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Abstract
Modern IDEs for object-oriented languages like Java pro-
vide support for a basic set of simple automated refactor-
ings whose behaviour is easy to describe intuitively. It is,
however, surprisingly difficult to specify their behaviour
in detail. In particular, the popular precondition-based ap-
proach tends to produce somewhat unwieldy descriptions
if advanced features of the object language are taken into
account. This has resulted in refactoring implementations
that are complex, hard to understand, and even harder to
maintain, yet these implementations themselves are the only
precise “specification” of many refactorings. We have in
past work advocated a different approach based on sev-
eral complementary notions of dependencies that guide the
implementation, and on the concept of microrefactorings
that structure it. We show in this work that these concepts
are powerful enough to provide high-level specifications of
many of the refactorings implemented in Eclipse. These
specifications are precise enough to serve as the basis of
a clean-room reimplementation of these refactorings that is
very compact, yet matches Eclipse’s for features and outper-
forms it in terms of correctness.

Categories and Subject Descriptors D.3.4 [Programming
Languages]: Processors

General Terms Languages

Keywords Refactoring, specification, language extensions

1. Introduction
A refactoring can only be useful if it is easy to understand
for the programmer, and if it encapsulates operations that
programmers find themselves doing over and over again.
Indeed, most basic refactorings available in modern IDEs are
easily explained in terms of one or two simple examples.
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But describing a refactoring precisely is a perhaps unex-
pectedly difficult task. The complexities of real-world pro-
gramming languages conspire to make it a formidable task
to account for all corner cases and always produce output
programs that are both syntactically correct and semantically
equivalent to the input program.

Popular textbooks on refactorings [Fow00, Ker05] hence
tend to gloss over the finer details and advise the program-
mer to rely on frequent testing to ensure behaviour preserva-
tion. Even the more precise descriptions in Opdyke’s classic
work [Opd92] are only loosely based on a simplified subset
of C++ and make no attempt to account for all eventualities.

But it seems that the imprecision of these descriptions is
directly reflected in the sometimes very low standards of cor-
rectness [SEEV10] of popular refactoring implementations
like those of Eclipse and IntelliJ [Fou10, Jet10] even for lan-
guages like Java where automated refactoring tools enjoy
great popularity. These implementations are hard to under-
stand and even harder to maintain: for example, a seemingly
rather straightforward bug in Eclipse’s INLINE METHOD
refactoring has gone unfixed for almost five years. 1

Without precise descriptions, it is hard to answer even
very simple questions about refactorings. For example, the
first author recently found himself trying to judge which of
Eclipse’s built-in refactorings could potentially move a field
access out of a synchronized block, which is unsafe in the
face of concurrency. With existing specifications being too
general and vague and implementations being too compli-
cated and lowlevel, there is no good source for gaining the
sort of in-depth understanding of individual refactorings that
is needed to answer such questions.

This work takes a step towards remedying the situation
by providing highlevel specifications of common refactor-
ings that are brief and concise, yet aim to be precise enough
to cover all features of the Java 5 language. We further-
more present an implementation of these specifications as
part of a refactoring engine based on the JastAddJ Java com-
piler [EH07a] and evaluate its correctness using Eclipse’s
internal test suite.2

1 See https://bugs.eclipse.org/bugs/show_bug.cgi?id=112100.
2 The implementation, including its test suite, is available for download
from http://jastadd.org/refactoring-tools.
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void m() {
int[] xs = { 23, 42 };

}

void n() {
int[] xs;
xs = new int[] { 23, 42 };

}

Figure 1. Array initialisers and array creation expressions

To provide such descriptions, we choose not to follow
the traditional precondition-based approach. While precon-
ditions are valuable for specifying shallow conditions that
must hold in order for the refactoring to make sense at all,
they are not the right tool to ensure behaviour preservation
in the face of issues related to name capture or control and
data flow preservation.

As we have argued in previous work [SEdM08, SVEdM09,
SDS+10], such problems are much easier to tackle if they
are expressed as dependency preservation problems. For ex-
ample, in many refactorings we want to ensure that name
bindings do not change, or that a name binds to a given
declaration. We accommodate this by introducing a name
binding dependency that is tracked by the refactoring engine.
After the refactoring has performed its code transformations,
the engine checks whether all tracked dependencies are still
present, i.e. whether the name still binds to the intended dec-
laration. If this is not the case, the engine either adjusts the
name to restore its binding (for instance by qualifying it to
escape shadowing), or aborts the whole refactoring. Con-
trol and data flow preservation is treated in a very similar
manner.

Besides these “deep” issues, refactoring engines also
have to account for a host of much shallower issues related
to irregularities or idiosyncrasies of the object language. For
example, Java allows so-called array initialisers to occur
in variable initialisations. They are, however, not first-class
expressions and cannot occur in many other places, where
they have to be elaborated into slightly more complex array
creation expressions.

An example is given in Fig. 1, which shows two meth-
ods m and n that both declare a local integer array xs and
initialise it. But while m initialises xs directly in its declara-
tion and can hence use an array initialiser, n initialises the
variable using an explicit assignment and has to use an ar-
ray creation expression. Obviously, the methods are seman-
tically equivalent, and indeed the same bytecode is generated
for both.

Any refactoring that moves an expression from a variable
initialisation to some other place in the code has to be aware
of this problem and wrap array initialisers accordingly. It
would certainly be much preferable to encapsulate this issue
and handle it once and for all.

To address this kind of problem, we use the approach
of lightweight language extensions [SVEdM09]: while our
refactoring implementations work on Java programs and
produce Java programs as output, intermediate steps can
work on a richer language that provides additional features
to facilitate implementation, which are then translated away
into pure Java. These features are lightweight extensions in
the sense that they are transparent to the user of the refac-
toring tool and never appear in the refactored program. A
particularly simple extension is to make array initialisers
first-class expressions; translating this extension away is, of
course, achieved by wrapping them into array creation ex-
pressions.

Other refactorings require more complicated extensions,
such as anonymous methods [SVEdM09] or with state-
ments [SdM09]. One might then worry that every refactoring
needs different language extensions, leading to a prolifera-
tion of potentially similar yet incompatible language exten-
sions. It is one of our aims in this work to allay these fears by
showing that just a handful of fairly simple extensions suf-
fice to implement many major refactorings, and can indeed
often be shared between different refactorings.

Just as many refactoring steps are more easily expressed
by allowing them to output programs in an extended lan-
guage, it is often convenient for refactorings to assume that
their input programs are written in a restricted language that
does not contain certain features that would otherwise need
special treatment. For example, the synchronized modi-
fier on methods in Java turns out to be rather troublesome
since it hides a dependency on the implicit monitor associ-
ated with the receiver object.

Strictly speaking, this modifier is not needed, since it can
be replaced by a synchronized block around the body of
the method, which makes the dependency explicit. We can
simplify our implementation by first translating the modi-
fier away in this manner, and then reintroducing it where
possible after the refactoring [SDS+10]. Indeed, the long-
standing Eclipse bug alluded to above hinges on this issue.

One major benefit of using language extensions and re-
strictions is that it often allows us to decompose a refactor-
ing into several smaller refactorings, so-called microrefac-
torings, that can be specified, implemented, and tested in
isolation. While earlier work [SVEdM09] has shown that
such a decomposition is possible for certain refactorings, the
present work extends this to many other refactorings.

In summary, the main contributions of this work are as
follows:

• We show that the previously introduced techniques of de-
pendency preservation, language extensions and restric-
tions, and microrefactorings are sufficiently powerful to
give high-level, yet precise specifications of many refac-
torings that easily fit within half a page, but handle the
full Java 5 language.
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class A {

void m() {
int f = 23;
...

