
Visualizing the Behavior of Object-Oriented Systems

Wim De Pauw, Richard Helm, Doug Kimelman, and John Vlissides

IBM T.J. Watson Research Center, P.O. Box 704, Yorktown Heights, NY 10598 USA
(wim,helm,dnk,vlis}~watson.ibm.com

Abstract

Numerous classes, complex inheritance and contain-
ment hierarchies, and diverse patterns of dynamic in-
teraction all contribute to difficulties in understanding,
reusing, debugging, and tuning large object-oriented
systems. To help overcome these difficulties, we intro-
duce novel views of the behavior of object-oriented sys-
tems and an architecture for creating and animating
these views. We describe platform-independent tech-
niques for instrumenting object-oriented programs, a
language-independent protocol for monitoring their ex-
ecution, and a structure for decoupling the execution
of a subject program from its visualization. Case stud-
ies involving tuning and debugging of real systems are
presented to demonstrate the benefits of visualization.
We believe that visualization will prove to be a valuable
tool for object-oriented software development.

I Introduction

Understanding the structure and internal relationships
of large class libraries, frameworks, or applications is
essential for fulfilling the promise of code reuse. More-
over, discerning global and local patterns of interaction
among classes is critical for tuning and debugging. Al-
though the object-oriented paradigm lets programmers
work at higher levels of abstraction than procedural
models, the tasks of understanding, debugging, and tun-
ing large systems remain difficult. This has numerous
causes: the dichotomy between the code structure as
hierarchies of classes and the execution structure as
networks of objects; the atomization of functionality-
small chunks of functionality dispersed across multiple
classes; and the sheer numbers of classes and complexity
of relationships in applications and frameworks.

Tools for procedural languages are often inappropri-
ate for object-oriented programs because they work at

Permission to copy without fee all or part of this material is

granted provided that the copies are not made or distributed for

direct commercial advantage, the ACM copyright notice and the

title of the publication and its date appear, and notice is given

that copying is by permission of the Association for Computing

Machinery. To copy otherwise, or to republish, requires a fee

and/or specific permission.

ki 1993 ACM 0-89791-587-9/93/0009/0326...$1.50

an inappropriate level of abstraction. Tools that are
directed at object-oriented software development have
focused primarily on static code structure (for exam-
ple, class browsers and inheritance viewers [lo, 4, 151,
affinity browsers [7]) d an on breakpoint debugging and
object inspection [l], which provide only microscopic
views of the program at disjoint points in time.

We believe tools that focus on the dynamic behav-
ior of an object-oriented system are essential for under-
standing, code reuse, debugging, and tuning. We also
believe that visual tools are most effective for this pur-
pose. Users are easily overwhelmed by a steady stream
of text. The fields of scientific visualization and pro-
gram visualization have demonstrated repeatedly that
the most effective way to present large volumes of data
to users is in a continuous visual fashion [17, 14, 111.
Continuous visual displays allow users to assimilate in-
formation rapidly and to readily identify trends and
anomalies.

This paper introduces a system for dynamic visual
presentation of the behavior of object-oriented systems.
Major contributions of this work are a set of novel views
for displaying system behavior and a flexible distributed
architecture for animating the views based on program
executions. The set of views includes displays that clus-
ter classes based on the degree to which they interact,
histogram variants showing class instances and their ac-
tivity levels, and cross-reference matrices indicating the
degree of various forms of inter- and intra-class refer-
ences.

Important goals of the system’s architecture include:

Versatility. Allow users to observe and visually in-
spect a system, either in real-time or post-mortem,
from both a local and global perspective.

Composability. Allow users to combine different in-
strumentation, analyses, and views, all to be active
concurrently.

Exbensibility. Allow users to add new visualizations
to the system quickly and easily. The set of visu-
alizations must not be fixed. This implies a toolkit
approach to building visualizations.

OOPSLA’93, pp.

326

326-337

4. Platform and language independence. The in-
strumentation technique and protocol for describ-
ing program behavior should be language- and
platform-independent. Although this paper focuses
on the visualization of programs written in C++, the
choice of language is not intrinsic to this architec-
ture.

With this system, applications as well as frameworks
or class libraries are first instrumented by a preproces-
sor. As an instrumented application executes, it pro-
duces an event stream that characterizes its progress.
A visualization system reads this event stream and up-
dates its model of relevant aspects of the executing
program. This model then drives a number of user-
selectable views of program behavior.

This paper describes the visualization architecture in
general, key aspects of our prototype implementation,
and some views we have developed. The next section
presents actual use of the system on a real application
to give a feel for the system’s effectiveness. Section 3 de-
scribes the overall visualization architecture and some of
its unique features. Section 4 presents techniques used
to instrument code and to record events. Section 5 intro-
duces the event language Annotalk for communicating
between elements in this architecture. Sections 6 and 7
discuss issues in the design of the models that drive the
views and the Visualizer classes that actually produce
the views. We conclude with comparisons to related
work and future directions for this work. An appendix
describes some predefined views currently available with
the system.

2 A Visualization Case Study

During the development process, a programmer turns to
visualization either for general inspection to verify that
a program is running smoothly or to track down the
cause of a problem that has arisen. Typically, high-level
views are examined first to get an overview of system
behavior, and then more specific views are used to focus
on suspicious behavior.

