
IRIS Inventor, A 3D Graphics Toolkit

Paul S. Strauss

Silicon Graphics Computer Systems

2011 North Shoreline Blvd.

Mountain View, CA 94039-73 11

pss@ sgi.com
415-390-1091

Abstract

IRIS@ InventorTM is an object-oriented toolkit for devel-
opers of applications that incorporate interactive, three-
dimensional graphics. Encapsulation of data and meth-
ods in high-level graphical objects allows Inventor to
provide a significant improvement in usability to devel-
opers, as compared to the standard, low-level set of
graphics primitives provided in most other graphics li-
braries. Inventor’s object-oriented framework also fa-
cilitates extensions, which are necessary in the diverse
and rapidly changing field of 3D graphics.

Introduction

Most three-dimensional graphics libraries available to-
day provide very simple interfaces to application devel-
opers. Immediate mode libraries such as IRIS GLTM [3],
StarbaseTM [8], and RenderManTM [101 provide a set of
drawing commands that can be used by applications to
create visual representations of modeled 3D objects.
Display lists are used by packages such as GKS [4] and
PHIGS+ [7] (and, to a lesser extent, some immediate
mode libraries) to collect drawing commands into sim-
ple linear lists. Neither of these approaches truly ex-
ploits any correlation between modeled objects, such as
chairs and airplanes, with the commands used to repre-
sent them visually; these commands usually consist of
sequences of geometric primitives like polygons and
lines. The DoreTM [2] and HOOPSTM [l l] 3D graphics
libraries present a slightly higher level abstraction of

Permission to copy without fee all or part of this material is

granted provided that the copies are not made or distributed fcr

direct commercial advantage, the ACM copyright notice and the

title of the publication and its date appear, and notice is given

that copying is by permission of the Association for Computing

Machinery. To copy otherwise, or to republish, requires a fee

and/or specific permission.

o 1993 ACM 0-89791-587-9/93/000910192...$1.50

models, but they do not allow developers to take good
advantage of key object-oriented techniques.

A problem with these conventional approaches is that
developers are forced to maintain two distinct versions
of their application models. Maintaining the relation-
ships between the application data and the graphical
“objects” used to represent them is a large burden that
developers are forced to bear. In interactive applica-
tions, translating graphical gestures of a mouse or other
input devices into 3D operations on a model is extreme-
ly difficult unless there is a tight coupling between ap-
plication and graphical models. As a result, most 3D ap-
plication writers using conventional graphics libraries
do not provide much 3D interaction.

Developers may also be constrained by the set of graph-
ical primitives provided by most libraries. For example,
if a developer wants to include spheres as objects in an
application, those spheres have to be converted into
primitives that the library supports, such as polygons.
While this conversion is acceptable for interactive ren-
dering, it may not be suitable for operations such as
picking. Picking a sphere, for example, can be done
much more easily and exactly if the sphere is treated as
an integral object, rather than as a collection of poly-
gons.

Object-oriented techniques have proven to be a boon to
graphics developers. The Interviews [1,6], system has
been successful for two-dimensional applications,
However, few papers have been published on 3D sys-
tems. The work done at Brown University [121 presents
a successful approach to this problem that is different
from ours; they rely on a message-passing protocol to
track changes to scenes.

OOPSLA'93, pp. 192-200

192

This paper presents IRIS Inventor, an object-oriented
toolkit for developers of interactive, three-dimensional
graphics applications. Object-oriented techniques pro-
vide two main advantages to developers:

l Encapsulation. Developers can embed rendering
methods and other behaviors, including responses to
input events, in higher-level objects. Many seemingly
simple graphical operations require fairly complicat-
ed implementations; encapsulating them in objects re-
lieves other developers of the need to code or even to
understand them. Developers of proprietary algo-
rithms can hide them safely in the objects’ methods.
There is also a simple solution to the duplicate data
problem, since both application and graphical repre-
sentations can be encapsulated in the same object.

l Extensibility. Because the state of the art of interac-
tive 3D computer graphics changes rapidly, graphics
development tools must be adaptable to new models
and techniques. An object-oriented toolkit approach
provides the necessary support and flexibility for its
designers and its users.