}
}

⇒
class A {

int f;
void m() {

f = 23;
...

}
}

Figure 2. A simple use of PROMOTE TEMP TO FIELD

• We demonstrate on some examples that these specifica-
tions are highly modular and that microrefactorings and
language extensions are reusable between refactorings.

• We present an extensive case study to show that the
specifications give rise to concise, high-quality imple-
mentations of all the refactorings offered in recent ver-
sions of Eclipse3, which perform very well on Eclipse’s
own test suite.

The rest of the paper is structured as follows: Section 2 in-
troduces the relevant techniques of dependencies, language
extensions, and microrefactorings with the PROMOTE TEMP
TO FIELD refactoring as the running example. Section 3 ex-
plains how to use these techniques to provide specifications
of refactorings and how these can be implemented; Sec-
tion 4 discusses specifications for PUSH DOWN METHOD
and MOVE MEMBER TYPE TO TOPLEVEL in more detail.
Section 5 relates our experience with providing specifica-
tions and implementations for other Eclipse refactorings and
pitches our implementation against Eclipse’s on their own
test suite. Section 6 puts our work in the context of related
work, and Section 7 concludes.

2. Dependencies and Language Extensions
To make the presentation self-contained, this section will
introduce the different kinds of dependencies used in our
approach, as well as the concepts of language extensions and
microrefactorings on the example of the PROMOTE TEMP
TO FIELD refactoring.

The PROMOTE TEMP TO FIELD refactoring, offered by
both Eclipse (as “Convert Local Variable to Field”) and In-
telliJ (as “Introduce Field”), converts a local variable into a
field, for example as the first step of the REPLACE METHOD
WITH METHOD OBJECT refactoring [Fow00]. A very sim-
ple example is shown in Fig. 2, where the local variable f is
promoted to a field.

We use this example to establish some notational con-
ventions: When presenting an example of how a refactor-
ing is performed, we will always display the input program
(or fragment) on the left, and the refactored program on the
right, connected by a heavy arrow. For clarity, the piece of
code in the original program the refactoring is applied to (the

3 We leave aside a handful of refactorings that have already been studied in
the literature.

class Super {
int f = 42;

}

class A
extends Super {

int f() {
return f;

}
void m() {

int f;
f = 23;

}
}

⇒

class Super {
int f = 42;

}

class A
extends Super {
int f;
int f() {

return super.f;
}
void m() {

f = 23;
}

}

Figure 3. Example of a naming issue with PROMOTE TEMP
TO FIELD

local variable in this example) is highlighted in dark grey,
whereas the changed code in the resulting program is marked
in light grey.

Based on this example, the refactoring is indeed easy to
describe: if the local variable is initialised, turn its initiali-
sation into an assignment; then move the declaration of the
local variable into the surrounding type so that it becomes a
field.

Figure 3 gives an example of a naming problem that may
complicate the refactoring: here, a field f is inherited from
the super class and used in method f. Promoting the local
variable f of method m to a field hides the inherited field
f within class A, and in particular within method f. The
solution is, of course, to qualify f with super to circumvent
this shadowing. Eclipse neglects to do this, while IntelliJ
warns that a field of the same name is declared in the super
class (which is arguably not the essence of the problem), but
does not insert a qualification either.

Let us consider the general case, where we want to turn
a local variable f into a field of class A. Should we always
qualify every unqualified reference to any field f from within
A with super? This is neither correct nor sufficient: if the
reference is within a static method, super is not available;
on the other hand, even references in subclasses or nested
classes of A may be influenced by the refactoring.

Instead, we can view this as a dependency preservation
problem. One necessary condition for PROMOTE TEMP TO
FIELD to be behaviour preserving is certainly that all refer-
ences to the former local variable f now bind to the intro-
duced field f, and all other name bindings stay the same.

In past work [SEdM08] we have introduced a framework
of locked names that allow us to achieve this: before promot-
ing, we “lock” every access to any field of name f within the
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class A {
int f(int y) {

if(y <= 1)
return 1;

int x = y;
return f(y-1) * x;

}
}

⇒  

Figure 4. Example of a data flow issue with PROMOTE
TEMP TO FIELD

whole program4, i.e. we compute the declaration it binds to
and store it along with the name. In the same vein, all refer-
ences to the local variable f are locked to the new field.

After promoting, we check for every name whether it
still binds to the declaration it was locked on, and adjust
it if it does not. The details of this adjustment process are
beyond the scope of the present paper; suffice it to say that
in the above example we would adjust the reference to f by
qualifying it with super, as expected.

A somewhat thornier issue is presented in Fig. 4. Here
we have a function that computes

∏y
k=1 k for every input

y, storing the value of y (somewhat artificially) in a local
variable x. The point of this example is that if we blindly
promote x to a field (as Eclipse and IntelliJ both do), its
value will be clobbered by the recursive invocation, and the
function will instead compute max(2y−1, 1). Indeed, it does
not seem that x is a very good candidate for being turned
into a field, so a refactoring tool would arguably be justified
in rejecting the proposed refactoring, as indicated by the
lightning symbol.

But should we always disallow promoting local variables
of recursive methods? For one, it is in general undecidable
whether a method is recursive in the presence of dynamic
dispatch. But even if we have a conservative check for re-
cursive invocations, disallowing promotion in the presence
of recursion altogether seems overly drastic. For instance,
if we slightly modify the above example by swapping the
operands of the multiplication, the recursion becomes harm-
less and we can promote x without difficulty.

The solution is, again, to track dependencies. In the orig-
inal program of Fig. 4, the reference to x in the return
statement has a single reaching definition, namely the as-
signment to x in its initialisation. If we were to turn x into a
field, it would pick up an additional reaching definition from
the recursive invocation of f, whereas reaching definitions
would remain unchanged in the variant with swapped multi-
plicands.

So we introduce a flow dependency from every variable
to every one of its reaching definitions, and require, just as

4 Names other than f obviously will not change their binding. A
performance-conscious implementation may, of course, try to limit the
scope in which to lock names.

for name bindings, that flow dependencies for accesses to
the promoted local variable are preserved. But while we can
often adjust a name to repair a broken name binding, this
is generally hard to do for flow dependencies. We choose
the simpler option of just aborting the refactoring if flow
dependencies change.

Finally, even if naming and flow dependencies are pre-
served, PROMOTE TEMP TO FIELD can still change the be-
haviour of multi-threaded programs, since it does nothing
to prevent multiple threads from concurrently accessing and
updating the promoted variable. Two possible solutions to
this problem are as follows:

• Make the method from which the variable was promoted
synchronized. Since even the promoted variable is
still only accessed from within that method, we can thus
prevent multiple threads from accessing it concurrently.
However, this solution drastically changes the concur-
rent behaviour of the program and might easily introduce
deadlocks.

• Wrap the promoted field into a ThreadLocal, and then
use an escape analysis to determine whether the wrapper
can safely be removed. This requires rewriting accesses
to the variable to go through the ThreadLocal API.

The second solution is obviously preferable, and is again
amenable to dependency-based reasoning. In addition to
naming and flow dependencies, we keep track of synchroni-
sation dependencies [SDS+10] which capture ordering con-
straints between synchronisation constructs and accesses to
shared state. In particular, accesses to local variables gener-
ate no constraints (since local variables are never shared be-
tween threads), and neither do ThreadLocal objects (which
are not shared either), so from a concurrency perspective the
refactoring becomes a no-op. For the sake of simplicity we
will not elaborate this solution in detail. Incidentally, neither
Eclipse nor IntelliJ try to address the problem of concurrency
in their implementations of PROMOTE TEMP TO FIELD.

With the deep issues related to naming, control and data
flow, and concurrency taken care of, it remains to tackle
more shallow problems engendered by the syntactic pecu-
liarities of our object language Java.

