Architectural overview 

3. Modeling assimilates events into models that rep- 
resent and track the execution behavior of the sub- 
ject. Models make it convenient for visualizers to 
access and display this information. 

4. Presentation constructs views of program behav- 
ior that let users explore the subject’s behavior and 
internal structure. 

Figure 1 provides an overview of the objects that im- 
plement the architecture. We will describe and refer to 
these objects in the detailed discussions that follow. 

4 Instrument at ion 

The subject’s instrumentation must support effective vi- 
sualization. For object-oriented programs this requires 
that the instrumented code 

a generates events for object construction and de- 
struction; 

l generates events for method entry and exit; 

l collects static type information, such as class struc- 
ture and member declarations; 

l collects dynamic type information to resolve an in- 
stance’s class at run-time; 

l supports suspending and resuming subject execu- 
tion; 

l lets visualization applications examine and explore 
a subject’s internal state. 

annotatad 
program 

axecutabls 

Figure 2: Instrumentation process 

There are many ways to instrument the subject to fulfill 
these requirements. Our implementation annotates C++ 
source code with instrumentation code. We will discuss 
the benefits and liabilities of the annotation approach 
later in this section. 

Figure 2 shows the steps in the instrumentation 
process. A script-driven annotator analyzes the sub- 
ject source code and augments it with instrumentation 
code. The result is then compiled and linked to form a 
new binary, which is executed normally. 

The instrumentation collects static type information 
before executing subject code; dynamic type informa- 
tion is generated as the subject runs. The communica- 
tion component of the architecture transmits this infor- 
mation to visualization applications, as we describe in 
Section 5. 

4.1 Run-time Type Information 

To generate meaningful events, the subject program 
must track member function entry/exit and construc- 
tor/destructor calls. It must also maintain a run-time 
type system. C++ does not provide type information 
at run-time (though proposals for such a mechanism 
exist [IS]); therefore the instrumentation run-time must 
support this functionality. Our implementation is based 
on Interrante and Linton’s work in this area [9]. 

For each class in the subject program the instrumen- 
tation maintains an object that records static and dy- 
namic type information about the class. Each of these 
objects is an instance of a Blues’ subclass. Blues is 
an abstract base class with protocol for identifying a 
class’s parents, members, and instances. We define one 
Blues subclass for each class in the subject program. 
There exists one instance of each Blues subclass in the 
instrumented code to maintain this information. 

Figure 3 shows the Blues interface and a subclass 
ABlues for a class named A in the subject program. 
Given an arbitrary instance from the subject program, 
the Blues base class returns the corresponding Blues 
subclass instance that can furnish type information at 
run-time. For example, given a pointer to an instance 
of class A, the function Blues: : Instance returns 

2 What’s in a name? 
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class Blues c class ABlues : public Blues { 
public: public: 

virtual "BluesO; static ABlues* Instanced; 

static Blues* Instance(void*); 
static Blues* Instance(const char*); 

virtual void* Hember(void*, const char*); 

virtualconst char* ClassO; 
virtualconst char** Parentso; 
virtual const char** MembersO; 

protected: 
ABluesO; 

void Register(void+, const char*); 
void Unregister(void+. const char+); 
void Register(void*); 
void Unregister(void+); 

private: 
void Entering(void+, const BluasInfot. boolean); 
void Leaving(void+, const BluesInfoL, boolean); 

virtual const char+ Class0 = 0; 
virtualconst char++ Parents0 = 0; 
virtual const char** HembersO = 0; 
virtual void+ lamber(void*, con& char+) = 0; 

protected: 
Blues(const char *); 

// . . . 

); 

static ABlues+ -A-Blues; 
static conat char* ~AlIambsrsCl; 
static const char* _AParents[l; 
static const char* -AClassIame; 

1; 

Figure 3: Blues base class (left) and annotator-generated subclass interfaces (right) 

a pointer to the ABlues object that records informa- 
tion about the A class. The ABlues instance may then 
be queried for its class name (via the Class operation), 
its parents (via Parents), and its member signatures 
(via Members). Moreover, the Member operation lets a 
client ask the ABlues for a pointer to a member of this 
instance given the member’s signature. This operation 
lets visualization applications examine an object’s con- 
tents and follow pointers to other objects, even private 
ones. 

