
Developing Software for Large-Scale Reuse 
(PANEL) 

Ed Seidewitz, NASA Goddard Space Flight Center (moderator) 
Brad Balfour, S@‘ech, Inc. 

Sam S. Adams, Knowledge Systems Corporation 
David M. Wade, Computer Sciences Corporation 

Brad Cox, George Mason University 

1 Background 

Software reuse is a simple idea: reduce the cost of 
software development by developing less new 
software. In practice, however, achieving software 
reuse on a large scale has been frustratingly 
difficult. Nevertheless, as the complexity and cost 
of software systems continues to rise, there has been 
growing interest in really trying to make large-scale 
reuse a reality. Interest in reuse has been 
particularly. strong in both the Ada and object- 
oriented programming communities. This panel 
brings together key experts from these communities 
to discuss the issues, problems and potentials of 
reuse. This discussion is continued from the first 
meeting of this panel at the Tenth Washington Ada 
Symposium last June. 

Brad Balfour and David Wade represent two major 
projects using the Ada programming language. 
Brad Balfour is involved in the DOD Corporate 
Information Management effort, which, as part of 
the DOD Reuse Initiative, is attempting to realize 
widespread consolidation of DOD MIS software. 
David Wade works on the FAA Advanced 
Automation System project, a very large, complex 
project which provides a rich domain for reuse. 

The other two panelists are well known in the 
object-oriented programming community. Sam 
Adams is a recognized expert in object-oriented 
design and programming and has been working 
recently on new approaches to reuse for Knowledge 
Systems. Brad Cox is the creator of the Objective-C 
programming language and has had considerable 
experience with the development and marketing of 
reusable software components. Currently he is 

studying the economic approach required to truly 
achieve wide-spread software achieving reuse. 

Each panelist has been asked to focus in their 
position papers on a specific area of the panel topic: 

Brad Balfour Language Issues 
Sam Adams Methodological Issues 
David Wade Practical Experience 
Brad Cox Economic Issues 

While each panelist did, more or less, direct himself 
to the given focus, it is interesting to note that their 
seems to be a consensus that the most difficult 
problems in achieving reuse are, in the end, largely 
economic and managerial. While technical 
considerations, especially object-oriented methods, 
have an important place in enabling reuse, it is 
approaches to resolving the even more difficult 
non-technical issues that may provide the most 
interesting debate during this panel session. 

2 Brad Balfour 

Within both the reuse and development 
methodology communities, it is fashionable to 
claim that implementation is a nearly insignificant 
part of the overall life-cycle, and therefore, the 
choice of an implementation programming 
language is a non-issue. However, the language 
used to implement reusable software assets will, in 
fact, have a profound impact on almost all of the 
technical aspects of reuse. The choice of an 
implementation language will impact: (a) all 
supporting technologies used to accomplish reuse, 
(b) the economic conditions upon which reuse 
arguments are based, and (c) all “upstream” 
reusable assets including requirements 

137 



specifications and design architectures. Some 
languages are similar and switching among them is 
simple, other languages are wildly diverse in the 
capabilities they support and choosing among 
them represents an early, fundamental choice. 

When implementing a library of reusable software 
assets, the primary impact of choosing a specific 
implementation language will be on the supporting 
reuse technologies including: developing reusable 
assets, certification of those assets, and using the 
assets. The guidelines for developing software assets 
which will be reusable are not language in- 
dependent. While some guidelines can be made to 
sound language independent (e.g. “Separate 
interface from implementation”), they may not be 
realizable in all implementation languages - 
therefore belying their language dependent nature 
(e.g. in Eiffel and Ada interfaces are easy to 
separate from implementation, but how does one 
follow the principle in COBOL or FORTRAN?). 
The supporting technology of asset certification 
(the process of measuring assets for their 
reusability) is also language dependent. The 
definition of what makes a asset reusable differs 
depending upon the language used, and the 
definition’s measurement is also language 
dependent. This makes certification a language 
dependent process. Similarly, the process of reusing 
an asset is language dependent. Some languages 
(e.g. Ada) use dependency and generic instantiation 
to incorporate parameterized components into a 
newly written program; other languages (e.g. C++) 
use inheritance and physical inclusion (copying via 
#include) to incorporate existing assets. While other 
languages (FORTRAN) have no mechanism other 
than physical copying of source code, modification 
of common blocks or source code bodies and calls 
to allow for assets to be reused. 