This section presents actual experience with visualiza-
tion in the development of QOCA, a constraint-solving
toolkit [6]. We begin by examining a high-level view
that shows overall patterns of communication.

2.1 Visualizing Communication

The inter-class call cluster provides a dynamic
overview of communication patterns between classes.
Figure 1.1’ shows a snapshot of this view early in the

’ Color plates of the visualizations in this paper appear at the
end of the proceedings.

execution of QOCA. This view shows class names as
floating labels. The amount of communication between
instances of two classes determines the distance between
their labels. The view is animated so that the more
communication there is between classes, the more their
labels gravitate towards each other and cluster together.
Classes that communicate infrequently are repelled to-
wards the edge of the view.

For QOCA, the classes Term, Terms, TermsIterator,
Factor, Factors, and FactorsIterator, concerned with
representing and manipulating constraints, clearly show
strong interaction with each other.

This view also indicates the current call stack by
showing the classes of instances that have received mes-
sages on the call stack. A blue path leads from the label
: :main through each of these classes. The last segment
of the path, leading to the currently active class, is red.
In Figure 1.1 the thread of control goes from : :main,
through Objective, CompoundExpRep, and Terms, and
finally to the currently active class TermsIterator.

The inter-class call cluster focuses attention on the
most active and most cooperative classes at any mo-
ment. These classes provide a good starting point
for more detailed study either for optimization or un-
derstanding the structure of an application-clustered
classes, for example, are likely to be tightly coupled or
from the same subsystem [21]. The number of classes in
a cluster is typically small, on the order of ten classes or
fewer, probably because systems with broader interac-
tions are exponentially more complex and are less likely
to be developed in the first place.

Object-oriented programs often exhibit distinct exe-
cution phases. Most programs have at least one initial-
ization phase as a precursor to a (much longer) commu-
nication phase; programs may have several such phases.
Different phases become evident from the dynamics of
the inter-class call cluster. A new phase starts when
many new classes burst out of the center of the view.
Some classes gravitate together quickly; other migrate
to the edges of the view. The call stack path also reflects
a new phase when its shape changes drastically after a

period of relative stability.

An execution hot-spot often manifests itself when the
red (active) portion of the call stack path darts between
the same set of classes for long periods. Such classes
are prime candidates for optimization. Paying particu-
lar attention to small but popular classes can be more
effective than redesigning complex but infrequently used
classes. In this example, the classes Term, Terms, Term-
sIterator, Factor, Factors, and FactorsIterator are good
prospects for performance tuning.

327

2.2 A Closer Look at Communication

While the inter-class call cluster offers insight into the
dynamic messaging behavior of the program, the inter-
class call matrix (Figure 1.2) gives cumulative and
more quantitative information. Classes appear on the
axes in the order in which they are instantiated. Base
classes always appear closer to the origin than their sub-
classes. A colored square in this visualization represents
the number of calls from a class on the vertical axis to
a class on the horizontal axis. The color key along the
bottom indicates relative number of calls. Colors range
from red, denoting fewer calls, to violet and ultimately
black, denoting more calls.

The dark squares in this view confirm our impres-
sion from the inter-class call cluster that Term, Terms,
TermsIterator, Factor, Factors, and FactorsIterator are
called most frequently. As mentioned, it often pays to
take a closer look at classes showing high activity. Such
classes are often the key to understanding larger parts
of the system and to optimizing its performance. More-
over, unexpectedly high activity can be symptomatic of
bugs in the program.

Many inter-class dependencies can appear as macro-
scopic features in the inter-class call matrix. Vertical
stripes indicate classes that are called by many other
classes. Vertical stripes appearing above the diagonal
tend to indicate key abstract classes in the framework
or library. Horizontal stripes indicate a class that calls
many other classes, typically the classes of its instance
variables. Clusters close to the diagonal may indicate
tightly coupled classes or subsystems. The appendix
discusses this visualization in more detail.

2.3 Insight from Instances

The two previous visualizations primarily concern dis-
playing relationships between classes. Focusing on in-
stances shows program structure at finer levels of gran-
ularity.

The histogram of instances (Figure 1.3) displays
all instances of each class. Rows of small colored squares
form the bars of the histogram. Each bar represents all
instances of the class whose label appears to its left.
Again, a square’s color indicates the number of mes-
sages an instance has received. Colored squares ap-
pear and disappear as objects are instantiated and de-
stroyed. White squares indicate objects that have been
destroyed; these squares will be reused by newly cre-
ated instances. This visualization lets us see how many
instances exist at a given time and their level of messag-
ing activity. It also shows relative object lifetimes and
anomalies such as undesired copy constructor calls that
are manifest as extremely short-lived objects.

Consider again the classes Term, Terms, TermsIter-
ator, Factor, Factors, and FactorsIterator. This view
shows clearly that Term, Factor, and Factors have unex-
pectedly large numbers of instances, possibly indicating
a memory leak. Indeed, waiting until the application
terminates verifies that most instances of these classes
are never reclaimed.