IRIS Inventor is implemented in C++. The decision to
use C++ was motivated by the language’s availability,
(relative) efficiency, and (relatively) short learning time
for experienced C programmers. Another benefit is the
ability to provide C bindings, in addition to the C++
bindings, using mostly automatic means. Developers
can derive new C++ classes to extend the toolkit, al-
though callback mechanisms are provided for easier ex-
tensibility in many cases.

The graphics-related features of Inventor have been
documented elsewhere [5,9]. The rest of this paper de-
scribes in more detail the objects provided by Inventor,
noting the advantages and disadvantages of object-ori-
ented design. The first section describes the application-
programmer interface, using several examples for illus-
tration. Following that are some details of the design
and implementation of the toolkit and a discussion of
extensibility.

Application-Programmer Interface

Components

Inventor provides a variety of classes to help developers
of 3D graphics applications. At the highest level, there

maintint argc, char **)

// Initialize Inventor and create window
Widget appwindow = SoXt::init(argv[O]);

// Read input file
SoInput in:
SoSeparator*root = SoDB::readAll(&in);
root->ref();

// Set up and display viewer component
SoXtExaminerViewer *viewer =

new SoXtExaminerViewer:

I viewer->setSceneGraph(root);
viewer->build(appWindow);
viewer->show():
SoXt::show(appWindow];
SoXt::mainLoop();

1

Figure 1. Code for a simple application that reads any In-
ventor scene file and creates an instance of the Examiner-
Viewer component to view the scene. A view of of the
component in action is shown in Color Plate 3.1.

are objects called components. These are pre-packaged,
interactive application pieces that can be used as is
within programs. Figure 1 illustrates the use of an EX-
aminerviewer component, which allows the user to in-
teractively view a 3D scene from any direction, using
the mouse to move the virtual camera. The set of Inven-
tor components includes several other viewers, such as
fly-through and walk-through, and editors for surface
materials, colors, and textures.

Components are derived from the RenderArea class,
which packages up a window, automatic rerendering,
and event translation into a single object.

Nodes and Fields

The program in Figure 1 reads the representation of a
3D scene from a file in Inventor’s file format. Once read
in, a scene is stored as a directed acyclic graph of
objects called nodes. Node classes can be divided into
three basic categories:

l &pest, which represent geometric objects, such as
cubes and spheres;

l properties, which are attributes of shapes, such as
their surface materials and drawing styles; and

l groups, which have children and are used to collect
nodes into hierarchies.

(Note that these categories are not restrictive; there
could be a class of node that incorporates shape, proper-

+We use the word “shape” in this context to avoid confusion with
the more generic term “object.” We hope it works.

193

ty, and group characteristics.) A representative sam-
pling of node classes supported by Inventor is given in
Table 2.

Instance data for nodes are stored in objects called
fields. For example, the diffuse color, shininess, trans-
parency, and other values in a Material node are stored
in corresponding field instances. Field classes are cate-
gorized by the type of values (integer, float, vector of
three floats, color, and so on) they contain. Fields pro-
vide a simple and consistent interface for setting and re-
trieving values, as well as automatic file read and write
operations.

Several nodes may be required to specify fully a single
3D shape, since properties are stored separately from
geometry. In Inventor, all aspects of a shape that are not
specific to that particular shape class are implemented
as separate properties, to maximize sharing and inherit-
ance when possible. For example, coordinate values and
surface normal vectors that are connected to form poly-
hedral shapes are stored in separate (property) nodes.
Each shape node class is free to respond to whichever
properties it wants to handle.

Applications can read scene graphs from files or build
them at run-time. Figure 2 shows a sample of code that
creates a very simple scene graph.

I I

Shape nodes: Group nodes:
Cone Group
Cube Separator
Cylinder Switch
FaceSet Selection
IndexedFaceSet Array
IndexedLineSet MultipleCopy
LineSet
Nurbscurve Property nodes:

NurbsSurface
PointSet
QuadMesh
Sphere
Text2
Text3
TriangleStripSet

Light/camera nodes:
OrthographicCamera
Perspectivecamera
DirectionalLight
PointLight
SpotLight

BaseColor
Complexity
Coordinate3
DrawStyle
Environment
Font
LightModel
Material
MaterialBinding
Normal
NormalBinding
ShapeHints
Texture2
TextureCoordinate
Transform

Table 1. Some Inventor node classes.