To make the private member data of A accessible to 
ABlues, we must circumvent C++‘s type system. Each 
Blues subclass uses a slightly modified declaration of 
its associated subject class, one that declares the Blues 
subclass to be a friend of the subject class. The ABlues 
implementation, for example, sees a version of the de- 
claration of class A with an additional “friend class 
ABlues ; ” statement, which lets ABlues access member 
data of an instance of A. Of course, this technique as- 
sumes that friend declarations do not alter class layout, 
which appears true for all compilers we know. 

The Blues base class and subclasses are part of the in- 
strumentation run-time. They are compiled and linked 
separately from the annotated subject code. Only the 
annotations in the subject code use Blues services, 
which are transparent to subject code. 

Unlike some proposals for maintaining run-time type 
information, the subject classes are not queried for their 
type directly in this scheme. Instead, Blues’s static In- 
stance operations return the particular Blues subclass 
object given a specific instance or a class name. An ad- 
vantage of this approach is that it is not invasive-it de- 
pends only on class declarations, not implementations. 
It does not alter the memory layout or virtual function 

tables of subject classes. This makes it possible to query 
classes defined in a library or toolkit about their struc- 
ture even if the library does not provide source code. 

4.2 Construction, Destruction, and 
Method Invocations 

To generate events during subject execution, we add 
code to each class’s constructor, destructor, and mem- 
ber functions. We track object construction and de- 
struction by adding code that registers and unregisters 
each instance with the appropriate Blues subclass in- 
stance (see Figure 3). Events are generated as a side- 
effect of (un)registering an instance with the Blues sub- 
class. 

We track function entry and exit by declaring a local 
(stack-allocated) instance of BluesTracer at the begin- 
ning of each constructor, destructor, and member func- 
tion. BluesTracer is a trivial class whose constructor 
and destructor inform the corresponding Blues subclass 
instance of the member function’s entry and exit. This 
generates an event. Because the BluesTracer instance 
is stack-allocated, its constructor and destructor will be 
called automatically when the member function enters 
and exits. 

4.3 Suspending and Resuming 
Execution 

Objects in the instrumentation run-time are responsi- 
ble for suspending and resuming execution of the sub- 
ject program. In the current implementation, control 
over execution is carried out entirely as a side-effect of 
communication, as we describe in Section 5. 
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4.4 Discussion 

Instrumentation by annotation has several advantages. 
It is independent of operating system, compiler, linker, 
and execution format, thus enhancing portability. Be- 
cause annotation is automatic, its effects are transpar- 
ent to the programmer; the subject program need not 
be modified. Annotation also offers flexibility. Anno- 
tations can be changed simply by changing the script, 
and the program can furnish any information that it can 
compute at run-time. 

A potential disadvantage of this scheme is that instru- 
mentation code may have undesirable side-effects on the 
subject, such as slowing execution or increasing storage 
requirements. However, the annotation approach is not 
necessarily more disruptive than environment-specific 
schemes, since all perturb the subject to some extent. 

One shortcoming of our approach is its inability to 
track data member references. This is a consequence of 
our simple-minded annotation script, not the annota 
tion approach. A smarter parsing script coupled with 
additional instrumentation code would yield data refer- 
ence information, presumably with significant run-time 
overhead. 

5 Communication 

The architecture is designed so that subject programs 
are independent of visualization applications. The sub- 
ject and the visualization application may run in dif- 
ferent address spaces or on different machines. The 
instrumented subject includes communication objects 
that send information to a visualization application and 
receive requests from it. The communication compo- 
nent of the architecture consists of (1) Annophrase ob- 
jects, which encapsulate program events, static program 
information, and control directives; (2) Annotalker ob- 
jects, which logically send and receive annophrases; and 
(3) Annotalk, a protocol for transmitting annophrases 
between annotalkers. 

Figure 1 shows an annotalker in the subject instru- 
mentation run-time sending an annophrase to a visu- 
alization application’s annotalker. Visualization appli- 
cations also use annotalkers to communicate with their 
subject, for example, to send a control directive or to 
request run-time type information, From the instru- 
mentation’s perspective, annotalkers send and receive 
annophrases, but annotalkers use Annotalk to encode 
and transmit annophrase information. 

Annotalk is a simple, two-way protocol that can con- 
vey information in an annophrase. Table 1 lists state- 
ments in Annotalk and describes them briefly. Most 
are self-explanatory. The rh, rr, and rm statements en- 
code requests for stopping and restarting execution and 

for returning a pointer to a member datum given the 
datum’s signature (including its name and type decla- 
ration). The x statement defines a dictionary entry that 
maps an arbitrary signature into an index. Long signa- 
ture arguments are encoded as much shorter dictionary 
indices, thereby compressing the protocol stream for ef- 
ficient transmission and storage. 