2.4 Pinpointing the Problem

To correct, this memory leak, a first step might be to find
the classes responsible for allocating these unreclaimed
instances. The allocation matrix (Figure 1.4) plots
classes that allocate new objects versus the classes they
instantiate. This view shows allocation dependencies
and the most frequently allocated objects. We can use
this information both to pinpoint the sources of alloca
tions and to subsequently reduce storage and construc-
tion costs.

In this case it appears that Term is allocating most
instances of Term and Factors. This is good evidence
that the class Term fails to reclaim these instances.

Glancing back at the inter-class call matrix (Fig-
ure 1.2), we see that two classes send messages to Term
most frequently: Term itself and Terms. Inspecting the
code we find that Term passes the unreclaimed instances
to Terms, which never deletes them. Correcting this
bug by adding a missing “delete” statement leads to the
healthier histogram of instances in Figure 1.5, shown at
the same point in the program’s execution.

3 Architectural Overview

Program visualization involves instrumenting a subject
program so that it generates events of interest during
execution. As the subject runs, a visualization ap-
plication interprets these events and builds models of
the subject’s state. The visualization application uses
these models to drive visualizers that present views
reflecting the subject’s behavior.

Our visualization architecture provides versatile,
platform-independent, composable, and extensible vi-
sualizations of object-oriented systems by partitioning
functionality into four components:

1. Instrumentation augments the subject program
with code that generates events. It also adds an
instrumentation run-time that transmits events
to the visualization application and lets it access
and explore the subject’s internal state and control
the subject’s execution.

2. Communication defines a language-independent
protocol and transport mechanism between the
subject and its visualization application.

328

Figure 1: Architectural overview

3. Modeling assimilates events into models that rep-
resent and track the execution behavior of the sub-
ject. Models make it convenient for visualizers to
access and display this information.

4. Presentation constructs views of program behav-
ior that let users explore the subject’s behavior and
internal structure.

Figure 1 provides an overview of the objects that im-
plement the architecture. We will describe and refer to
these objects in the detailed discussions that follow.

4 Instrument at ion

The subject’s instrumentation must support effective vi-
sualization. For object-oriented programs this requires
that the instrumented code

a generates events for object construction and de-
struction;

l generates events for method entry and exit;

l collects static type information, such as class struc-
ture and member declarations;

l collects dynamic type information to resolve an in-
stance’s class at run-time;

l supports suspending and resuming subject execu-
tion;

l lets visualization applications examine and explore
a subject’s internal state.

annotatad
program

axecutabls

Figure 2: Instrumentation process

There are many ways to instrument the subject to fulfill
these requirements. Our implementation annotates C++
source code with instrumentation code. We will discuss
the benefits and liabilities of the annotation approach
later in this section.

Figure 2 shows the steps in the instrumentation
process. A script-driven annotator analyzes the sub-
ject source code and augments it with instrumentation
code. The result is then compiled and linked to form a
new binary, which is executed normally.

The instrumentation collects static type information
before executing subject code; dynamic type informa-
tion is generated as the subject runs. The communica-
tion component of the architecture transmits this infor-
mation to visualization applications, as we describe in
Section 5.

4.1 Run-time Type Information

To generate meaningful events, the subject program
must track member function entry/exit and construc-
tor/destructor calls. It must also maintain a run-time
type system. C++ does not provide type information
at run-time (though proposals for such a mechanism
exist [IS]); therefore the instrumentation run-time must
support this functionality. Our implementation is based
on Interrante and Linton’s work in this area [9].

For each class in the subject program the instrumen-
tation maintains an object that records static and dy-
namic type information about the class. Each of these
objects is an instance of a Blues’ subclass. Blues is
an abstract base class with protocol for identifying a
class’s parents, members, and instances. We define one
Blues subclass for each class in the subject program.
There exists one instance of each Blues subclass in the
instrumented code to maintain this information.

Figure 3 shows the Blues interface and a subclass
ABlues for a class named A in the subject program.
Given an arbitrary instance from the subject program,
the Blues base class returns the corresponding Blues
subclass instance that can furnish type information at
run-time. For example, given a pointer to an instance
of class A, the function Blues: : Instance returns

2 What’s in a name?

329

class Blues c class ABlues : public Blues {
public: public:

virtual "BluesO; static ABlues* Instanced;

static Blues* Instance(void*);
static Blues* Instance(const char*);

virtual void* Hember(void*, const char*);

virtualconst char* ClassO;
virtualconst char** Parentso;
virtual const char** MembersO;

protected:
ABluesO;

void Register(void+, const char*);
void Unregister(void+. const char+);
void Register(void*);
void Unregister(void+);

private:
void Entering(void+, const BluasInfot. boolean);
void Leaving(void+, const BluesInfoL, boolean);

virtual const char+ Class0 = 0;
virtualconst char++ Parents0 = 0;
virtual const char** HembersO = 0;
virtual void+ lamber(void*, con& char+) = 0;

protected:
Blues(const char *);

// . . .

);

static ABlues+ -A-Blues;
static conat char* ~AlIambsrsCl;
static const char* _AParents[l;
static const char* -AClassIame;

1;

Figure 3: Blues base class (left) and annotator-generated subclass interfaces (right)

a pointer to the ABlues object that records informa-
tion about the A class. The ABlues instance may then
be queried for its class name (via the Class operation),
its parents (via Parents), and its member signatures
(via Members). Moreover, the Member operation lets a
client ask the ABlues for a pointer to a member of this
instance given the member’s signature. This operation
lets visualization applications examine an object’s con-
tents and follow pointers to other objects, even private
ones.