In the first step of our present refactoring, we need to
split off any initialiser of the variable to be promoted into an
independent assignment. As discussed earlier, the result of
this transformation could contain first-class array initialisers.
Also note that the variable could be declared together with
several other variables in a compound declaration like this:

int x, y = f(), z = g();

If we want to promote variable y to a field, we should first
translate this fragment into the equivalent

int x;
int y = f();
int z = g();
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before splitting off the assignment and proceeding as above.
It would not do to insert the assignment after the entire
compound declaration, since this might change the order in
which initialising expressions are evaluated, possibly chang-
ing behaviour. Converting between compound declarations
and their expansion is, of course, easy to do, so we can
simply regard it as a language restriction and formulate our
refactoring on the restricted language of Java without com-
pound declarations.

Based on the framework of dependency preservation and
language extensions and restrictions, we can now give an in-
formal, yet precise description of the refactoring. For modu-
larity and reusability, we split the refactoring into four steps,
three of which are themselves microrefactorings:

1. SPLIT DECLARATION. Given a local variable declaration
d for a variable x with initialising expression e (where d
must not be compound), ensure that d is a statement in
a block (not, for example, the initialising statement of a
for loop). Remove its initialiser and instead insert a new
statement a of the form x = e; after d, where the name
x is locked to d. The output of this microrefactoring may
make use of first-class array initialisers.

2. INSERT FIELD. Insert a declaration d′ for a field x with
the same type as the local variable x into the surrounding
class. If the local variable occurs in a static context, the
field should be static as well. Check that there is not
already a field with the same name in the same class, and
ensure that bindings are preserved.

3. For every use of the local variable x, lock its flow depen-
dencies, and make its name binding locked onto d′.

4. REMOVE DECLARATION. If there are no remaining ref-
erences to d, delete it.

3. Specification and Implementation
Prose descriptions like that of PROMOTE TEMP TO FIELD
in the previous section tend to be quite hard to read, so
we will introduce a number of conventions to enable us to
cast our descriptions into more concise pseudocode. This
will allow us to successfully tackle several more complicated
refactorings.

Algorithm 1 corresponds to the prose description of PRO-
MOTE TEMP TO FIELD given before. We specify refactor-
ings as imperative procedures that modify the input pro-
gram’s abstract syntax tree. They may take arguments (such
as argument d of PROMOTE TEMP TO FIELD) and return
results (although this one does not). Both arguments and re-
sults are given informal types, for example d is supposed to
be an AST node representing a local variable declaration. A
full list of the node types used in this paper is given in Fig. 7
in Appendix A, where we also summarise syntactic conven-
tions used in our pseudocode specifications.

As the first part of the specification, we list the input and
output language of every refactoring, indicating whether it

Algorithm 1 PROMOTE TEMP TO FIELD(d : LocalVar)
Input Language: Java
Output Language: Java ∪ locked dependencies

1: bSPLIT DECLARATIONc(d)
2: d′ ← new private field of same type and name as d
3: make d′ static if d is in static context
4: bINSERT FIELDc(hostType(d), d′)
5: for all uses u of d do
6: lock u onto d′

7: lock reaching definitions of u
8: REMOVE DECL(d)

requires any restrictions on the former or extensions of the
latter. For this refactoring, for instance, the output program
may still contain locked name bindings and flow dependen-
cies, which can be eliminated as described in the previous
section.

Since this elimination process is not refactoring-specific,
we do not consider it part of the specification proper. Indeed,
as we shall see, it is sometimes useful to preserve extended
features in the output program if the refactoring is invoked as
part of a larger refactoring. Hence we leave it up to the caller
whether language extensions in the output program should
be eliminated or not.

The main body of the implementation closely follows
the prose description given above: first, we invoke the mi-
crorefactoring SPLIT DECLARATION to strip off d’s ini-
tialiser, if any. We put floor brackets b·c around the invo-
cation of this microrefactoring to indicate that any language
extensions in the output program it produces should be im-
mediately eliminated.

We then construct a new node d′ corresponding to the
new field, which has the same name and type as d (an imple-
mentation may need to use the locked naming framework to
build a concrete type access that binds to this type).

If d appears in a static context (i.e., either in a static
method or a static initialiser), the promoted field is made
static as well to ensure that it is accessible. Then we in-
voke the microrefactoring INSERT FIELD to insert the pro-
moted field into the closest lexically enclosing type around
d, which we assume to be computed by the utility function
hostType. Again, we require any language extensions to be
eliminated.

As we shall see, INSERT FIELD may fail if it cannot
perform its assigned task, for instance if there already is a
field of the same name in the type. By default this means that
the whole refactoring fails; an actual implementation would
need to provide descriptive error messages and roll back any
changes to the syntax tree.

Now we lock every use of d onto the field d′ and also
lock its flow dependencies, before finally invoking REMOVE
DECL to remove the old declaration d if possible. Finally,

290



the remaining locked names and flow dependencies can be
unlocked, which may cause the refactoring to fail.

Let us now consider the constituent microrefactorings of
PROMOTE TEMP TO FIELD. The first one, SPLIT DECLA-
RATION is specified as Alg. 2. It also takes a LocalVar as
argument, and its output program may contain locked names
and first-class array initialisers. As mentioned above, we re-
strict the input programs to this microrefactoring to disal-
low compound declarations that declare several variables at
once.

In contrast to language extensions in the output pro-
gram, which may be allowed to persist after the end of a
microrefactoring, language restrictions are always enforced
when a refactoring begins to execute. We leave this implicit
in the specification, since the input language specification
makes it clear which restrictions to enforce.

If the declaration d does not have an initialiser, SPLIT
DECLARATION does not need to do anything. Otherwise, it
constructs a new assignment a that assigns the initialising
expression of d to the variable declared in d, inserts it as
the next statement after d (or fails if d is not immediately
surrounded by a block), and then removes its initialiser.

In spite of its simplicity, SPLIT DECLARATION is an im-
portant building block for other refactorings; besides PRO-
MOTE TEMP TO FIELD, it is also used in the implementation
of EXTRACT METHOD and INLINE TEMP [SVEdM09].

Algorithm 2 SPLIT DECLARATION(d : LocalVar)
Input Language: Java \ compound declarations
Output Language: Java ∪ locked names, first-class array

init

1: if d has initialiser then
2: x← variable declared in d
3: a← new assignment from initialiser of d to x
4: insert a as statement after d
5: remove initialiser of d

The next refactoring is INSERT FIELD, which inserts the
declaration d of a field into a type declaration T , ensuring
that the output is syntactically valid and the binding structure
is undisturbed.

It uses assertions to check several preconditions; if any
of them are violated, the refactoring cannot be meaningfully
executed and is aborted. In particular, it checks that no other
field of the same name is already declared in T , which would
lead to a syntactically incorrect program; that d does not
have an initialiser, since an initialiser might have side effects
that change program behaviour; and that we are not trying
to insert a static field that is not a compile-time constant
into an inner class, which is disallowed by the language
specification.

Note that the latter two checks are unnecessary in the
context of the PROMOTE TEMP TO FIELD refactoring (the
promoted field never has an initialiser, and if the field is

static, then so is the method it is promoted from, so the
host type cannot have been an inner class to begin with), but
we include them for modularity and since we want INSERT
FIELD to be a behaviour-preserving refactoring on its own.

If all the checks pass, the refactoring locks all accesses
to types or variables with the same name as d: we assume
that name gives us the name of a declaration, and that
lockNames performs the locking. Finally, the field is in-
serted into the syntax tree of T .

