
Rebuilding an Airliner in Flight

A Retrospective on Refactoring IBM Testarossa Production Compiler for Eclipse OMR

Matthew Gaudet

IBM Canada

magaudet@ca.ibm.com

Mark Stoodley

IBM Canada

mstoodle@ca.ibm.com

Abstract

Eclipse OMR is a new open source project created by refac-

toring the IBM J9 Java Virtual Machine to create a set of

language agnostic components for building all kinds of lan-

guage runtimes. This paper reflects on the effort, the suc-

cesses, and the mistakes made while refactoring more than

a million lines of code on the master development branch

while 8 disparate production compiler products were un-

der active development. Refactoring large scale projects like

compilers and language runtimes can be done while shipping

releases, but there are certainly challenges. We offer some

recommendations for other projects considering this path.

Categories and Subject Descriptors D.2.7 [Software En-

gineering]: Distribution, Maintenance, and Enhancement—

Restructuring, reverse engineering, and reengineering

Keywords Refactoring, compiler, retrospective

1. Introduction

Eclipse OMR is a set of reliable components for building

high performance language runtimes. The project goal is to

provide a common infrastructure layer that can be used by

any language runtimes, establishing a lower cost path for

other runtimes to leverage any of the deep investments that

have been made in technologies such as concurrent garbage

collection, JIT compilation and monitoring. Increased core

technology sharing across currently disparate language run-

time systems would provide greater leverage to improve core

runtime technology with dividends paid in multiple runtime

ecosystems. Furthermore, a widely shared common runtime

technology layer could substantially accelerate innovation in

cloud platforms whose capabilities are reliant on the level of

support in the various language runtimes developers want to

use on their platforms.

The current set of OMR components were contributed by

the IBM runtime technology team in the form of the J9 Java

Virtual Machine as well as its Testarossa JIT compiler. J9

and Testarossa have formed the core of the IBM JDK for

11 years. OMR being built out of a pre-existing language

runtime system allows us to produce high quality advanced

components at a high velocity. Testarossa has historically

be used in a number of compilation projects ranging from

academic experimentation with dynamic languages to a pro-

duction full system emulator to a binary re-optimizer to a dy-

namic Just In Time compiler for Java to static language com-

pilers for Cobol, C, C++, and PL/X. This diversity of suc-

cessful language compilation scenarios gave the team some

confidence that the approach would work.

However, refactoring the Testarossa compiler technology

for use in the OMR project had lots of challenges and re-

sulted in successes but also some results that are hard to de-

pict as “successful”. This article summarizes some of our

experiences in refactoring a large production compiler tech-

nology while under active development for multiple com-

piler products.

2. Development Requirements for OMR

OMR was developed under some very stringent require-

ments:

1. The Code must be Shippable: Development of OMR

happened on the master development branch at the same

time developers were actively writing new code. Multiple

products shipped while the refactoring and rearchitecting

to extract OMR was in progress.

2. The Code must not lose functionality: In addition to re-

maining shippable, we were not willing to disable func-

tionality in the code to maintain our ability to ship.

3. The Code must not regress the many performance metrics

regularly tracked during production compiler develop-

ment: Testarossa-based products have stringent require-

ments not to regress compile time, code and compiler

footprint, and various aspects of generated code perfor-

mance across multiple languages, platforms, and com-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.

VMIL’16, October 31, 2016, Amsterdam, Netherlands
ACM. 978-1-4503-4645-0/16/10...$15.00
http://dx.doi.org/10.1145/2998415.2998419

24

Java COBOL ... Proprietary

IBM Ruby Python

OMR

Table 1. Architecture Diagram for OMR Project as origi-

nally concieved.

pilation environments; refactoring work was held to the

same bar as other development work.

The development of OMR proceeded along a number of

fronts.

2.1 Preliminary Experimentation and Refactoring

Like many projects, OMR started as some experimentation.

In the case of OMR, this was a very preliminary form of

a JIT compiler for Python, quickly joined by a prototype

for Ruby. Developing prototypes allowed our team to get a

feeling for the code locations that were so specific to Java

they could not be shared with other languages, as well as

helping the team identify problems and challenges with how

the OMR JIT would be consumed by language runtimes that

were not designed from scratch to use the OMR JIT.

2.2 Development of an Organizating Theme and

System

One fundamental question that confronted the OMR team

was: How do we organize a codebase that was used in com-

pilers for 8 products and generating code for four very dif-

ferent architectures. The codebase had a relatively common

core, but some parts were more targeted to JIT compilation

or specifically for static compilation, or in other places spe-

cialized to obey language rules or optimize language specific

patterns. Over time, a plan emerged to refactor the codebase

into layers, as described by Table 1.