To make the private member data of A accessible to
ABlues, we must circumvent C++‘s type system. Each
Blues subclass uses a slightly modified declaration of
its associated subject class, one that declares the Blues
subclass to be a friend of the subject class. The ABlues
implementation, for example, sees a version of the de-
claration of class A with an additional “friend class
ABlues ; ” statement, which lets ABlues access member
data of an instance of A. Of course, this technique as-
sumes that friend declarations do not alter class layout,
which appears true for all compilers we know.

The Blues base class and subclasses are part of the in-
strumentation run-time. They are compiled and linked
separately from the annotated subject code. Only the
annotations in the subject code use Blues services,
which are transparent to subject code.

Unlike some proposals for maintaining run-time type
information, the subject classes are not queried for their
type directly in this scheme. Instead, Blues’s static In-
stance operations return the particular Blues subclass
object given a specific instance or a class name. An ad-
vantage of this approach is that it is not invasive-it de-
pends only on class declarations, not implementations.
It does not alter the memory layout or virtual function

tables of subject classes. This makes it possible to query
classes defined in a library or toolkit about their struc-
ture even if the library does not provide source code.

4.2 Construction, Destruction, and
Method Invocations

To generate events during subject execution, we add
code to each class’s constructor, destructor, and mem-
ber functions. We track object construction and de-
struction by adding code that registers and unregisters
each instance with the appropriate Blues subclass in-
stance (see Figure 3). Events are generated as a side-
effect of (un)registering an instance with the Blues sub-
class.

We track function entry and exit by declaring a local
(stack-allocated) instance of BluesTracer at the begin-
ning of each constructor, destructor, and member func-
tion. BluesTracer is a trivial class whose constructor
and destructor inform the corresponding Blues subclass
instance of the member function’s entry and exit. This
generates an event. Because the BluesTracer instance
is stack-allocated, its constructor and destructor will be
called automatically when the member function enters
and exits.

4.3 Suspending and Resuming
Execution

Objects in the instrumentation run-time are responsi-
ble for suspending and resuming execution of the sub-
ject program. In the current implementation, control
over execution is carried out entirely as a side-effect of
communication, as we describe in Section 5.

330

4.4 Discussion

Instrumentation by annotation has several advantages.
It is independent of operating system, compiler, linker,
and execution format, thus enhancing portability. Be-
cause annotation is automatic, its effects are transpar-
ent to the programmer; the subject program need not
be modified. Annotation also offers flexibility. Anno-
tations can be changed simply by changing the script,
and the program can furnish any information that it can
compute at run-time.

A potential disadvantage of this scheme is that instru-
mentation code may have undesirable side-effects on the
subject, such as slowing execution or increasing storage
requirements. However, the annotation approach is not
necessarily more disruptive than environment-specific
schemes, since all perturb the subject to some extent.

One shortcoming of our approach is its inability to
track data member references. This is a consequence of
our simple-minded annotation script, not the annota
tion approach. A smarter parsing script coupled with
additional instrumentation code would yield data refer-
ence information, presumably with significant run-time
overhead.

5 Communication

The architecture is designed so that subject programs
are independent of visualization applications. The sub-
ject and the visualization application may run in dif-
ferent address spaces or on different machines. The
instrumented subject includes communication objects
that send information to a visualization application and
receive requests from it. The communication compo-
nent of the architecture consists of (1) Annophrase ob-
jects, which encapsulate program events, static program
information, and control directives; (2) Annotalker ob-
jects, which logically send and receive annophrases; and
(3) Annotalk, a protocol for transmitting annophrases
between annotalkers.

Figure 1 shows an annotalker in the subject instru-
mentation run-time sending an annophrase to a visu-
alization application’s annotalker. Visualization appli-
cations also use annotalkers to communicate with their
subject, for example, to send a control directive or to
request run-time type information, From the instru-
mentation’s perspective, annotalkers send and receive
annophrases, but annotalkers use Annotalk to encode
and transmit annophrase information.

Annotalk is a simple, two-way protocol that can con-
vey information in an annophrase. Table 1 lists state-
ments in Annotalk and describes them briefly. Most
are self-explanatory. The rh, rr, and rm statements en-
code requests for stopping and restarting execution and

for returning a pointer to a member datum given the
datum’s signature (including its name and type decla-
ration). The x statement defines a dictionary entry that
maps an arbitrary signature into an index. Long signa-
ture arguments are encoded as much shorter dictionary
indices, thereby compressing the protocol stream for ef-
ficient transmission and storage.

With Annotalk, .annotalkers can transmit anno-
phrases across process and machine boundaries, either
through files or interprocess communication. They also
perform transparent compression and decompression of
the Annotalk stream as directed by dictionary entry de-
clarations and accesses. Finally, an annotalker blocks
the subject program when it receives a halt request, re-
sponding only when it receives a request for a pointer
to a member or a request to resume execution; other
annophrases are ignored.