Like SPLIT DECLARATION, INSERT FIELD is quite ver-
satile, and is also used as part of the EXTRACT CON-
STANT, MOVE MEMBERS, and MOVE MEMBER TYPE TO
TOPLEVEL refactorings.

Algorithm 3 INSERT FIELD(T : ClassOrInterface, d :
Field)
Input Language: Java
Output Language: Java ∪ locked names

1: assert T has no local field with same name as d
2: assert d has no initialiser
3: assert if T is inner and d is static, then d is a constant
4: lockNames(name(d))
5: insert field d into T

The final microrefactoring REMOVE DECL (which also
plays a role in INLINE TEMP) is now easily described as
Alg. 4: If d has no initialiser and is not referenced anywhere,
we remove it from the AST; otherwise we do nothing.

Algorithm 4 REMOVE DECL(d : LocalVar)
Input Language: Java \ compound declarations
Output Language: Java

1: if d has no initialiser and is not used then
2: remove d

Note that our specification of PROMOTE TEMP TO FIELD
does not allow for the promoted local variable’s initialiser to
be promoted into an initialiser of the field. Doing so not only
requires moving an expression across method boundaries,
which is hardly ever behaviour preserving, but also might
change the order in which assignments to the variable occur.
Eclipse, which offers this feature, performs almost no checks
to guarantee behaviour preservation in this case, which we
consider unacceptable.

While the specifications we have given so far are in pseu-
docode, they are not very difficult to implement. Our own
implementation of PROMOTE TEMP TO FIELD and the other
refactorings discussed in the sequel is based on the JastAddJ
compiler frontend, which provides the general AST infras-
tructure and some basic analysis capabilities, such as name
lookup and control flow analysis. The required utility func-
tions are either already provided by the compiler frontend or
are very easy to implement on top of it. Earlier work has al-
ready discussed how we implement the dependency tracking
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public void VariableDeclaration
.promoteToField()

{
split();
Modifiers mods = new Modifiers("private");
if(inStaticContext())

mods.addModifier("static");
TypeAccess ta = type().createLockedAccess();
FieldDeclaration f

= new FieldDeclaration(mods, ta, name());
hostType().insertField(f);
for(VarAccess va : uses()) {

va.lock(f);
va.lockReachingDefs();

}
flushCaches();
remove();

}

public void VariableDeclaration
.doPromoteToField()

{
Program root = programRoot();
promoteToField();
root.eliminate(LOCKED_NAMES, LOCKED_FLOW);

}

Figure 5. JastAdd implementation of PROMOTE TEMP TO
FIELD

framework used for name binding, flow, and synchronisa-
tion preservation. Utilising this framework, the implementa-
tion of a given refactoring can closely follow its pseudocode
specification and is generally not much longer.

As an example, we show our implementation of PRO-
MOTE TEMP TO FIELD in Fig. 5. The implementation, just
like the JastAddJ compiler it is based on, is written in Jast-
Add [EH07b], an attribute grammar system that extends Java
with support for circular reference attribute grammars.

The refactoring is implemented as a method
promoteToField on class VariableDeclaration us-
ing an inter-type declaration. We also provide a wrap-
per method doPromoteField, which simply calls method
promoteToField and then eliminates language extensions
from the resulting program. Extensions are implemented as
visitors (LOCKED_NAMES and LOCKED_DATAFLOW) that tra-
verse the syntax tree and rewrite it into plain Java.

Method promoteToField follows the specification in
Alg. 1 quite closely, in particular the three subrefactorings
are invoked as methods split, insertField, and remove.
The construction of field f is somewhat more verbose than
in the pseudocode, since we need to explicitly construct the
syntax tree nodes that the declaration is composed of. Note
in particular that we use method createLockedAccess,
which is part of the naming framework, to construct a locked
access to the field’s type.

The only part of the implementation that does not im-
mediately correspond to the specification is the call to
flushCaches in the penultimate line. This is where the
underlying JastAdd implementation shines through: the in-
formation computed by attributes such as type or uses

is automatically cached, and needs to be flushed manually
whenever the syntax tree has changed. In this example, the
value of attribute uses has become stale, since we have
changed all uses of the local variable being promoted to
bind to the f. If we did not flush the attribute’s value, RE-
MOVE DECL would conclude that references to the variable
still exist and refrain from deleting it.

Altogether, eight lines of pseudocode specification trans-
late into about 20 lines of implementation, which is a rea-
sonable ratio given the verbosity of Java syntax.

4. PUSH DOWN METHOD and MOVE
MEMBER TYPE TO TOPLEVEL

While PROMOTE TEMP TO FIELD is an important tool, it is
a fairly simple and small-scale refactoring. In this section we
show that the techniques used for its specification in the pre-
vious section carry over to more complicated refactorings by
giving specifications of PUSH DOWN METHOD and MOVE
MEMBER TYPE TO TOPLEVEL. The next section will then
provide further empirical consolidation by discussing, albeit
not in as much detail, many other refactorings.

4.1 PUSH DOWN METHOD

The PUSH DOWN METHOD refactoring pushes a method
m from a class A to all its subclasses B1, . . . , Bn; it then
either removes the definition of m from A or turns it into an
abstract method.

A simple example is shown in Fig. 6, which demonstrates
how we can view PUSH DOWN METHOD as being com-
posed of three simpler operations: We first introduce trivial
overriding methods into each of the subclasses which just
invoke the overridden method through super calls, then we
inline these calls, and finally remove the original method.
Where it is impossible to remove the method outright, we
can instead turn it into an abstract method.

The beauty of this approach lies in devolving the per-
haps most tricky part of the refactoring, actually copying the
code from the superclass to the subclass without changing
its meaning, to the well-known INLINE METHOD refactor-
ing. All that remains is to implement the first step, which
is itself a refactoring we call TRIVIALLY OVERRIDE, and
the third step, which is a choice between the two refactor-
ings REMOVE METHOD and MAKE METHOD ABSTRACT.
Note, however, that the decomposition we have given here
only works for virtual methods (i.e. non-private instance
methods). We will briefly consider the case of non-virtual
methods below.

We start with the specification of TRIVIALLY OVERRIDE,
given in Alg. 5. It takes the method m to produce an override
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class A {
int f(int i){ return i+19; }
int m() { return f(23); }

}

class B extends A {

}

class C extends A {

}

⇒

class A {
int f(int i){ return i+19; }
int m() { return f(23); }

}

class B extends A {
int f(int i){ return super.f(i); }

}

class C extends A {
int f(int i){ return super.f(i); }

}

⇒

class A {
int f(int i){ return i+19; }
int m() { return f(23); }

}

class B extends A {
int f(int i){ return i+19; }

}

class C extends A {
int f(int i) { return i+19; }

}

⇒

abstract class A {
abstract int f(int i);
int m() { return f(23); }

}

class B extends A {
int f(int i){ return i+19; }

}

class C extends A {
int f(int i){ return i+19; }

}

Figure 6. Applying PUSH DOWN VIRTUAL METHOD to push f from A to B and C

for and the type B in which to insert the overriding method,
and returns the node corresponding to the created super
call. As we shall see, such a call is not created in all cases,
so the refactoring has return type option MethodCall and
returns either None (if no call was created), or Some c,
where c is the created call.

Algorithm 5 TRIVIALLY OVERRIDE(B : Type,m :
VirtualMethod) : option MethodCall
Input Language: Java \ implicit method modifiers
Output Language: Java + locked names, return void

1: assert m is not final
2: if m not a member method of B then
3: return None
4: m′ ← copy of m with locked names
5: if m is abstract then
6: insert method m′ into B
7: return None
8: else
9: xs← list of locked accesses to parameters of m′

10: c← super.m(xs)
11: set body of m′ to return c;
12: insert method m′ into B
13: return Some c

The refactoring first checks for several special cases. Ob-
viously, we cannot override a final method, so this case is
excluded right away.