With Annotalk, .annotalkers can transmit anno- 
phrases across process and machine boundaries, either 
through files or interprocess communication. They also 
perform transparent compression and decompression of 
the Annotalk stream as directed by dictionary entry de- 
clarations and accesses. Finally, an annotalker blocks 
the subject program when it receives a halt request, re- 
sponding only when it receives a request for a pointer 
to a member or a request to resume execution; other 
annophrases are ignored. 

6 Modeling 

Visualization applications must maintain knowledge 
about the subject program’s execution. This knowledge 
is stored in one or more annomodels. Annomodels as- 
similate and distill execution events from the subject 
into visualization-specific information. Annomodels re- 
ceive events in the form of annophrases from the subject 
as it executes. In turn, annomodels drive visualizers 
that present views. 

Annomodels may be as general or as specialized as 
a visualization warrants. Subclasses of the Annomodel 
base class process and maintain different kinds of infor- 
mation. For example, the ClassModel subclass stores 
static information about classes, including a catalog of 
all classes, their inheritance relationships, and mem- 
ber information. InstanceModel maintains lists of all 
instances, the instances of each class, and a count of 
messages to each instance. Other annomodels can col- 
lect call stack information, keep track of logical time, 
provide an interface for controlling program execution, 
and compile annophrase statistics such as the amount of 
protocol compression being realized. Annomodels can 
also synthesize higher-level, visualization-specific events 
from multiple annophrases. 

A visualizer may rely upon several annomodels for 
information, and there may be multiple synchronized 
visualizers. Concurrent views provide several perspec- 
tives on a program’s execution and give insight greater 
than what views offer in isolation. Each visualizer reg- 
isters itself with the annomodels it needs; annomodels 
in turn update all registered visualizers. Moreover, vi- 
sualizers often share annomodels because they require 
similar sorts of information to generate views. For ex- 
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Annotalk statement Description 
cl class-name declares a class name 
pubp class-name porentAassAwne public derivation 
prop class-name parent-class-name protected derivation 
irip class-name &rent-class-name private derivation 
pubf class-name signature public member function of class-name 
prof class-name signature protected member function of clarr-name 
prif class-name signature private member function of class-name 
pnbd class-name signature public data member of class-name 
prod class-name signature protected data member of class-name 
prid class-name signature private data member of class-name 
c time-stamp object-ptr class-name souree~ile source-line signature constructor call 
d time-rtamp object-ptr class-name source-file rource-line signature destructor call 
B time-stamp object-ptr clams-name rourccJile source-line signature member function entry 
1 time-rtamp object-ptr clars-name source-file roune-line signature member function exit 
rh request to halt execution 
r* 
1p1 object-ptr rignature 

request to resume execution 
request for pointer to member rignature of object-ptr 

m object-ptr signature 
v ocrrion-number 
x code rtring 

response to pointer request 
1 declares the current protocol version 
1 declares a dictionary entry, accessed by @code J 

Table 1: Annotalk protocol 

ample, most visualizers use a ClassModel and an In- 
stanceModel. 

Each annomodel is attached to an annobus, which 
notifies the annomodels of an annophrase’s arrival and 
gives each a chance to examine the annophrase and up- 
date its state. Of course, annomodels are free to ignore 
annophrases. Annomodels are notified once again when 
the annophrase has been inspected by all annomodels. 
Only then do annomodels update their attached visual- 
izers. This two-phase notification serves two purposes: 
it lets annomodels update their respective visualizers 
only when they are consistent with one another, and it 
gives cooperating annomodels a chance to examine the 
annophrase before they exchange information. 

The more focused an Annomodel subclass is, the 
greater its potential for reuse and combination with 
other annomodels. While visualization-specific An- 
nomodel subclasses can be many and varied, there 
should be little or no overlap in the processing or storage 
responsibilities of any two annomodels. Redundancy 
can lead to inconsistencies (e.g., two annomodels dis- 
agree), inefficiency (e.g., replicated effort), or both. 

7 Presentation 

The visualization architecture separates modeling data 
kept in annomodels from presentations defined by vi- 
sualizers. All visualizers are derived from the Visual- 
izer base class. Visualizer defines protocol that lets an 
annomodel notify it of state changes. It also defines 
protocol for interpreting basic program events such as 
constructor and destructor calls and method entry/exit. 