The choice of an implementation language has a 
major economic impact upon the amount of reuse 
achieved. To maximize the return on one’s 
investment in the creation of an asset, it is important 
that the asset’s cost be amortized over as many 
users as possible. In order to create the largest 
audience for an asset, an organization is driven to 

standardize on the implementation language used 
for that asset. Otherwise, the market for an asset will 
be the much smaller subset who use the one 
language the asset is written in and will leave out 
users of other languages. l This motivation is what 
underlies the fact that many organizations which 
use UNIX based systems have standardized on C 
and that the DOD, as an organization, has 
standardized on Ada - it makes economic sense to 
have a single, common language to maximize the 
number of people who will reuse a given source 
code component. 

The choice of a language deeply influences the 
form, content and reusability of all “upstream” 
products. Domain specific software architectures 
(designs) are both language and methodology 
dependent. Additionally, there is a strong link 
between the methodology chosen and the language 
used to implement the design. Once the design 
methodology is chosen, this choice influences the 
method used for requirements analysis and the 
domain model (e.g. an object-oriented design 
doesn’t work well to support structured analysis). 
Languages can be group in levels according to their 
similarity: C++, Smalltalk, Ada9X vs. Modula-2, 
Ada 83; vs. COBOL, FORTRAN and C). Within 
each group, it is relatively easy to move from one 
language to another as they provide equivalent 
reuse support. However, it is difficult to move from 
one group of languages to another. As an example, 
while group one provides good support for an 
object-oriented architecture, a choice of an group 
three implementation language would make it 
difficult to reuse an object-oriented architecture. 

There are several ways that the choice of an 
implementation language will affect the entire 
spectrum of reuse from Domain Model to Domain 
Specific Software Architecture to source code 
component. It is important to recognize that these 

1 It is technically possible to use a source code asset writ- 
ten in another language and either call on it (through an in- 
ter-language call) or to translate it into the language the 
client is using. However, both possibilities tend not to 
happen in practice, as teams try to avoid mixing languages 
within a single program. 

138 



are not just technical considerations, but also in- 
clude important economic arguments for 
widespread standardization. Unless both the 
technology of mixed language development and 
the culture surrounding “languages as religion” 
change, the early choice of a programming 
language will continue to have a large impact on 
reusability. 

3 Sam S. Adams 

The Business of Reuse 

Making reuse happen on a large scale places 
requirements on almost every aspect of software 
development. There are two main business goals 
that drive the need for large scale reuse. The first is 
the need to reduce the total “cost of ownership” of 
the organization’s software. The second goal is the 
need to convert software from a long term financial 
liability into a corporate asset that continues to 
provide a high return on investment as it is reused 
in project after project. 

Today, roughly 80% of the total cost of software 
occurs after initial delivery. Some of these costs 
arise from problem correction, but most are 
generated by changing requirements and requests 
for new or extended features. Unfortunately, the 
software industry has traditionally focused its 
efforts on optimizing the software creation process, 
which accounts for only 20% of the overall cost of 
ownership. Software reuse by its very nature 
requires a larger, multi-project view of development, 
where evolution, refinement and reuse of software 
assets is essential. 

The Right Product 

So, we need to be able to create and reuse these 
software assets on a large scale throughout our 
organizations. What kind of software is suitable for 
this level of reuse? First of all, the software must be 
“reuseful”. Reuseful software embodies some 
behavior that is commonly needed in the 
applications developed by an organization. If the 
software isn’t useful, then it doesn’t matter how 
reusable it is, it’s simply worthless as an asset. But 

assuming that the software will be useful in many 
kinds of applications, what else is required? 