If m is not a member method of B (for example be-
cause B already contains an overriding definition of m), the
refactoring does not need to do anything and simply returns
None.

If m is abstract we cannot introduce a super call to it,
either. Instead, the refactoring creates a copy m′ of m, where
all names within m′ are locked to ensure they keep their
original bindings, and inserts it into B. As before, None is
returned.

It remains to handle the case where a super call is ac-
tually created. We construct a list xs with locked accesses
to the parameters of m′, which becomes the argument list
for the super call c. Finally, the body of m′ is replaced by
a single statement returning c, and m′ is inserted as a body
declaration into B.

Like many of its brethren, TRIVIALLY OVERRIDE pro-
duces programs with locked names. It also makes use of a
further language extension: Recall from Fig. 6 that the refac-
toring constructs a method of the form

int f(int i) {
return super.f(i);

}

Obviously, this is only well-formed if the overridden
method returns a value. If it had return type void, we would
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have to omit the return. This situation arises frequently
enough to be a bit of a nuisance, so we introduce a language
extension: The refactoring will on occasion produce state-
ments of the form return e; where e is of type void.
Such statements can simply be translated into e; return;
(note that all expressions of type void are statement expres-
sions, and hence can can form statements on their own).

As a final finesse, TRIVIALLY OVERRIDE assumes that
all method modifiers in its input (or at least on method m) are
explicit. For example, if B were a class and A an interface,
then m would be public and abstract whether or not it carries
the corresponding modifiers, but the modifiers have to be
made explicit in B. Our life becomes much easier if we
assume instead that the modifiers are always explicit.

Let us briefly pause to convince ourselves that this mi-
crorefactoring indeed preserves program semantics, in par-
ticular that the semantics of method calls does not change.
Consider an invocation of a virtual method n on an object
of dynamic type T in the original program. If T is not a de-
scendant of A or n does not have the same signature as m,
the call will be dispatched to the same method in the new
program as in the original program. Otherwise, if the orig-
inal call dispatched to m, the new call will either dispatch
to m as well, or to the newly inserted method m′, which
immediately invokes m. In either case, the semantics stays
unchanged.

The next step of the PUSH DOWN METHOD refactoring
is to inline the super call if one was created. This will
copy the body of m into the subclass, ensuring in particular
that names in m will not inadvertently change their binding.
Since INLINE METHOD has already been discussed in the
context of our framework [SVEdM09], we will not give its
precise specification here.

The final step is to remove m from A if possible, or else
to make it abstract. The two factors to consider here are
whether m is referenced outside its own body, i.e. whether
there is any method call in the program (outside m itself)
that statically resolves to m, and whether m could be dy-
namically called from any call site in the program (again,
outside its own body). If neither is the case, the method can
safely be removed. If only the former is the case, it cannot
be removed altogether, but can be made abstract. In all other
cases, the method must stay.

While it is straightforward to determine the set uses(m)
of all calls that statically resolve to m, determining the calls
that might at runtime resolve to m is quite another matter.
The coarser this analysis the oftener the refactoring will
refuse to remove a pushed-down method, making it abstract
instead. The specification of the refactoring, however, is
independent of the details of this analysis; we simply require
that its results are available as calls(m).5

5 Our implementation of calls assumes that a virtual method call may
resolve either to its static target or to any method that (transitively) overrides
it.

Algorithm 6 REMOVE METHOD(m : Method)
Input Language: Java
Output Language: Java

1: assert (uses(m) ∪ calls(m)) \ below(m) = ∅
2: o← {m′ | m <: m′}
3: if o 6= ∅ ∧ ∀m′ ∈ o.m′ is abstract then
4: for all types B that inherit m do
5: MAKE TYPE ABSTRACT(B)
6: remove m

It is now quite easy to write out a specification for RE-
MOVE METHOD (Alg. 6): The refactoring fails if there are
any calls to m that do not originate in the set below(m) of
nodes inside the definition of m itself. Otherwise, it consid-
ers the set o of all methods m′ that m overrides (which we
write as m <: m′). If there is at least one such method, and
furthermore they are all abstract6, the host type of m (and
any other type that inherits m without overriding it) will now
inherit an abstract method and hence has to be made abstract
itself.

When making a method m abstract (Alg. 7), we check
that it cannot actually be called, and then make every type
abstract that inherits m before putting an abstract mod-
ifier onto it. Of course, a type can only be made abstract
(Alg. 8) if it is either an interface (and hence already ab-
stract), or it is a class that is not instantiated anywhere.

Algorithm 7 MAKE METHOD ABSTRACT(m : Method)
Input Language: Java
Output Language: Java

1: assert calls(m) \ below(m) = ∅
2: for all types B that inherit m do
3: MAKE TYPE ABSTRACT(B)
4: make m abstract

Algorithm 8 MAKE TYPE ABSTRACT(T : Type)
Input Language: Java
Output Language: Java

1: if T is not an interface then
2: assert T is class and never instantiated
3: make T abstract

The specification of PUSH DOWN VIRTUAL METHOD,
shown as Alg. 9, is now simply a matter of plugging together
the previously specified microrefactorings. We use the oper-
ator or to indicate an alternative of several refactorings to try
from left to right until the first one succeeds. ID, of course,
is the identity refactoring that does nothing and never fails.

6 Remember that there could be several such m′, e.g. one from the super-
class and the others from implemented interfaces.

294



Algorithm 9 PUSH DOWN VIRTUAL METHOD(m :
VirtualMethod)
Input Language: Java
Output Language: Java ∪ locked names

1: for all types B <: hostType(m) do
2: c← bTRIVIALLY OVERRIDEc(B,m)
3: if c 6= None then
4: INLINE METHOD(c)
5: REMOVE METHOD(m)
6: or MAKE METHOD ABSTRACT(m)
7: or ID()

Note that INLINE METHOD is invoked without floor
brackets, so any locked names introduced by it are not un-
locked immediately, which can be helpful if they refer to
methods that are hidden by m.

Let us now briefly consider the case of non-virtual meth-
ods. There is probably not much sense in pushing down a
private method, since it can only be referenced by mem-
bers of the same class, and these references will be broken if
the method is pushed into a child class. Static methods can
be handled in almost the same way as virtual methods, ex-
cept that instead of introducing an overriding method with
a super call we introduce a hiding method that directly in-
vokes the hidden method on the super class. The rest of the
refactoring need not change.

One feature that this specification does not provide for is
to push several inter-dependent methods at the same time, or
indeed to determine which other methods have to be pushed
together with the selected method. We leave this extension
to future work.

4.2 MOVE MEMBER TYPE TO TOPLEVEL

We now turn to a type-level refactoring, MOVE MEMBER
TYPE TO TOPLEVEL, which converts a member type that is
nested within one or more other types to a toplevel type.

This refactoring, which incidentally must be performed
by a Java compiler as part of the translation to bytecode,
makes for an interesting example in our framework since it
reuses a language extension that was originally introduced
for a different refactoring: As explained in [SdM09], the
MOVE METHOD and MAKE METHOD STATIC refactorings
can be implemented rather easily by going through an en-
riched language featuring a JavaScript-like with construct.

In a nutshell, the compound statement

with(en, . . ., e0)
s

should be understood to mean that statement s is executed
with the value of e0 as its zeroth enclosing instance (i.e., the
value of this), e1 as the first enclosing instance, and so on.
No enclosing instances beyond en are available.

Moving a static member type to the toplevel is easy, since
it cannot access any non-static data of its enclosing types. So
all we need to do is to ensure that names still bind to their
intended declaration. This is the gist of the specification in
Alg. 10.