8
Separator

BaseColor Transform Sphere BaseColor Cube

SoSeparator *root, *sepl, *sep2;
SoBaseColor *bl, l b2;
SoSphere *sphere:
SoTransform *xf;

// Create the subgraph with the sphere
sepl = new SoSeparator:
bl = new SoBaseColor;
bl->rgb.setValue(l.O, 0.2, 0.2);
xf = new SoTransform;
xf->translation.setValue(O.O, 3.0, 0.0):
sphere = new SoSphere:
sphere->radius = 0.3;
sepl->addChild(bl);
sepl->addChild(xf);
sepl->addChild(sphere);

/I Create the subgraph with the cube
sep2 = new Soseparator:
b2 = new SoBaseColor;
b2->rgb.setValue(0.2, 0.2, 1.0);
sep2->addChild(b2);
sep2->addChild(new SoCube);

/! Put them together
root = new SoSeparator:
root->ref();
root->addChild(sepl):
root->addChild(sep2);

#Inventor V2.0 ascii

Separator {

Separator (
BaseColor {

rgb 1 .2 .2
1
Transform {

translation0 3 0
1
Sphere (

radius.3

Separator I
BaseColor {

wb .2 .2 1
1
Cube ()

1

Figure 2. Top: a very simple scene graph containing a
small red sphere positioned above a blue cube. Center:
ASCII file format representing the scene. Bottom: code
that builds the scene within an application. Color Plate 3.2
shows the result of rendering the scene with appropriate
camera and light nodes added.

194

Actions and Traversal

Operations on a scene or part of a scene are applied us-
ing objects called actions. For example, a scene is ren-
dered by applying an instance of the RenderAction ob-
ject to the root node of the scene graph, like so:

renderAction->apply(sceneRoot);

Similarly, a scene may be written to a file by applying a
WriteAction to the graph. Other actions include
searching, computing bounding boxes, and picking. An-
other important action is the HandleEventAction,

which lets objects in a scene process input or window-
system events, allowing interaction handling to be built
into scenes. A list of action classes provided by Inventor
is shown in Table 2.

When an action is applied to a graph, the action
traverses each node in the graph, maintaining traversa2
state. This state contains all current property values,
such as surface material, lighting model, and drawing
style, allowing these properties to be inherited and
shared among shapes in the scene.

Different classes of group nodes implement different
behaviors for traversing their children. The base Group

class merely traverses all of its children in order (from
left to right in the scene graph diagrams). The Switch

node, however, usually traverses only the child indicat-
ed by the value in a field; this can be used, for example,
to choose one of several representations of a shape. The

CallbackAction Generic traversal with user call-
backs

GLRenderAction Renders

GetBoundingBoxAction Computes 3D bounding box

GetMatrixAction Computes cumulative transforma-
tion matrix

HandleEventAction Offers nodes a chance to handle an
input event

RayPickAction Returns frontmost shape or all
shapes intersected by a ray cast into
scene

Sear&Action Looks for specific node or type of
node

WriteAction Outputs ASCII or binary representa-
tion

Table 2. Action classes
I ,

ubiquitous Separator group node saves the current tra-
versal state before traversing its child nodes and restores
it afterwards, effectively isolating any state changes that
occur in its children from the rest of the scene. Separa-
tors allow different parts of a scene to be modeled inde-
pendently.

Animation

Inventor provides objects and mechanisms for adding
animation to scenes and for tracking changes to scenes.
A class of objects called SensorS implements a callback
mechanism. Data sensors invoke callbacks when a par-
ticular node or any node below it has changed. The Ren-

derArea class uses a data sensor on the root node of a
graph to detect when to re-render. Timer sensurs invoke
callbacks when a particular time of day is reached, or
regularly at some specified interval. Since sensors oper-
ate through callbacks, they require programming, can
be defined only during run-time, and cannot be stored in
files.