There would be an OMR layer, which contained the core

of the compiler technology but designed specifically to be

language agnostic. All OMR based languages would build

directly on top of that layer. Proprietary languages would

build on top of another layer, simply called IBM, which was

designed to share code across multiple proprietary products.

The refactoring challenge was then to divide each core

Testarossa class into pieces falling into the appropriate lay-

ers: core language independent code in the OMR layer, code

that could be shared across proprietary products in the IBM

layer, and code specific to a particular language would reside

in a piece used onto to build that particular compiler. These

pieces would be arranged together into a C++ class hierar-

chy where each new layer was extending the capabilities of

the lower layers. We called these extensible classes.

2.3 Design Iteration

While the most basic form of extensible classes worked well

enough, it quickly became apparent that there were a number

of pieces that were unwieldly. Over the course of months,

our approach to providing extensible classes was refined step

by step until we had shaved away most of the worst parts

of the extensible class system. This was one instance of an

ongoing process in OMR of constant iteration.

It is not typically possible to get all the elements of a

particular design right initially, without broad discussion and

examination. However, when working in a codebase with

tens of developers across 8 disparate products, it’s difficult

to anticipate all things. Design iteration was very successful

in this scenario, by getting the changes into the hands of

developers where they can provide feedback for future work

and cleanup.

Iteration was very successful approach from the point of

view of the developers implementing the refactoring, but it

was not always well received by the other groups of develop-

ers working in the same code base. Iterating on approaches

to class extensibility, for example, was disruptive to other

development work as the code base changed substantially

and rapidly underfoot. Communication among the various

teams was key and required constant reinforcement to head

off problems.

2.4 Sometimes You Need A Drastic Pivot

The refactoring work of OMR highlighted some technical

tensions in the Testarossa codebase. Some of the projects

employed pragmatic design considerations that could make

sense when the code base was completely proprietary, but

that didn’t correspond to the OMR team’s original concep-

tion of a layered structuring of projects. Furthermore, the

static language compilers built on top of Testarossa tended

to use fairly different implementations of basic functionality

due to the substantial differences in the semantics of these

languages compared ot that of the Java language Testarossa

was originally built for. Over time, it became clear that the

small size of the OMR team combined with our design to

open source meant that we’d have to make some drastic de-

cisions.

Through candid discussion, it became clear that a sub-

stantial fraction of our static language compiler technology

was going to remain proprietary in a way that was going to

cause great difficulty if an open source project formed its

foundation. Furthermore, in the time since the OMR project

was initiated, the IBM strategy around the Java technology

changed with the decision to open source the J9 Java Vir-

tual Machine, leading to a significant Testarossa consumer

being destined for open source. This change dramatically al-

tered the work to refactor the code base and motivated a sig-

nificant pivot in our approach: we decided to fork the open

source languages, Java, and the language independent OMR

25

Java Ruby Python

OMR

Table 2. Simplified architecture diagram

layer into a separate code base from the proprietary static

language compilers and other proprietary compiler products.

Forking fairly significantly simplified our system archi-

tecture, as shown in Table 2.

This simplification of concerns propagated throughout

the codebase: After the fork, the to-be-opened codebase

dropped quickly from 1.2 million lines of code to 850,000.

The fork has given each set of projects the ability to much

better control their technical destiny, at the cost of sacrificing

some degree of code sharing, though sharing of effort is still

occurring, where it makes sense.

3. Summary of Our Experience

The OMR project taught the team a large number of lessions

about refactoring, large scale system design, teamwork as

well as business and engineering tradeoffs. We summarize

these lessons as

3.1 What Went Well

1. Refactoring in Production The disruptive change that the

OMR project introduced into the Testarossa codebase

was very hard on all developers. However, the choice to

do the work in production had a number of very clear

benefits:

• The OMR project was forced to maintain a relatively

low risk profile. We were working on the master de-

velopment branch, directly alongside the developers

shipping products. This approach was good for the

business and the codebase, as changes were forced

to maintain shippability, and there was no risk that a

change in business strategy would leave us incapable

of delivering products.

• Because the work we were doing was happening in

production, all OMR work was subject to the test-

ing of the production runtimes built on top of Tes-

tarossa. This greatly aided Testarossa in maintaining

high quality while its own language independent test-

ing was under development, and in general has still

held the code to a higher standard than otherwise

would have been available given the resources avail-

able for development and testing.

• By working in production, we were able to take an

agile approach to refactoring. We were able to get

and respond to feedback from developers on other

projects, in some cases outright fixing problems we

had not foreseen, in other cases assuaging concerns in

other ways.

2. Experience Testarossa’s history of being multilingual

gave us confidence that we would be able to create the

design structure we’d planned and be successful.