6 Modeling

Visualization applications must maintain knowledge
about the subject program’s execution. This knowledge
is stored in one or more annomodels. Annomodels as-
similate and distill execution events from the subject
into visualization-specific information. Annomodels re-
ceive events in the form of annophrases from the subject
as it executes. In turn, annomodels drive visualizers
that present views.

Annomodels may be as general or as specialized as
a visualization warrants. Subclasses of the Annomodel
base class process and maintain different kinds of infor-
mation. For example, the ClassModel subclass stores
static information about classes, including a catalog of
all classes, their inheritance relationships, and mem-
ber information. InstanceModel maintains lists of all
instances, the instances of each class, and a count of
messages to each instance. Other annomodels can col-
lect call stack information, keep track of logical time,
provide an interface for controlling program execution,
and compile annophrase statistics such as the amount of
protocol compression being realized. Annomodels can
also synthesize higher-level, visualization-specific events
from multiple annophrases.

A visualizer may rely upon several annomodels for
information, and there may be multiple synchronized
visualizers. Concurrent views provide several perspec-
tives on a program’s execution and give insight greater
than what views offer in isolation. Each visualizer reg-
isters itself with the annomodels it needs; annomodels
in turn update all registered visualizers. Moreover, vi-
sualizers often share annomodels because they require
similar sorts of information to generate views. For ex-

331

Annotalk statement Description
cl class-name declares a class name
pubp class-name porentAassAwne public derivation
prop class-name parent-class-name protected derivation
irip class-name &rent-class-name private derivation
pubf class-name signature public member function of class-name
prof class-name signature protected member function of clarr-name
prif class-name signature private member function of class-name
pnbd class-name signature public data member of class-name
prod class-name signature protected data member of class-name
prid class-name signature private data member of class-name
c time-stamp object-ptr class-name souree~ile source-line signature constructor call
d time-rtamp object-ptr class-name source-file rource-line signature destructor call
B time-stamp object-ptr clams-name rourccJile source-line signature member function entry
1 time-rtamp object-ptr clars-name source-file roune-line signature member function exit
rh request to halt execution
r*
1p1 object-ptr rignature

request to resume execution
request for pointer to member rignature of object-ptr

m object-ptr signature
v ocrrion-number
x code rtring

response to pointer request
1 declares the current protocol version
1 declares a dictionary entry, accessed by @code J

Table 1: Annotalk protocol

ample, most visualizers use a ClassModel and an In-
stanceModel.

Each annomodel is attached to an annobus, which
notifies the annomodels of an annophrase’s arrival and
gives each a chance to examine the annophrase and up-
date its state. Of course, annomodels are free to ignore
annophrases. Annomodels are notified once again when
the annophrase has been inspected by all annomodels.
Only then do annomodels update their attached visual-
izers. This two-phase notification serves two purposes:
it lets annomodels update their respective visualizers
only when they are consistent with one another, and it
gives cooperating annomodels a chance to examine the
annophrase before they exchange information.

The more focused an Annomodel subclass is, the
greater its potential for reuse and combination with
other annomodels. While visualization-specific An-
nomodel subclasses can be many and varied, there
should be little or no overlap in the processing or storage
responsibilities of any two annomodels. Redundancy
can lead to inconsistencies (e.g., two annomodels dis-
agree), inefficiency (e.g., replicated effort), or both.

7 Presentation

The visualization architecture separates modeling data
kept in annomodels from presentations defined by vi-
sualizers. All visualizers are derived from the Visual-
izer base class. Visualizer defines protocol that lets an
annomodel notify it of state changes. It also defines
protocol for interpreting basic program events such as
constructor and destructor calls and method entry/exit.

Vleuallzer8 Renderers

Figure 4: Annomodel-Visualization-Renderer relationships

Subclasses of Visualizer refine the interpretation of pro-
gram events and generate specialized views.

Each visualizer also maintains its own data to sup-
port its visualization. This data will typically map in-
formation kept in annomodels to information presented
on the display. For the graphical presentation of the
view, each visualizer maintains a Renderer class (see
Figure 4). Renderer defines a high-level interface for
displaying and changing graphical elements, thereby iso-
lating visualizers from details of the underlying graphics
system. Our prototype implementation uses the Inter-
Views and Unidraw toolkits and ibuild interface builder
to implement renderers [13, 18, 191.

332

We have developed several abstract subclasses of Vi-
sualizer. The matrix views in the Appendix are all
simple extensions of MatrixVisualizer, a subclass for
scatter-plot visualizations. TimeChartVisualizer is a
subclass for strip-chart visualizations that map time to
a spatial dimension. ClusterVisualizer displays enti-
ties clustered according to subclass-defined criteria. Fi-
nally, HistogramVisualizer uses a histogram to orga-
nize information spatially. Programmers can select one
of these abstract base classes based on the look and feel
they desire. Then the programmer must simply rede-
fine how the visualizer maps program semantics stored
in annomodels into the graphical elements of the Visu-
alizer subclass.

A key principle in designing visualizations of object-
oriented programs in particular is to take advantage of
the structure this paradigm affords. Visualizations can
map class/method/instance/time dimensions to spa-
tial/temporal/color dimensions in any combination to
produce different views, some more effective than oth-
ers. The challenge is to choose the most effective map-
ping for conveying a given aspect of a program’s behav-
ior.