A better animation mechanism is implemented using
field connections and engines. A field in a node may be
connected directly to another field, providing a simple
constraint. Alternatively, a field may be connected to an
output of an engine, which has other fields as inputs. For
example, an engine that adds a 3D vector to a 3D loca-
tion can be used to offset one shape from another by a
given vector. A globalfleld containing the current real
clock time is always maintained by Inventor; connect-
ing fields or engines to this field creates clock-based an-
imation.

One advantage of using engines over sensors is that en-
gines and their connections can be stored in files. For
example, it is possible to save a spinning windmill in a
file. When it is read in, the rotation of the mill is con-
nected automatically to the real time field, so it spins
continuously.

There are also some node classes that contain instances
of engines to define moving properties. Figure 3 illus-
trates how an instance of the Rotor class can be used to
spin the cube in the graph from Figure 2. The Rotor

node is derived from the static RO tat ion node; on con-
struction, it creates an instance of an ElapsedTime en-
gine and connects its input to the real time clock and its
output to the rotation field of the node. Therefore, this

195

node creates animated rotation when added to a scene.
If we were to read the scene in Figure 3 into the appli-
cation from Figure 1, the cube would spin automatical-

ly.

Paths

A node that is the child of more than one group is said
to be multiply instanced. This feature allows for com-
mon subgraphs to be shared and re-used, reducing
memory requirements, and is essential for large graph-
ics applications. For example, a model of a bicycle
might instance a subgraph representing a wheel twice.
An unfortunate result of multiple instancing is that it is
not possible to traverse upwards in a graph from a par-
ticular node. It also makes it impossible to refer unam-
biguously to a shape in a 3D scene, such as the bicycle’s
front wheel, with a single node pointer.

To make such references possible, Inventor includes a
path object that contains a contiguous chain of nodes
from a root of a graph down to some node. A path un-
ambiguously refers to a node in a graph in a particular
context, such as the hub of the front wheel of the third
bicycle. Paths are returned by the picking operation,
which is used to correlate 2D locations in a rendered
window to 3D locations on surfaces of shapes; in typical

~ #Inventor V2.0 ascii

~ Separator {

Separator {
BaseColor (

rgb 1 .2 .2
I
Transform {

translation0 3 0
1
Sphere (

radius.3

Separator (
BaseColor {

rgb .2 .2 1
l

Rotor (

1 revolution every 2 seconds
speed .5

1

Cube 1)
1

Figure 3. Adding an instance of a Rotor node to the graph
from Figure 1. The rotor defines an animated transformation
that is applied to subsequent objects. In this case, the cube
spins.

i-

use it returns a path to the shape visible under the cursor.

Paths are also needed to provide context for removing
or replacing nodes in graphs, since nodes do not provide
access to their parents. This feature is important for sup-
porting a class of objects called manipulators. A manip-
ulator is an interactive 3D object that is used to edit an-
other object. The most common types of manipulators
are those that edit transformations applied to shapes;
they typically employ some sort of surrogate shapes to
provide a handle for users to interact with, as well as for
displaying feedback. For example, the Trackball ma-
nipulator places a virtual sphere around the affected
shape and converts mouse motion input into 3D rota-
tions applied to that shape. A manipulator of this type
replaces the appropriate transformation node while op-
erating, then restores it when it is done, as illustrated in
Figure 4. A path to the transformation node is used to
supply the context so the manipulator can replace it.

Design and Implementation Details

Several decisions in the design and implementation of
the Inventor toolkit were motivated by the need to satis-
fy concurrently the goals of simplicity, efficiency, and
extensibility. These goals are often at odds with each
other, so compromises must be made. As a result, some
of the object classes and methods are not always intui-
tive. Some of the more important decisions are ex-
plained below.

r

i

// Assume we have a path to the transformation
// node in pathToXf . . .

// Save the current transformation node - the
// tail of the path. Also save the parent info
// so we can restore it later.
SoTransform *saveXf =

(SoTransform *) pathToXf->getTail();
int pathLen = pathToXf->getLength();
SoNode *parent = pathToXf->getNode(pathLen - 2);
int childIndex = pathToXf->getIndex(pathLen-1);

// Create a new instance of the trackball
// manipulator
SoTrackballManip*manip = new SoTrackballManip;
manip->ref():

// Replace the existing transformation node in the
I/ path with the manipulator
manip->replaceNode(pathToXf);

1

// . . . use the manipulator . . . I

// When done, the manipulator can be replaced
// as follows:
manip->replaceManip(parent, childIndex, save)(f); ,

Figure 4. Code to create and activate a Trackball manip-
ulator. Color Plate 3.3 is a snapshot of one in action.