3. Prototyping Doing multiple prototype languages, Ruby,

Python, and later SOM++ and JitBuilder have been ex-

cellent proving grounds for our approach, highlighting

deficiencies, as well as giving us a measurable sense of

progress.

4. Agile Methods The adoption of an agile project manage-

ment process was very helpful to the OMR team. Our

particular model involved giving everyone free license to

create new work items, that were sized and prioritized at

weekly meetings, then, team members were free to tackle

any item available when they had cycles. This was partic-

ularly effective at reducing choice anxiety in newer team

members and interns, giving them a great boost in pro-

ductivity and huge amounts of self-direction.

3.2 What Went Poorly

3.2.1 Perfection is the Enemy of the Good

Inability to compromise even temporarily left certain tasks

as insurmountable. The team has gotten better about this, but

for a while, progress on a number of fronts languished while

fears about regression in compile time performance ruled the

roost. Fear of regressions also lead to technical decisions that

harmed the software engineering rigor of the project. For

example, due to the rigorous performance constraints on one

of our supported platforms, we were forced to develop our

own class model as well as support tooling, rather than using

better supported C++ features such as virtual methods, and

design patterns such as the CRTP. Some decisions on this

road were made with insufficient empirical evidence, and

insufficient consideration of tradeoffs.

Similarly, changes that touched delicate parts of the code-

base were fraught. In retrospect, we should have spent more

time rewriting troublesome classes than trying to mechan-

ically tease apart multiple intersecting concerns in classes

that had not been designed to be decomposed.

In hindsight, the very appealing conceptual reasons for

sharing the Testarossa code base should have been evaluated

in the context of the state of the actual code. This went

too long unexamined and were ultimately responsible for

far more consternation among teams than ever should have

occurred.

Finally, coming from a part of IBM with relatively little

direct open source software experience, we were also con-

stantly confronted with our own fears and concerns around

what would be an acceptable base on which to form an OSS

community. Over time, we have come to believe that we

would be better served working in the open, where we can

get feedback from real potential consumers, rather than try-

26

ing to imagine and anticipate the needs and desires of a mul-

titude of hypothetical consuming projects.

3.2.2 Riding on Coattails

The piggybacking on other languages for test kicked the

development of stand-alone test too far down the road.

3.2.3 Internal Community Building

Iterative design while successful, leads to churn in the code

base that wasn’t always clearly communicated to other teams

working on the code, leading to tensions. Part of the problem

with community building was structural. The OMR team

(those responsible for refactoring and re-architecting the

project) were only a small part of the overall development

team. While this choice seemed sensible early in the project,

it did cause friction and led to teams not collaborating on

design and structure as much as was probably necessary for

a project of this magnitude. The refactoring work cut across

code operating in 8 different compilers with sometimes very

different expectations. It wasnt tractable for the small OMR

team to grasp all the intersecting subtleties in many places,

which left the OMR team moving code around more than

rewriting to minimize impact as we worked to accomplish

our goals. We were able to overcome the issue through open

lines of communication and professionalism that helped to

dispel issues in productive ways. Keeping people talking,

even when disagreements were severe, was key to success.

4. Suggestions to Other Projects

For any project looking to follow in the OMR projects foot-

prints, we offer the following advice:

1. Absolutely do the work ‘in production’. Its difficult to

estimate how long a branch would live, but it seems clear

to us that fundamental refactoring work must occur in

the same branch as other development work proceeds,

especially if there is significant development velocity

outside of refactoring activities.

2. Be extremely careful about your ‘absolutes’. In our cases,

some temporary regressions would have helped to unlock

greater future potential. The challenge is scheduling the

regressions and carefully planning the follow-on work to

assuage concerns over the regression.

3. Be agile Use prototypes and be willing to revisit de-

signs multiple times to let better solutions appear. Always

question if operating conditions have changed and use

opportunities to adjust your decisions appropriately.

4. Do not just isolate the task to a subteam Make the goal

a priority for everyone working on the code base and

spread the work and design effort across the team. When

multiple teams share one code base, this recommendation

can be extremely difficult to accomplish. But having at

least some commitment from each team is better than

leaving the work solely in the hands of one dedicated

group.

5. Always keep lines of communication open It seems obvi-

ous, but in the thick of things, communication can very

quickly break down and only concerted effort to keep dis-

cussions moving forward can avoid disaster.

5. Conclusion

The OMR project is proof that it is possible to do very

large scale refactoring and re-architecting of a production

language runtime, however, the process needs to be man-

aged with careful attention paid to testing, agility, and com-

munication. The OMR JIT technology was open sourced

in September, 2016, having changed dramatically since the

project inception years earlier yet still meeting the needs of

all the products and open source projects that need to use

this technology.

27