Vleuallzer8 Renderers 

Figure 4: Annomodel-Visualization-Renderer relationships 

Subclasses of Visualizer refine the interpretation of pro- 
gram events and generate specialized views. 

Each visualizer also maintains its own data to sup- 
port its visualization. This data will typically map in- 
formation kept in annomodels to information presented 
on the display. For the graphical presentation of the 
view, each visualizer maintains a Renderer class (see 
Figure 4). Renderer defines a high-level interface for 
displaying and changing graphical elements, thereby iso- 
lating visualizers from details of the underlying graphics 
system. Our prototype implementation uses the Inter- 
Views and Unidraw toolkits and ibuild interface builder 
to implement renderers [13, 18, 191. 
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We have developed several abstract subclasses of Vi- 
sualizer. The matrix views in the Appendix are all 
simple extensions of MatrixVisualizer, a subclass for 
scatter-plot visualizations. TimeChartVisualizer is a 
subclass for strip-chart visualizations that map time to 
a spatial dimension. ClusterVisualizer displays enti- 
ties clustered according to subclass-defined criteria. Fi- 
nally, HistogramVisualizer uses a histogram to orga- 
nize information spatially. Programmers can select one 
of these abstract base classes based on the look and feel 
they desire. Then the programmer must simply rede- 
fine how the visualizer maps program semantics stored 
in annomodels into the graphical elements of the Visu- 
alizer subclass. 

A key principle in designing visualizations of object- 
oriented programs in particular is to take advantage of 
the structure this paradigm affords. Visualizations can 
map class/method/instance/time dimensions to spa- 
tial/temporal/color dimensions in any combination to 
produce different views, some more effective than oth- 
ers. The challenge is to choose the most effective map- 
ping for conveying a given aspect of a program’s behav- 
ior. 

8 Related Work 

The notion of program visualization first appeared in 
the literature over a decade ago [8], and algorithm an- 
imation was popularized shortly thereafter [2]. Work 
on visualizing the dynamics of program execution has 
flourished in the area of parallel systems [ll, 51, where 
the need is clear for a means of understanding the in- 
teractions among elements of a complex system. 

More recently, the importance of program visualiza- 
tion for object-oriented systems has been recognized. 

For purposes of debugging, Backer and Herczeg [l] 
introduce a “software oscilloscope” for visually tracking 
the detailed interactions between objects in a system. 
To inspect dynamic program behavior of a program dur- 
ing execution, they introduce obstacles between objects 
and animate the flow of messages across these obstacles. 
At any point, execution can be suspended to inspect 
context with conventional browsers. However, focus is 
solely on debugging and microscopic program behavior. 
No consideration is given to higher-level program struc- 
ture or more global behavior over time. 

Wilde and Huitt [20] suggest that a major barrier to 
maintaining object-oriented software is difficulty in pro- 
gram analysis and understanding, and they recommend 
that visual tools be developed to aid in these activi- 
ties. In particular, the recommendations include tools 
based on dependency analysis, graphs, and clustering 
methodologies, which might help address the problems 

of comprehending high-level system structure, dynamic 
binding, and dispersed program structure, among oth- 
ers. 

Davis and Morgan [3] introduce one formulation of 
a graph showing invocations between methods. Their 
primary interest is in revealing behavior reuse. Reuse 
of behaviors manifests itself as imbalance in the graph, 
with a preponderance of edges leading down and to the 
left. Low-level or basic behaviors drift to the bottom 
of the graph, and high-level or application behaviors 
rise to the top. While this view provides an excellent 
indication of reuse, it would be difficult to gain much 
understanding of overall system behavior or class-level 
interaction from its use in isolation. 

Kleyn and Gingrich [12] address the need for un- 
derstanding object behavior in order to facilitate code 
sharing and reusability. A tool is presented for con- 
currently animating a number of different graph-based 
views of the dynamic behavior of an object-oriented pro- 
gram. Structural views include excerpts of the inheri- 
tance and containment hierarchies. Behavioral views 
include graphs of invocations between methods as well 
as invocations between objects and invocations between 
methods associated with objects. However, animation 
is achieved solely by highlighting nodes on fixed graphs. 
The graphs themselves are not dynamic in that their 
form never evolves. Further, no consideration is given 
to presenting other aspects of run-time behavior, such 
as object allocation activity and object lifetime. 