I

196

Shapes, Properties, and Groups

Some structured graphics libraries (such as PHIGS+)
define geometric entities in terms of primitives, at-
tributes applied to those primitives, and some hierarchi-
cal structures that hold them; sometimes the hierarchy is
built into the primitives themselves. In Inventor, these
things are all nodes. The decision to define scenes this
way was based on several considerations.

The storage and traversal models have to be simple and
consistent. If each class is derived from the same base
class (Node), there are fewer inter-object relations that
programmers have to understand. Creating or modify-
ing any aspect of a scene uses the same paradigm, set-
ting values of field instances within nodes.

The sets of shapes, properties, and traversal behaviors
(groups) have to be extensible, and a consistent sub-
classing mechanism is advantageous. This scheme also
allows hybrid classes to be created. For example, Inven-
tor supplies a set of encapsulated sets of nodes called
node kits, each of which bundles up a set of node in-
stances into one entity; these classes provide a simpler
scene construction and editing interface for less-experi-
enced programmers.

Traversal behavior is the responsibility of each group
class. The base Group node class does the most obvious
thing, traversing all of its children from left to right. It
allows property nodes under it to affect nodes to its
right. This scheme allows a single group node contain-
ing several properties to be added to affect a scene or
part of a scene. The Separator node adds save/restore
to this behavior, which makes it useful for defining in-
dependent subgraphs. Other types of groups, such as the
Switch and Array classes, implement traversal behav-
ior for specialized purposes.

Inventor uses reference counting for nodes in the data-
base because C++ does not provide garbage collection.
Users must explicitly increment the reference count for
nodes that are roots of graphs or for those nodes to
which they maintain static pointers.

Nodes and Actions

Actions are implemented as separate objects, rather than
as methods on nodes, for two reasons, both of which
have to do with extensibility. The first reason is that an

instance of an action object provides a convenient
mechanism for setting parameters of the implemented
operation, as well as for accessing the results of that op-
eration. For eXXr@k, the RayPickAction COnbinS

methods that let users set up a picking ray as a world-
space vector or as a ray from the current camera through
a pixel in a rendering window on the screen. It also con-
tains methods to access the paths to the shapes that were
picked. Separating these methods into the action sub-
class allows for greater leeway in the design of actions,
including their parameters and return values.

The other main reason for having action classes is to al-
low developers to extend more easily the set of opera-
tions that can be applied to graphs. If these operations
were methods on node classes, developers would not be
able to add new ones, since that would require moditi-
cations to the base Node class, which they do not have
access to. Instead, they would have to derive new node
classes, one subclass for each node that was to imple-
ment behavior for the operation. This would rapidly be-
come a mess for any developer intrepid enough to try it.

Because actions are separate objects, the standard C++
(single dispatch) virtual function mechanism cannot be
used to determine the correct function to call for a spe-
cific action class and a specific node class. Instead, In-
ventor implements a multiple dispatch scheme using a
two-dimensional table in which the rows represent ac-
tion classes and the columns represent node classes.
Each cell in the table contains a pointer to the function
to call to apply an instance of the action class to an in-
stance of the node class. This scheme is totally extensi-
ble, since rows and columns can be added to the table
fairly easily. However, adding a new class requires
some (hidden) work to maintain inheritance of func-
tions, filling in empty cells in the table.

Because graphics developers are much more likely to
add new node classes than action classes, virtual func-
tions are used to make node subclassing much easier.
For each supported action, the base Node class enters in
the lookup table a method that calls a virtual function to
implement that action. For example, the Node class en-

ters a pointer to a static method that implements the
GetBoundingBoxAction; this method just calls the vir-
tual getBoundingBox () function. Developers can then
create new node classes without ever having to deal

197

with the lookup table.

The table lookup scheme makes it easy to change the
behavior of a node for a particular action. It also makes
it possible to add new actions, including those that are
derived from existing action classes. A developer can
enter in the table a function that implements the action
for the base Node class, so all nodes will use that method
by default. The developer can override this behavior for
specific node classes by entering other functions in the
appropriate columns.