Searching the shelves, reading the labels 

The developer must be able to locate the software, 
understand its behavior, and trust that it will deliver 
what it promises in a robust, high quality manner. 

To make the software easy to find, a reuse library 
system will need to be deployed and software 
classified properly for easy location and retrieval. 

Once a developer has located a software component, 
however, he must determine its behavior to see if it 
will serve his purposes. Module descriptions and 
programming code are simply insufficient mediums 
for this kind of information. A much richer 
medium that consistently manages all relevant 
analysis, design, implementation, testing, and usage 
information is required. Keeping all this 
information in sync with the executable software is 
essential for large scale reuse. 

Quality and Trust 

Once a developer has selected a software 
component for reuse, how can he determine the 
quality of the component? Reuse requires trust. If 
a poor quality component is reused in an otherwise 
high quality system, the overall quality of the 
system suffers. But how can you tell? Software 
suitable for large scale reuse must pass both 
rigorous testing and stringent metrics, with both +he 
test results and metrics included in the library to 
assist in the decision making process. Also, the tests 
themselves must be available to test the component’s 
behavior within the context of the application where 
it is being reused. 

The Right Process 

Now that we know some of the characteristics of the 
software we need to develop for large scale reuse, 
what kind of development process is required? If 
the software is to be reuseful as well as reusable, 
careful attention must be paid to the design of those 
components that model the essential nature of the 
business domain being addressed. This “domain 
modeling” calls for an iterative, people centered 

139 



process driven by the insights of those individuals 
that have the greatest knowledge of the business 
domain, the users, their managers, and other domain 
experts. The process must be accessible to these 
people, for they will judge the ultimate success or 
failure of the systems being developed. 

Constant Quality Management 

The process must also be tuned to produce high 
quality software. This requires an iterative 
development process with short cycle times and 
high degrees of quality feedback. Long periods of 
development without testing and quality assurance 
provides to much opportunity for a project to lose 
sight of its quality goals. By shortening the time 
between a change and its evaluation, the project can 
never get too far off track. And while testing is an 
essential element in quality assurance, pass/fail 
testing can only produce “software that doesn’t 
break”. Creating software with “Quality that 
Fascinates” requires high frequency measurement 
of qualitative metrics that promote a process of 
continual quality improvement. 

Reuse Creation and Utilization 

While the focus of this panel is the development of 
new reusable software, the process used must 
explicitly encourage and expect reuse itself. 
Developing reusable software should not be a 
special activity, it should be a natural part of the 
entire development process. Whether a software 
component is reuseful or not, making software 
more reusable increases the quality of its design and 
implementation. 

Staying in Sync 

Finally the process must maintain the consistency of 
the requirements, analysis, design, implementation 
and testing information for the software 
component. If the code works but does not reflect 
the design or requirements, it has little value to 
anyone, especially as an asset to the organization. 

Summary 

The creation and reuse of high quality, reuseful 
software assets is essential to successful large scale 

reuse throughout an organization or throughout the 
industry. Object Technology has provided a 
foundation for these software assets, but more 
powerful mediums such as Well Defined Objects [l] 
will be required to maintain the information 
required for large scale reuse. But having the right 
medium does not ensure success. Adopting an 
integrated approach based on the iterative 
refinement and constant quality management of the 
complete software lifecycle will also be 
required [2]. 