8 Related Work

The notion of program visualization first appeared in
the literature over a decade ago [8], and algorithm an-
imation was popularized shortly thereafter [2]. Work
on visualizing the dynamics of program execution has
flourished in the area of parallel systems [ll, 51, where
the need is clear for a means of understanding the in-
teractions among elements of a complex system.

More recently, the importance of program visualiza-
tion for object-oriented systems has been recognized.

For purposes of debugging, Backer and Herczeg [l]
introduce a “software oscilloscope” for visually tracking
the detailed interactions between objects in a system.
To inspect dynamic program behavior of a program dur-
ing execution, they introduce obstacles between objects
and animate the flow of messages across these obstacles.
At any point, execution can be suspended to inspect
context with conventional browsers. However, focus is
solely on debugging and microscopic program behavior.
No consideration is given to higher-level program struc-
ture or more global behavior over time.

Wilde and Huitt [20] suggest that a major barrier to
maintaining object-oriented software is difficulty in pro-
gram analysis and understanding, and they recommend
that visual tools be developed to aid in these activi-
ties. In particular, the recommendations include tools
based on dependency analysis, graphs, and clustering
methodologies, which might help address the problems

of comprehending high-level system structure, dynamic
binding, and dispersed program structure, among oth-
ers.

Davis and Morgan [3] introduce one formulation of
a graph showing invocations between methods. Their
primary interest is in revealing behavior reuse. Reuse
of behaviors manifests itself as imbalance in the graph,
with a preponderance of edges leading down and to the
left. Low-level or basic behaviors drift to the bottom
of the graph, and high-level or application behaviors
rise to the top. While this view provides an excellent
indication of reuse, it would be difficult to gain much
understanding of overall system behavior or class-level
interaction from its use in isolation.

Kleyn and Gingrich [12] address the need for un-
derstanding object behavior in order to facilitate code
sharing and reusability. A tool is presented for con-
currently animating a number of different graph-based
views of the dynamic behavior of an object-oriented pro-
gram. Structural views include excerpts of the inheri-
tance and containment hierarchies. Behavioral views
include graphs of invocations between methods as well
as invocations between objects and invocations between
methods associated with objects. However, animation
is achieved solely by highlighting nodes on fixed graphs.
The graphs themselves are not dynamic in that their
form never evolves. Further, no consideration is given
to presenting other aspects of run-time behavior, such
as object allocation activity and object lifetime.

9 Conclusion

We have introduced novel views of the behavior of
object-oriented systems and an architecture for creating
and animating these views. We have shown how instru-
mentation can be done in a portable fashion and how a
visualization system can be structured so that new visu-
alizations can be added quickly and easily. Our visual-
izations have already proved effective in our day-to-day
work for understanding large, complex object-oriented
systems and for debugging and tuning them.

We are continuing to define a comprehensive set of
views dealing with a broad range of aspects of object-
oriented system behavior. We are also expanding the set
of object-oriented languages with which this system can
be used. Moreover, we are investigating architectural
support for navigation between views, exploration and
elision of details within views, and new tools that will
enable users to explore the internal state and structure
of executing applications. We believe that visualization
of object-oriented systems will be an effective and com-
plementary addition to existing development tools. The

333

architecture and views we have presented lay a founda-
tion for these visualizations.

References

PI

PI

131

[41

151

PI

[71

PI

PI

H.D. Backer and J. Herczeg. Browsing through
program execution. In INTERACT ‘90, pages 991-
996. Elsevier Science Publishers B.V. (North Hol-
land), 1990.

M.H. Brown and R. Sedgewick. A system for algo-
rithm animation. In ACM SIGGRAPH ‘84 Con-
ference Proceedings, pages 177-186, 1984.

J. Davis and T. Morgan. Object-oriented devel-
opment at Brooklyn Union Gas. IEEE Software,

10(1):67-74, 1993.

Adele J. Goldberg. Smalltalk-80: The Interac-
tive Programming Environment. Addison-Wesley,
Reading, MA, 1984.

M.T. Heath and J.A. Etheridge. Visualizing the
performance of parallel programs. IEEE Software,

8(5):23-39, 1991.

Richard Helm, Tien Huynh, Kim Marriott, and
John Vlissides. An object-oriented architec-
ture for constraint-based graphical editing. In
Proceedings of the Third Eurographics Work-

shop on Object-Oriented Graphics, pages l-22,
Champ&y, Switzerland, October 1992. Also avail-
able as IBM Research Division Technical Report
RC 18524 (79392).

Richard Helm and YoGlle S. Maarek. Integrat-
ing information retrieval and domain specific ap-
proaches for browsing and retrieval in object-
oriented class libraries. In Object-Oriented Pro-

gramming Systems, Languages and Applications

Conference, pages 145-161, Phoenix, Arizona, Oc-
tober 1991. ACM.

C.F. Herot, G.P. Brown, R.T. Carling, M. Friedell,
D. Kramlich, and R.M. Baecker. An integrated
environment for program visualization. In H.-
J. Schneider and A. J. Wasserman, editors, Au-

tomated Tools fOT Information Systems Design,

pages 237-259. North Holland Publishing Com-
pany, 1982.

John A. Interrante and Mark A. Linton. Runtime
access to type information in C++. In Proceedings
of the 1990 USENIX C++ Conference, pages 233-
240, April 1990.