Algorithm 10 MOVE MEMBER TYPE TO TOPLEVEL(M :
MemberType)
Input Language: Java
Output Language: Java ∪ locked names

1: if M is not static then
2: bMAKE TYPE STATICc(M)
3: p← hostPkg(M)
4: lock all names in M
5: remove M from its host type
6: INSERT TYPE(p,M)

We use an ancillary refactoring INSERT TYPE (Alg. 11)
to actually insert type M into its target package p, which is
very similar to INSERT FIELD: We need to check that p does
not already contain a type or subpackage of the same name.
Then we globally lock all accesses to types of the same name
to ensure that they will not become shadowed. We remove
modifiers that are inapplicable for toplevel types from T , and
finally insert it into the syntax tree.

Algorithm 11 INSERT TYPE(p : Package, T :
ClassOrInterface)
Input Language: Java
Output Language: Java ∪ locked names

1: assert no type or subpackage of same name as T in p
2: lockNames(name(T ))
3: remove modifiers static, private, protected from

T
4: insert T into p

Things are more complicated for non-static member
types, since they can access enclosing instances. We use an-
other refactoring MAKE TYPE STATIC to make the member
type static first. Applied to a type M , this refactoring adds
to M one field for each enclosing instance, say this$i for
the ith enclosing instance, and surrounds the body of every
constructor and method in B by

with(this$n, ..., this$1, this) { ... }

The fields corresponding to the enclosing instances, of
course, have to be properly initialised, which accounts for
most of the complexity of the specification in Alg. 12. This
initialisation has to happen in M ’s constructors, which there-
fore need to be equipped with additional parameters to pass
in the enclosing instances, which again means that all calls to
the constructors have to be updated to provide corresponding
arguments.
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Algorithm 12 MAKE TYPE STATIC(M : MemberType)
Input Language: Java
Output Language: Java ∪ with, locked names

1: [An; . . . ;A1]← enclosing types of M
2: for all i ∈ {1, . . . , n} do
3: f ← new field of type Ai with name this$i
4: INSERT FIELD(M,f)
5: for all constructors c of M do
6: p← parameter of type Ai with name this$i
7: assert no parameter or variable this$i in c
8: insert p as first parameter of c
9: if c is chaining then

10: add this$i as first argument of chaining call
11: else
12: a← new assignment of p to f
13: insert a after super constructor call
14: for all constructors c of M do
15: for all non-chaining invocations u of c do
16: es← enclosing instances of u
17: assert |es| = n
18: insert es as initial arguments to u
19: discard qualifier of u, if any
20: put modifier static on M
21: for all callables m of M do
22: if m has a body then
23: surround body of m by

with(this$n, ..., this$1, this) {...}

Let us go through the specification step by step. We first
have to introduce fields for the enclosing instances. Let
A1, . . . , An be the enclosing types of M ; we consider each
Ai in turn. First we create a field f to hold the enclosing
instance, which has type Ai and name this$i, and insert it
into M using the INSERT FIELD refactoring. We then cre-
ate a corresponding parameter p for every constructor c of
M . This parameter has the same type and name as f , and is
added to the constructor’s parameter list; the refactoring will
fail if c has a parameter or local variable with name this$i.

We now need to make sure that every constructor ini-
tialises f to the value of its parameter p. This happens in one
of two ways, depending on what kind of constructor c is. If c
is a chaining constructor that invokes another constructor of
the same class by means of a this(...) constructor invo-
cation, we add p to the argument list of that call, and rely on
the invoked constructor to initialise the field. Otherwise we
insert an assignment from p to f into the body of c.

Now we have added the required instance fields to M
and set up its constructors to initialise them, but of course
we need to adjust all invocations of constructors of M to
actually provide values for the extra parameters. So we again
consider every constructor c of M and its every invocation
u in turn. Since we have already treated this(...) calls in
the previous step, we do not have to consider them again.

For any other invocation, we obtain the list es of expres-
sions that provide values for the enclosing instances of M
and add them as arguments to the call. If the invocation
was qualified, then that qualifier was the single enclosing
instance of the invocation which we have already added to
the argument list and can hence discard.

Finally, we wrap the bodies of all constructors and meth-
ods of M (collectively referred to as callables) in with
blocks, and give M a static modifier.

Notice that we did not wrap field initialisers (or indeed
instance initialisers) of M into with blocks. Hence, if an
initialiser contains a reference to a field f of an enclosing
class Ai, that reference will simply be locked, but unless f
is static it cannot be successfully unlocked after M is moved
to the toplevel, so the refactoring will fail.

Eclipse and IntelliJ both treat variable uses in field ini-
tialisers the same as variable uses in methods, so in the ex-
ample the reference will be qualified with the field holding
the ith enclosing instance. This, however, is wrong: initialis-
ers are evaluated before constructor bodies, so the field is
not initialised yet and a null pointer exception will result at
runtime.

Java compilers avoid this problem by inlining field ini-
tialisers into constructor bodies first, but this seems an overly
drastic transformation for a refactoring engine to attempt.
Likewise, our specification does not make any special ar-
rangements for accessing private members of enclosing
classes; unlocking references to such members will fail, thus
aborting the whole refactoring. Eclipse tackles this issue by
increasing the visibility of the referenced members, but, as
shown by Steimann et al. [ST09], adjusting accessibility is
quite a tricky problem in itself. A better solution might be
to introduce getter and setter methods as is usually done by
Java compilers.

5. Towards a Full-Featured Refactoring
Engine

In order to show that the techniques introduced so far pro-
vide a sufficient basis for implementing a refactoring engine,
we set ourselves the goal of implementing all the refactor-
ings offered by Eclipse 3.5 and validating them against their
publicly available test suite.

We decided to exclude the type-based refactorings EX-
TRACT INTERFACE, EXTRACT SUPERCLASS, GENERAL-
IZE DECLARED TYPE, USE SUPERTYPE WHERE POSSI-
BLE, and INFER GENERIC TYPE ARGUMENTS, as these
have been thoroughly explored in the literature [Tip07].

Also excluded from consideration was CHANGE METHOD
SIGNATURE, since its implementations in Eclipse performs
very few semantic checks. Various aspects of this refactor-
ing, such as adding, removing, or permuting parameters can
be implemented in a safe way using our framework, but in
its full generality CHANGE METHOD SIGNATURE is per-
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total # inap- missing we Eclipse same lines of code
Refactoring of tests plicable feature reject rejects result Eclipse we
CONVERT ANONYMOUS TO NESTED 45 4 1 0 1 39 997 220
EXTRACT CLASS 24 2 1 1 1 19 760 243
EXTRACT CONSTANT 60 13 9 10 0 28 683 42
EXTRACT TEMP 133 1 28 5 1 98 854 107
INLINE CONSTANT 38 11 0 8 0 19 827 44
INLINE TEMP 55 12 5 2 1 35 381 82
INTRODUCE FACTORY 49 3 1 0 0 45 799 81
INTRODUCE INDIRECTION 31 0 1 5 0 25 933 61
INTRODUCE PARAMETER 20 1 1 5 0 13 448 26
INTRODUCE PARAMETER OBJECT 19 0 6 0 0 13 628 61
MOVE INNER TO TOPLEVEL 94 15 0 10 1 68 1427 125
MOVE INSTANCE METHOD 54 4 0 14 4 32 2038 99
MOVE MEMBERS 90 5 8 20 5 52 945 120
PROMOTE TEMP TO FIELD 55 19 14 0 0 22 829 62
PULL UP 143 36 5 0 1 101 1694 208
PUSH DOWN 95 27 10 4 1 53 872 374
SELF-ENCAPSULATE FIELD 36 0 3 0 0 33 751 85

Table 1. Evaluation of the correctness of our refactoring engine on Eclipse’s test suite

haps best described as a general code transformation, not as
a behaviour preserving refactoring.