References 

[l] Adams, Sam, “Object Transition By Design”, 
Object Magazine, November/December 1992 

[2] Adams, Sam, “Return On Investment: Constant 
Quality Management”, The Hotline on Object 
Technology, Volume 4, Number 1, November 1992 

Software Assets and Well Defined Objects are 
trademarks of Knowledge Systems Corporation, 
Cary, North Carolina, USA 

4 David M. Wade 

The Federal Aviation Administration’s (FAA) 
Advanced Automation System (AAS) is the largest 
of the FAA’s projects to upgrade the nation’s Air 
Traffic Control (ATC) system. This massive 
software development undertaking is being 
performed in accordance with DOD-STD-2 167 by 
IBM (the prime contractor), Computer Sciences 
Corporation (CSC), and a variety of other 
subcontractors. Although CSC is responsible for 
developing over a million of the estimated 2.5 
million lines of Ada code that will be required, the 
size of the effort is only one of many challenges. 
AAS is also complex, distributed, real-time, 
interactive, long-lived, and has high extensibility, 
availability and reliability requirements. 

Modern Software Engineering concepts have always 
been stressed on AAS and were one of the reasons 
the Ada language was selected [l]. A high level of 
software reuse was considered an important facet of 
these concepts early on. Aside from the use of 
external software repositories and Commercially 

140 



Available Software (CAS), a strong effort was made 
early on to foster “internal” reuse between the 
highly independent development groups that make 
up AAS. In June 1989 a Reuse Working Group was 
formed to aggressively pursue this goal. Its original 
limited mandate was to study the existing reuse 
effort on the project and suggest improvements. It 
was quickly recognized that considerable software 
reuse benefit could be gained just through a 
sustained coordination effort, therefore the group 
was transformed into a permanent entity. Shortly 
thereafter the CSC Reuse Group (RG), a subset of 
the Reuse Working Group, was formed to actively 
support the AAS Reuse effort within CSC. The RG 
has since initiated a variety of innovative techniques 
to foster reuse and has even been allocated staff to 
develop a large percentage of the core Reuse 
software. 

The RG devised a three pronged attack on the many 
obstacles to software reuse that are common on all 
large software efforts. First, there was a strong 
emphasis on education. From the beginning RG 
members have given presentations to the AAS 
community on the advantages of Object Oriented 
Development (OOD) techniques and software reuse. 
These talks were carefully focused to specific 
audiences so that hard, cost/benefit information 
could be provided to managers while developers 
would be shown the many technical advantages of 
software reuse. This effort was important in 
building the grass roots support that is necessary for 
a successful reuse effort and at the same time 
convinced management that it would result in a net 
gain for the bottom line. These talks have since 
been consolidated into an eight hour, two day 
training course on software reuse that is now 
mandatory for all CSC personnel new to AAS. 

Second, the RG ensured that metrics were kept for 
important aspects of the effort. In order to justify 
the existence of a reuse effort it was known that 
tangible evidence of increased effective productivity 
would be required. This meant keeping track of 
what was being reused, who was using it and the 
effort required to develop it. The metrics that have 
been compiled have required only basic 

information to be maintained and surprisingly few 
automated tools. 

The last key element of the RG effort has been its 
full participation in the development effort. 
Although originally conceived as a steering 
committee, it soon became apparent that the best 
way to convince people of the viability of software 
reuse was for the group to become involved in the 
hard, practical work of code development. The 
reuse development effort began with a pseudo 
domain analysis of Air Traffic Control systems 
which was used to create a taxonomy for software 
components. A process was then created to identify 
reuse components, allocate development work and 
track the development, maintenance and use of 
these components. 

With staff available the RG was able to take on the 
responsibility of developing any software that 
didn’t clearly fall under the control of one of the 
standard development groups. In addition, certain 
components were recognized as being critical to the 
success of the reuse effort and having staff on hand 
allowed the RG to make sure these components 
were developed in a manner consistent with the long 
term goals of software reuse. 

Although the RG had very practical reasons for 
participating in the development effort there were 
several surprise benefits that were garnered. First, 
the RG’s involvement at this level provided the 
group with invaluable insight to the problems (and 
opportunities) unique to the AAS development 
environment. Also, by participating with the AAS 
community in the day to day software development 
effort, the RG was able to engender additional 
support for its efforts. 

Currently the reuse component library consists of 
over 60 components made up of more than 60,000 
lines of Ada code of which more than half have 
already been developed and are in use by the AAS 
development community. 