PO1

PII

WI

1131

P41

P51

P61

Sharam Javey, Kin’ichi Mitsui, Hiroaki Nakamura,
Kazu Yasuda Tsuyoshi Ohira, Kazushi Kuse, Tsu-
tomu Kamimura, and Richard Helm. Architec-
ture of the XL C++ browser. In Proceedings of
CASCON ‘92, Center for Advanced Studies. IBM
Canada. Toronto. Canada, November 1992.

D.N. Kimelman and T.A. Ngo. The RP3 program
visualization environment. The IBM Journal of Re-
search and Development, 35(6), November 1991.

M.F. Kleyn and P.C. Gingrich. Graphtrace-
understanding object-oriented systems using con-
currently animated views. In Object-Oriented PTO-

gramming Systems, Languages and Applications

Conference, pages 191-205, 1988.

Mark A. Linton, John M. Vlissides, and Paul R.
Calder. Composing user interfaces with Interviews.
Computer, 22(2):8-22, February 1989.

G.M. Nielson, B.D. Shriver, and J. Rosenblum. Vi-
sualization in Scientific Computing. IEEE Com-
puter Society Press, Washington, 1990.

Harold L. Ossher. Multi-dimensional organization
and browsing of object-oriented systems. In PTO-

ceedings of the IEEE ComputeT Society 1990 In-

ternational Conference on Computer Languages,

pages 128-135, New Orleans, LA, March 1990.

Bjarne Stroustrup and Dmitry Lenkov. Runtime
type identification for C++. Journal of Object-

Oriented Programming, pages 32-42, March-April
1992.

[17] C. Upson, T. Faulhaber, D. Kamins, D. Laid-
law D. Schlegel, J. Vroom, R. Gurwitz, and A. van
Dam. The application visualization system: A
comnutational environment for scientific visualizs-

P31

WI

PO1

.
tion. IEEE Computer Graphics & Applications,

9(4):30-42, July 1989.

John M. Vlissides and Mark A. Linton. Unidraw:
A framework for building domain-specific graphical
editors. ACM Transactions on Information Sys-

tems, 8(3):237-268, July 1990.

John M. Vlissides and Steven Tang. A Unidraw-
based user interface builder. In Proceedings of
the ACM SIGGRAPH Fourth Annual Symposium
on User Interface Software and Technology, Hilton
Head, SC, November 1991.

N. Wilde and R. Huitt. Maintenance support for
object-oriented programs. IEEE Transactions on
Software Engineering, 18(12):1038-1044, Decem-
ber 1992.

334

[21] Rebecca Wirfs-Brock, Brian Wilkerson, and Lau-
ren Wiener. Designing Object-Oriented Software.

Prentice Hall, Englewood Cliffs, New Jersey, 1990.

A Visualization Catalog

A.1 Allocation Matrix (Figure 1.4)

Purpose

Reveals which classes instantiate other classes.

Elements

Classes appear along the left and bottom edges. Classes
are topologically sorted so that subclasses always appear
above or to the right of base classes. Each square in the
matrix denotes the number of instances of a class on
the bottom that are allocated by a class on the left.
A square’s color reflects how many instances have been
allocated. The color key at the bottom indicates the
mapping of number of instances to color, from few (reds)
to many (dark violets).

Interpretation

l Static: The view shows the relative number of al-
locations among classes.

l Dynamic: Color changes indicate the time at
which classes allocate instances and the rate of al-
location.

Related Visualizations

Patterns in this view are related to call patterns in the
inter-class call matrix (A.6), because normally a class
will communicate with classes it instantiates.

A.2 Class Time Chart (Figure 1.6)

Purpose

Presents method activation over time, grouped by class.

Elements

Classes are arranged along the left edge. They are
sorted topologically so that subclasses always appear
above base classes. Classes appear along the left edge
as they are first instantiated. The horizontal axis rep-
resents time. At each step in time, a colored square is
drawn for each class. Squares are color-coded as follows:

l green for classes having at least one instance but
no active method

l red for the class of the currently active instance

l blue for the class of the currently active method if
it is operating on an instance of a derived class

l violet for classes having methods on the call stack

Interpretation

l Static: A program that exploits code inheritance
extensively will show many blue squares over time.
Long horizontal bands of red indicate a class with
heavily used method(s), thus representing potential
execution hot-spots.

l Dynamic: Many new classes appearing along the
edge of the view may indicate a new execution
phase.

Related Visualizations

Violet squares correspond to the call stack path of the
inter-class call cluster (A.5). Blue squares are equiva-
lent to off-diagonal squares in the intra-class call ma-
trix (A.7).

A.3 F’unctions-Instances Matrix
(Figure 1.7)

Purpose

Shows invocations of individual methods on individual
instances.

Elements

Methods appear along the left edge as they are first in-
voked; instances appear along the bottom edge as they
are created. Each square in the matrix denotes the
number of invocations of the method at the left on the
instance at the bottom. A square’s color reflects the
number of invocations. The color key at the bottom in-
dicates the mapping of number of invocations to color,
from few (reds) to many (dark violets).