Table 1 summarises the performance of our refactoring
engine when applied to the internal test suite of Eclipse’s
refactoring engine, as available from the Eclipse source dis-
tribution. We exclude test cases for the various RENAME
refactorings, results of which are reported in [SEdM08], and
for EXTRACT METHOD and INLINE METHOD, which have
been treated in [SVEdM09].

For the remaining 17 refactorings7 the table shows the
total number of test cases in the first column, and the number
of test cases where our engine produced the same results as
Eclipse, modulo trivial differences, in the sixth column. The
other columns categorise sources of disagreement.

The second column lists the number of test cases that we
could not test our engine on, either because they were dis-
abled or because they were not valid Java programs. Since
our refactoring engine is implemented as an extension to the
JastAddJ compiler frontend, we can only process programs
that successfully pass syntactic and semantic checks. We in-
clude in this category test cases whose expected result is ar-
guably wrong, as well as tests that pertain to non-functional
aspects of the Eclipse refactoring engine.

The third column shows the number of test cases where
our implementation produces output programs that are cor-
rect and behave the same as the input program, but where
we do not perform all the refactoring steps that Eclipse
does. Many of the failures here relate to clone detection: for

7 Space restrictions prevent us from presenting detailed specifications of
these refactorings; they are, however, available as part of the distribution
of our refactoring engine.

example, the EXTRACT CONSTANT and EXTRACT TEMP
refactorings in Eclipse extract all copies of the selected ex-
pression, whereas our engine only extracts the selected one.
While an ad hoc extension of our engine could presumably
refactor most or all of these test cases, we leave the imple-
mentation of a principled clone detector and its integration
with the refactoring process to future work.

Further, columns four and five summarise the test cases
where one engine produced results while the other rejected
the refactoring. The latter gives the number of test cases
where Eclipse rejects a refactoring which our engine is able
to perform. Conversely, the former tallies the number of
spurious rejections by our engine.

For the refactorings INLINE CONSTANT and INTRODUCE
PARAMETER, these rejections are generally due to the quite
conservative dataflow analysis of our implementation. In
some cases a more precise analysis would be able to prove
that the refactoring can go ahead. Another possible solution
would be to push this kind of issue into the UI, reporting
failures of flow preservation to the user as warnings instead
of aborting the refactoring outright. In any case, Eclipse’s
current hands-off approach in which almost no analysis is
performed seems quite unsatisfactory.

Another major source of rejection, affecting INTRODUCE
INDIRECTION, MOVE INNER TO TOPLEVEL and MOVE
INSTANCE METHOD, is visibility adjustment. When mov-
ing members between types, it is sometimes necessary to
increase the visibility of referenced members for them to
remain accessible after the refactoring. Eclipse has some
heuristics for doing this, but as shown by Steimann and
Thies [ST09] these heuristics are rather crude and can easily
lead to subtle changes in behaviour.
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Our refactoring engine does not attempt to solve this
problem. The locked naming framework does, however,
check that names only bind to accessible declarations, and
aborts the refactoring if this is not the case. Hence our im-
plementation never produces output programs that violate
accessibility rules, although it may on occasion reject refac-
torings that could be performed if the visibility were ad-
justed. To improve on this, we plan to integrate Steimann
and Thies’ system of accessibility constraints with our name
unlocking mechanism.

In summary, while there is certainly a lot of disagreement
in detail between our refactoring engine and Eclipse, we
think that the results show that our techniques are powerful
enough to be applied to the implementation of just about any
refactoring and can produce high-quality implementations
with comparatively little effort.

This is brought into sharp relief if we compare the source
code size of the two implementations, given in the last
two columns.8. For Eclipse, we measured the size of the
*Refactoring.java or *Processor.java files, respec-
tively, for each refactoring. These files only form the core of
the implementation, and contain neither shared utility code
nor user-interface related functionality. For our implemen-
tation, we give the size of the refactoring implementation
including all microrefactorings, but again excluding utility
code. As can be seen, our implementations are always more
compact, in some cases dramatically so. This is partly due
to JastAdd’s aspect-oriented features that enable us to much
more cleanly separate the essence of the refactoring imple-
mentation from supporting code.

Adding up the line counts in the last column, one would
obtain a size of about 2100 lines of code for the core of
our implementation. This would, however, count reused mi-
crorefactorings once for every refactoring that uses them.
The actual amount of code, counting every refactoring only
once, is only slightly more than 1300 lines, which attests to
the reusability of the microrefactorings.

This tally does not include the naming framework, at
about 1400 lines of code, as well as the flow dependency
framework, at about 300 lines, both of which have already
been discussed in previous papers. A further 800 lines pro-
vide functionality for introducing and removing the lan-
guage restrictions and extensions used by the refactorings.

Pleasingly, no further major language extensions besides
with and anonymous methods are needed for the above
refactorings. The five other extensions provided are all very
simple ones, like the first-class array initialisers mentioned
in the introduction. As for language restrictions, we have
mentioned restrictions on compound variable declarations,
the synchronized modifier and implicit method modifiers.
Two other restrictions of a similar kind are used by other
refactorings and are likewise quite easy to realise.

8 This data was generated using David A. Wheeler’s ’SLOCCount’.

In total, the complete source code of our refactoring en-
gine, including all of the above as well as supporting and
utility code (but excluding the JastAddJ frontend and its con-
trol flow analysis package, which are independent projects)
amounts to about 6250 lines of code. This is just a little more
than the combined size of the core implementations of the
four largest refactorings of Table 1 in Eclipse.

We do, however, want to point out two major weaknesses
of our refactoring engine in comparison with Eclipse: It is
currently not integrated into an IDE, and hence not usable
for developers, and it is somewhat lacking in performance.
Refactorings on even very small programs can take up to five
seconds, which is perhaps acceptable for a prototype imple-
mentation but excludes the possibility of using our engine in
a production environment. This is partly due to the general
approach of decomposing refactorings into smaller units, but
a more important factor is the choice of implementation lan-
guage.

While attribute grammar systems like JastAdd excel
at tasks involving the computation of information on im-
mutable trees, as is typical in compiler frontends, updates
to the syntax tree, as they are performed by refactorings,
necessitate frequent flushing and recomputation of cached
information. While in some cases it is possible to pinpoint
precisely which attributes need to be invalidated, this is a
Sisyphean task in general and can lead to extremely subtle
bugs. Hence our implementation elects to always flush all at-
tributes whenever the syntax tree has changed, which incurs
a heavy performance penalty. A principled solution to this
problem requires significant engineering, which we leave to
future work.

6. Related Work
This work is inspired by a long line of work on the specifica-
tion and implementation of refactorings. The classical work
in this area is surely Opdyke’s thesis [Opd92], which pro-
vides a catalogue of refactorings for C++. While the actual
transformations are described only informally, the precondi-
tions that ensure behaviour preservation are spelled out in
more detail, although only for a restricted subset of the ob-
ject language. It is not clear how easy the given conditions
would be to implement.

Another important source of inspiration is Griswold’s
thesis [Gri91]. In contrast to Opdyke, he does not present his
refactorings primarily in terms of preconditions, but rather
views them in terms of their effects on the program de-
pendence graph (PDG), presenting them as the composi-
tion of meaning-preserving PDG transformations. This is,
of course, very close to our approach emphasising depen-
dency preservation and the decomposition of larger refac-
torings into smaller microrefactorings. The object language
for which Griswold describes his refactorings is a first-order
subset of Scheme. The choice of such a simple language with

298



such a simple and regular syntax greatly simplifies the pre-
sentation of his refactorings.