9 Conclusion 

We have introduced novel views of the behavior of 
object-oriented systems and an architecture for creating 
and animating these views. We have shown how instru- 
mentation can be done in a portable fashion and how a 
visualization system can be structured so that new visu- 
alizations can be added quickly and easily. Our visual- 
izations have already proved effective in our day-to-day 
work for understanding large, complex object-oriented 
systems and for debugging and tuning them. 

We are continuing to define a comprehensive set of 
views dealing with a broad range of aspects of object- 
oriented system behavior. We are also expanding the set 
of object-oriented languages with which this system can 
be used. Moreover, we are investigating architectural 
support for navigation between views, exploration and 
elision of details within views, and new tools that will 
enable users to explore the internal state and structure 
of executing applications. We believe that visualization 
of object-oriented systems will be an effective and com- 
plementary addition to existing development tools. The 
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architecture and views we have presented lay a founda- 
tion for these visualizations. 
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A Visualization Catalog 

A.1 Allocation Matrix (Figure 1.4) 

Purpose 

Reveals which classes instantiate other classes. 

Elements 

Classes appear along the left and bottom edges. Classes 
are topologically sorted so that subclasses always appear 
above or to the right of base classes. Each square in the 
matrix denotes the number of instances of a class on 
the bottom that are allocated by a class on the left. 
A square’s color reflects how many instances have been 
allocated. The color key at the bottom indicates the 
mapping of number of instances to color, from few (reds) 
to many (dark violets). 

Interpretation 

l Static: The view shows the relative number of al- 
locations among classes. 

l Dynamic: Color changes indicate the time at 
which classes allocate instances and the rate of al- 
location. 

Related Visualizations 

Patterns in this view are related to call patterns in the 
inter-class call matrix (A.6), because normally a class 
will communicate with classes it instantiates. 

A.2 Class Time Chart (Figure 1.6) 

Purpose 

Presents method activation over time, grouped by class. 

Elements 

Classes are arranged along the left edge. They are 
sorted topologically so that subclasses always appear 
above base classes. Classes appear along the left edge 
as they are first instantiated. The horizontal axis rep- 
resents time. At each step in time, a colored square is 
drawn for each class. Squares are color-coded as follows: 

l green for classes having at least one instance but 
no active method 

l red for the class of the currently active instance 

l blue for the class of the currently active method if 
it is operating on an instance of a derived class 

l violet for classes having methods on the call stack 

Interpretation 

l Static: A program that exploits code inheritance 
extensively will show many blue squares over time. 
Long horizontal bands of red indicate a class with 
heavily used method(s), thus representing potential 
execution hot-spots. 

l Dynamic: Many new classes appearing along the 
edge of the view may indicate a new execution 
phase. 

Related Visualizations 

Violet squares correspond to the call stack path of the 
inter-class call cluster (A.5). Blue squares are equiva- 
lent to off-diagonal squares in the intra-class call ma- 
trix (A.7). 

A.3 F’unctions-Instances Matrix 
(Figure 1.7) 

Purpose 

Shows invocations of individual methods on individual 
instances. 

Elements 

Methods appear along the left edge as they are first in- 
voked; instances appear along the bottom edge as they 
are created. Each square in the matrix denotes the 
number of invocations of the method at the left on the 
instance at the bottom. A square’s color reflects the 
number of invocations. The color key at the bottom in- 
dicates the mapping of number of invocations to color, 
from few (reds) to many (dark violets). 

Interpretation 

l Static: Instances showing constructor calls with- 
out corresponding destructor calls suggest memory 
leaks. Instances showing only constructor and de- 
structor calls may reflect copy constructors or un- 
accessed (and potentially unneeded) objects. 

l Dynamic: Many new instances and/or methods 
appearing along the edges of the view may indicate 
a new execution phase. Noticeable color changes 
draw attention to popular instances and methods. 
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Related Visualizations 

The functions-instances matrix can be used in conjunc- 
tion with class-based visualizations such as the inter- 
clam call matrix (A.6) to investigate behavior at a finer 
granularity. 

A.4 Histogram of Instances (Figure 1.3) 

Purpose 

Shows instances grouped by class and indicates their 
level of activity. 

Elements 

Classes are arranged along the left edge. They are 
sorted topologically so that subclasses always appear 
above base classes. Classes appear along the left edge 
as they are first instantiated. Each square in the view 
denotes an instance of the class to the left. A square’s 
color reflects how many calls have occurred on the in- 
stance. The color key at the bottom indicates the map 
ping of number of calls to color, from few (reds) to many 
(dark violets). A white square represents an instance 
that has been deleted; such squares will be reused by 
new instances. 