Interpretation

l Static: Instances showing constructor calls with-
out corresponding destructor calls suggest memory
leaks. Instances showing only constructor and de-
structor calls may reflect copy constructors or un-
accessed (and potentially unneeded) objects.

l Dynamic: Many new instances and/or methods
appearing along the edges of the view may indicate
a new execution phase. Noticeable color changes
draw attention to popular instances and methods.

335

Related Visualizations

The functions-instances matrix can be used in conjunc-
tion with class-based visualizations such as the inter-
clam call matrix (A.6) to investigate behavior at a finer
granularity.

A.4 Histogram of Instances (Figure 1.3)

Purpose

Shows instances grouped by class and indicates their
level of activity.

Elements

Classes are arranged along the left edge. They are
sorted topologically so that subclasses always appear
above base classes. Classes appear along the left edge
as they are first instantiated. Each square in the view
denotes an instance of the class to the left. A square’s
color reflects how many calls have occurred on the in-
stance. The color key at the bottom indicates the map
ping of number of calls to color, from few (reds) to many
(dark violets). A white square represents an instance
that has been deleted; such squares will be reused by
new instances.

Interpretation

l Static: Classes with similar or identical bars sug-
gest close coupling or containment. Unexpectedly
large numbers of instances may suggest a memory
leak.

l Dynamic: Instances from different classes appear-
ing and disappearing in unison are another indica-
tion of close coupling or containment. Bars that
grow rapidly can reflect object creation in tight
loops. Squares flashing rapidly between red and
white indicate short-lived objects, which may sug-
gest excessive copy constructor calls.

Related Visualizations

The class time chart (A.2) shows a history of instance
activity.

A.5 Inter-Class Call Cluster (Figure 1.1)

Purpose

Provides a dynamic overview of how objects communi-
cate by displaying classes spatially according to commu-
nication frequency.

Elements

Classes appear as floating labels. The more two classes
communicate, the closer they will appear; classes that
do not communicate repel each other. Classes having an
instance with a method on the call stack are connected
by blue lines. A red line leads to the class with the
currently active method.

Interpretation

Static: Clustered classes are likely to be tightly
coupled and/or part of the same subsystem.

Dynamic: Concentrated activity of the red line
for long periods between elements of a cluster sug-
gests an execution hot-spot. Any of the following
phenomena may indicate a new phase in the pro-
gram’s execution: (1) many new classes bursting
out of the center and coalescing into clusters; (2) a
drastic change in the shape of the call stack path;
and (3) major shifts in the positions of class labels.

Related Visualizations

The inter-class call matrix (A.6) provides a cumulative
record of communication patterns.

A.6 Inter-Class Call Matrix (Figure 1.2)

Purpose

Provides a cumulative overview of object communica-
tion summarized by class.

Elements

Classes are arranged along the left and bottom edges.
They are sorted topologically so that subclasses always
appear above or to the right of base classes. Classes
appear along the edges as they are first instantiated.
Each square in the view denotes the number of calls to
methods of the class on the bottom by methods of the
class on the left. A square’s color reflects how many calls
have occurred. The color key at the bottom indicates
the mapping of number of calls to color, from few (reds)
to many (dark violets).

Interpretation

l Static: The ordering of classes along the axis in-
dicates their instantiation order. Vertical bands
above the diagonal may reveal a base class that
is heavily used, either through inherited code or
by explicit calls from subclasses. Horizontal bands
suggest classes that drive or contain instances of
many others. Squares on the diagonal indicate calls

336

to self. Clusters near the diagonal are a sign of
classes that are instantiated together and are de-
signed to work together. Dark areas also indicate
closely-coupled classes.

l Dynamic: Many new classes appearing along the
edge of the view may indicate a new execution
phase. Noticeable color changes draw attention to
classes that interact heavily.

Related Visualizations

The class time chart (A.2) also reveals extensive use of
code inheritance.

Related Visualizations

The inter-class call cluster (A.5) reveals more of the
dynamics of inter-class communication. The intr~~lass
call cluster (A.7) can verify heavy base class use.

A.7 Intra-Class Call Matrix (Figure 1.8)

Purpose

For each class, shows which class’ methods are invoked
on its instances.

Elements

Classes are arranged along the left and bottom edges.
They are sorted topologically so that subclasses always
appear above or to the right of base classes. Classes
appear along the edges as they are first instantiated.
Each square in the view denotes the number of times
a method of the class on the bottom operated on an
instance of the class on the left. A square’s color re-
flects how many calls have occurred. The color key at
the bottom indicates the mapping of number of calls to
color, from few (reds) to many (dark violets).

Interpretation

l Static: A square on the diagonal signifies an in-
stance operated upon by a method of its own class.
Squares above the diagonal correspond to invoca-
tions of base class methods on derived class in-
stances. A square below the diagonal would in-
dicate invocation of a method from a class instan-
tiated after the receiving instance, which is impos-
sible because the classes are sorted topologically;
thus this view must always be upper-triangular.

A program that exploits code inheritance exten-
sively will show many squares above the diagonal.
Vertical lines indicate classes with methods inher-
ited from a common base class.

l Dynamic: Many new classes appearing along the
edge of the view may indicate a new execution
phase. Noticeable color changes draw attention to
heavy interaction between related classes in the in-
heritance hierarchy.

337