The composition of smaller refactorings into larger ones
is also the focus of work by Kniesel and Koch [KK04].
Their work is concerned with composing the pre- and post-
conditions of constituent refactorings, which does not di-
rectly apply to our dependency based presentation.

There has been some interest in providing executable
specifications of refactorings. For instance, Lämmel [Läm02]
shows how refactorings can be implemented very concisely
by means of rewriting strategies, with the syntax tree rep-
resented as a generic data type that abstracts away from
peculiarities of the object language. It is, however, unclear if
these techniques are usable beyond the very simple refactor-
ings and simple object languages discussed in the paper.

Rewriting is also the technique used by Garrido and
Meseguer [GM06], who give executable specifications of
several Java refactorings in the rewrite logic-based system
Maude. Again, however, the refactorings covered are of a
very simple and local nature.

The JunGL language proposed by Verbaere [Ver08] is
specifically aimed at making it easy to implement refactor-
ings. The language’s unique combination of functional and
logic programming features, in particular the concept of path
queries, are well-suited for specifying the kind of static se-
mantic analyses needed for refactorings. Many refactorings
can be described elegantly in JunGL [VEdM06], and even
complex type-based refactorings are within reach of the lan-
guage [Pay06].

Recently, a series of papers by Tip and others [TKB03,
BTF05, Tip07, KETF07] have examined a number of type-
based refactorings such as EXTRACT INTERFACE and IN-
FER GENERIC TYPE ARGUMENTS. They make pervasive
use of type constraints to ensure behaviour preservation, but
while the constraint rules are given in great detail, the actual
refactorings are only described informally. The implemen-
tation of type-based refactorings in Eclipse is based on this
work.

Steimann and Thies [ST09] introduce accessibility con-
straints that can be used to systematically adjust the visibil-
ity of program elements that are no longer accessible due
to code movement. Again, the constraint rules are presented
formally, whereas the refactorings are only given prose de-
scriptions.

Both lines of work use similar concepts of constraints
that can be seen as a natural extension of our dependency
edges, which are just single constraints to be solved in iso-
lation. Layering a more advanced constraint solving mech-
anism that can take accessibility and type constraints into
account on top of this existing framework is an intriguing
perspective.

Kegel and Steimann [KS08] give a very thorough precon-
dition-based description of the REPLACE INHERITANCE
WITH DELEGATION refactoring that tries to account for all

features of the Java language. Being given in prose only,
the description is somewhat verbose and hard to grasp. De-
spite all their efforts, the authors report that “whenever we
believed that we had made correctness of the refactoring
plausible, testing it on a new project revealed a new problem
we had not previously thought of”, and refrain from arguing
for the correctness of their specification.

The only work that we are aware of which actually
presents pseudocode specifications of refactorings for Java
is the recent paper by Wloka et al. on refactoring programs
for reentrancy [WST09], which describes a transformation
for wrapping static state into ThreadLocal fields. Their
specifications concentrate on issues relevant to the proposed
refactoring, and ignore possible problems arising, e.g., from
naming conflicts.

Recent work by Soetens [Soe09] takes the other direction:
instead of giving a specification and then using it as the
basis for an implementation, he takes the implementations of
PULL UP METHOD, ENCAPSULATE FIELD and EXTRACT
CLASS in Eclipse, and reverse-engineers their specification,
in particular their preconditions.

The problem of how to efficiently compute attribute val-
ues without introducing stale values is a mainstay of the at-
tribute grammar literature, and there is a large amount of
work on incremental evaluation of attributes that handles this
issue transparently. The classic work of Demers, Reps, and
Teitelbaum [DRT81] shows how to solve this problem for
traditional attribute grammars without reference attributes
or circular attributes by computing dependencies and prop-
agating changes along them. Work by Pennings and oth-
ers [PSV92, SSK00] concentrates on caching attribute val-
ues, but again for traditional attribute grammars without ref-
erence attributes.

The doctoral thesis of Maddox [Mad97] presents an in-
cremental attribute grammar system with some more ad-
vanced features, although the eclectic nature of the system
makes it hard to judge how much of the results would ap-
ply to JastAdd. More recently, Boyland has proposed an in-
cremental evaluation mechanism for remote attribute gram-
mars [Boy02], which are somewhat similar to reference at-
tribute grammars. These two papers might make a good
starting point for exploring the incremental evaluation of
JastAdd attribute grammars, although the power of the sys-
tem (which allows arbitrary Java code in attribute equations)
makes it unrealistic to expect that a fully automated ap-
proach would work well in practice.

On the other end of the spectrum, Acar and others have
recently published a series of papers on self-adjusting com-
putation [AAB08], which generalises the problem of incre-
mental evaluation to a much broader class of programs, in-
cluding stateful computations. It seems, however, that their
approach incurs a certain performance penalty as well, and
it is unclear whether it would scale to a system the size of
JastAddJ, on which our refactoring engine is based.
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7. Conclusions
We have presented a case study showing the feasibility of a
new approach to the implementation of refactorings, which
is based on the concepts of dependency preservation, lan-
guage extensions, and microrefactorings.

We have shown that this approach allows us to give clean,
modular specifications of important refactorings that are pre-
cise enough to serve as the basis of a reimplementation of the
majority of refactorings offered in recent versions of Eclipse.
We have tested our implementation on Eclipse’s own exten-
sive test suite, and presented the results showing that our
implementation is on par with industrial-strength refactor-
ing engines with regard to features, and often surpasses them
with regard to correctness.

These results notwithstanding, our present work does not
claim to give completely bug-free specifications that account
for all corner cases. While this is our ultimate goal which
we believe to have made good progress towards achieving,
some cases may very well not be covered by the current
specifications.

But one of the advantages of modular specifications of
refactorings is exactly this: a refactoring can be understood
part by part, and we can reason about its correctness in a
modular way. If a bug is found, we do not need to content
ourselves with a half-baked fix in one particular implemen-
tation that may exploit some idiosyncrasies of the system
to provide an ill-fitting bandaid. Instead we can amend the
high-level specification of the refactoring, so that every im-
plementation based on it can reap the benefits.

A. Definitions
A.1 Pseudocode Conventions
We give our specifications in generic, imperative pseu-
docode. Parameters and return values are informally typed,
with syntax tree nodes having one of the types from Fig. 7.
Additionally, we use an ML-like option type with con-
structors None and Some for functions that may or may not
return a value.

Where convenient, we make use of ML-like lists, with list
literals of the form [1; 2; 3] and |xs| indicating the length of
list xs.

The names of refactorings are written in SMALL CAPS,
whereas utility functions appear in monospace. A list of
utility functions with brief descriptions is given in Fig. 8.
An invocation of a refactoring is written with floor-brackets
bLIKE THISc() to indicate that any language extensions used
in the output program produced by the refactoring should be
eliminated before proceeding.

We write A <: B to mean that type A extends or imple-
ments type B, and m <: m′ to mean that method m over-
rides method m′.

Node Type Description
ClassOrInterface either a class or an interface; is a

Type
Field field declaration
LocalVar local variable declaration
MemberType type declared inside another type; is

a Type
Method method declaration
MethodCall method call
Package package
Type type declaration
VirtualMethod non-private instance method; is a

Method

Figure 7. Node Types

Name Description
below(n) returns the set of all nodes below n in

the syntax tree
calls(m) returns all calls that may dynamically

resolve to method m; can be a conser-
vative over-approximation

hostPkg(e) returns the package of the compilation
unit containing e

hostType(e) returns the closest enclosing type dec-
laration around e

lockNames(n) locks all names anywhere in the pro-
gram that refer to a declaration with
name n

name(e) returns the name of program entity e
uses(m) returns all calls that statically bind to

method m

Figure 8. Utility Functions
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