Interpretation 

l Static: Classes with similar or identical bars sug- 
gest close coupling or containment. Unexpectedly 
large numbers of instances may suggest a memory 
leak. 

l Dynamic: Instances from different classes appear- 
ing and disappearing in unison are another indica- 
tion of close coupling or containment. Bars that 
grow rapidly can reflect object creation in tight 
loops. Squares flashing rapidly between red and 
white indicate short-lived objects, which may sug- 
gest excessive copy constructor calls. 

Related Visualizations 

The class time chart (A.2) shows a history of instance 
activity. 

A.5 Inter-Class Call Cluster (Figure 1.1) 

Purpose 

Provides a dynamic overview of how objects communi- 
cate by displaying classes spatially according to commu- 
nication frequency. 

Elements 

Classes appear as floating labels. The more two classes 
communicate, the closer they will appear; classes that 
do not communicate repel each other. Classes having an 
instance with a method on the call stack are connected 
by blue lines. A red line leads to the class with the 
currently active method. 

Interpretation 

Static: Clustered classes are likely to be tightly 
coupled and/or part of the same subsystem. 

Dynamic: Concentrated activity of the red line 
for long periods between elements of a cluster sug- 
gests an execution hot-spot. Any of the following 
phenomena may indicate a new phase in the pro- 
gram’s execution: (1) many new classes bursting 
out of the center and coalescing into clusters; (2) a 
drastic change in the shape of the call stack path; 
and (3) major shifts in the positions of class labels. 

Related Visualizations 

The inter-class call matrix (A.6) provides a cumulative 
record of communication patterns. 

A.6 Inter-Class Call Matrix (Figure 1.2) 

Purpose 

Provides a cumulative overview of object communica- 
tion summarized by class. 

Elements 

Classes are arranged along the left and bottom edges. 
They are sorted topologically so that subclasses always 
appear above or to the right of base classes. Classes 
appear along the edges as they are first instantiated. 
Each square in the view denotes the number of calls to 
methods of the class on the bottom by methods of the 
class on the left. A square’s color reflects how many calls 
have occurred. The color key at the bottom indicates 
the mapping of number of calls to color, from few (reds) 
to many (dark violets). 

Interpretation 

l Static: The ordering of classes along the axis in- 
dicates their instantiation order. Vertical bands 
above the diagonal may reveal a base class that 
is heavily used, either through inherited code or 
by explicit calls from subclasses. Horizontal bands 
suggest classes that drive or contain instances of 
many others. Squares on the diagonal indicate calls 
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to self. Clusters near the diagonal are a sign of 
classes that are instantiated together and are de- 
signed to work together. Dark areas also indicate 
closely-coupled classes. 

l Dynamic: Many new classes appearing along the 
edge of the view may indicate a new execution 
phase. Noticeable color changes draw attention to 
classes that interact heavily. 

Related Visualizations 

The class time chart (A.2) also reveals extensive use of 
code inheritance. 

Related Visualizations 

The inter-class call cluster (A.5) reveals more of the 
dynamics of inter-class communication. The intr~~lass 
call cluster (A.7) can verify heavy base class use. 

A.7 Intra-Class Call Matrix (Figure 1.8) 

Purpose 

For each class, shows which class’ methods are invoked 
on its instances. 

Elements 

Classes are arranged along the left and bottom edges. 
They are sorted topologically so that subclasses always 
appear above or to the right of base classes. Classes 
appear along the edges as they are first instantiated. 
Each square in the view denotes the number of times 
a method of the class on the bottom operated on an 
instance of the class on the left. A square’s color re- 
flects how many calls have occurred. The color key at 
the bottom indicates the mapping of number of calls to 
color, from few (reds) to many (dark violets). 

Interpretation 

l Static: A square on the diagonal signifies an in- 
stance operated upon by a method of its own class. 
Squares above the diagonal correspond to invoca- 
tions of base class methods on derived class in- 
stances. A square below the diagonal would in- 
dicate invocation of a method from a class instan- 
tiated after the receiving instance, which is impos- 
sible because the classes are sorted topologically; 
thus this view must always be upper-triangular. 

A program that exploits code inheritance exten- 
sively will show many squares above the diagonal. 
Vertical lines indicate classes with methods inher- 
ited from a common base class. 

l Dynamic: Many new classes appearing along the 
edge of the view may indicate a new execution 
phase. Noticeable color changes draw attention to 
heavy interaction between related classes in the in- 
heritance hierarchy. 
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