References 

[l] Basili, Dr. V. R., Boehm, Dr. B. W., Clapp, J. A., 
Gaumer, D., Holden, Dr, MTR-87W77, April 1987. 

141 



5 Brad Cox 

The software crisis is a quarter-century old; as old 
as software engineering itself. Isn’t it time to 
recognize that this crisis is a symptom of a deeper 
problem than software engineering’s traditional 
infatuation with programming languages and 
methodologies could ever get at? Isn’t it time to 
stop and reflect on why software engineering is still 
delivering at best arithmetic improvement, while our 
colleagues intangible engineering domains make 
exponentially growing improvements seem almost 
routine? 

Whereas hardware engineers speak of buying and 
selling hardware components in a market, we speak 
of reusing software components from a repository. 
So long as we neglect market processes and the 
revenue mechanisms that fuel them, we will remain 
a primitive tribal economy, quite unlike the mature 
engineering societies to which we aspire. Electronic 
repositories and networks will not be shopping 
malls. They’ll be garbage dumps where those who 
don’t mind sifting through other people’s garbage 
will hunt for Good Stuff Free, wondering why qual- 
ity-conscious engineers’ response to such reuse is 
“Not in my backyard!” 

We’ve paradoxically defined software engineering 
to mean the craftsmanship of primitive, unspecial- 
ized, tribal societies and arbitrarily exclude the kind 
of engineering most characteristic of advanced 
industrial societies. Software engineering is 
synonymous with programmers; those who 
fabricate components from first principles. The 
term generally excludes end-users; those who 
customarily build their own custom solutions out of 
shrink-wrapped pre-fabricated components. 

For example, consider a financial analyst who 
assembles a desktop publishing engine by buying 
shrink-wrapped word processors and spreadsheets, 
and uses them to process a Dow Jones stock 
quotation data-feed in order to write financial 
articles for publication. Isn’t this analyst as much 
engaged in advanced engineering as a refinery 
engineer who builds a refinery to process 
petroleum? Isn’t a Smalltalk programmer who 

assemble classes from a class library doing engi- 
neering in an equally advanced sense of the term, 
but at several levels lower in a specialized labor 
hierarchy? And isn’t a C++ programmer who builds 
applications from components that he fabricated 
solely for the project on hand engaged in a primi- 
tive kind of engineering, indistinguishable from an 
aborigine basket-weaver’s hand-craftsmanship? 

Of course, our paradoxical definition of “software 
engineering” is neither capricious nor malicious. It 
is a consequence of the fact that electronic products 
are so ephemeral that it has never been obvious how 
to treat them as “products” in the sense that ore, 
metals, and silicon chips are products that can be 
robustly bought and sold by the copy. The cause of 
the symptoms we call the software crisis does not 
originate in the software development process, but 
in the easy-to-copy nature of the products thus 
produced. Unlike the hard-to-copy tangible goods 
of the manufacturing age, information age goods 
can be copied in nanoseconds and transported at 
light speed. This undercuts the market processes 
upon which manufacturing age industries have 
achieved the very maturity to which we aspire. 

The market mechanism for the tangible goods of 
the manufacturing age didn’t require any particular 
attention. The hard-to-copy nature of tangible 
goods made the traditional pay-per-copy mech- 
anism the natural choice. But the market 
mechanism is very much an issue for information 
age goods that can be copied in nanoseconds and 
transported at literally the speed of light. This so 
thoroughly undercuts the pay-per-copy mechanism 
of traditional markets that there is considerable dis- 
pute as to whether a robust supply of pre-fabricated 
information age goods is even possible. 

The software crisis can be solved just as the 
problems of cottage industry manufacturing were 
solved during the industrial revolution [l]. Not by 
the accustomed nostrums of software engineering as 
we’ve defined this term in the past, but by enabling 
the same mechanism that drove manufacturing 
industries to its successes. I’m referring to the 
market processes that coordinate the self-interested 
activities of large numbers of individuals, 

142 