Of course, the implementation of the node/action look-
up table requires the ability to determine class types at
run time, a feature which C++ should but does not pro-
vide. Therefore, run-time typing is implemented explic-
itly for most classes in Inventor, Using the Type Class,
which provides a set of class inquiry methods. It also iu-
eludes a CreateInstance () method to make it possible
to create an instance of a (non-abstract) class knowing
only its type. Coupled with a name registry in the typing
information, this method allows the Inventor file reader
to create a node of the correct type after reading its
name. The association of names with types also makes
debugging and error reporting easier.

versal continue.

The interactive manipulator objects have already been
described. Another type of interactive object is the Se-
lection node, a group node that maintains a list of
paths to all objects under it that have been selected in-
teractively. When given a mouse-down event, the Se-
lection node first lets all of its children get a crack at
handling it. If none of its children handled the event, the
Selection node determines (by asking the Han-

dleEventAction) which shape, if any, is under the cur-
sor. It then updates its list of selected objects according-
ly. The Selection node also highlights selected objects
automatically.

Event Handling

Distributing an input event such as a mouse button press
to shapes in a 3D scene is much more complicated than
it is in two dimensions. In a 2D application, it is fairly
easy to determine which object is visible under the cur-
sor, whereas it is not possible in 3D for a shape to know
if it is visible without performing a pick operation on all
objects in the scene.

The event handling mechanism in Inventor is designed
to be as simple and flexible as possible without incur-
ring a significant performance cost. The basic mecha-
niSm iS implemented by the HandleEventAction,

which is applied to the root of a scene to determine how
to handle an event. (This action is typically initiated by
the RenderArea class.) The action traverses the graph,
allowing each node, in turn, to respond to the event.
Most nodes, such as properties and shapes, do not care
about events and ignore them. However, there are class-
es of nodes that process events. Each of these nodes
may choose to handle the event and terminate the tra-
versal, or it may do something with the event and let tra-

State Elements and Caching

Interactive graphics applications should be fast enough
that there is little or no lag between user gestures and re-
rendering of a scene. Although achieving this perfor-
mance goal is not always possible for complex scenes,
developers want to take advantage of every efficiency
improvement. One way that an object-oriented graphics
toolkit like Inventor can assist is to use render caching,
which involves storing a faster representation of parts of
scenes that are not changing from frame to frame. In-
ventor includes heuristics that build caches automatical-
ly when they are likely to improve rendering perfor-
mance.

The implementation of caching is based on the objects
used to represent traversal state, which are called state
elements in Inventor. Each element represents a single,
simple property of the state, such as the diffuse color of
the surface material or the current list of coordinates,

Each type of element is stored in a stack in the state, al-
lowing save and restore operations (as are required for
Separator nodes) to be implemented easily. The essen-
tial feature of an element is that when its value is
changed, the value is replaced completely. (There are
some exceptions to this rule, such as geometric transfor-
mations, which are accumulated. These cases are han-
dled through a slightly more complicated mechanism.)
When a node being traversed changes the value of an el-
ement, it stores in the element a unique identifier that in-
dicates who changed it and when. Given this informa-
tion, it is fairly easy for a given state to determine how
all of its elements’ current values came to be set.

198

Caches are stored primarily in Separator group nodes,
since they are effectively isolated from the rest of the
scene. As is always the case, cache invalidation is the
hardest part. In Inventor, caches are typically invalidat-
ed in one of two ways. If a node under a separator
changes, the cache in that separator is invalidated im-
mediately. This mechanism is implemented using the
internal notification process built into all Inventor nodes
and fields; when a field in a node changes, that node is
notified, and it then notifies all parent nodes and paths
that refer to it.

A more insidious case of cache invalidation occurs
when a node above and to the left of a separator chang-
es, where that node affects elements that are used by
some node under the separator. To detect these cases, it
is necessary for each separator to know which elements
are used by nodes under it; if any of those elements is
“different” when the separator is traversed again, the
cache must be invalidated. Determining what is meant
by “different” is up to each element class, but is usually
a simple value or identifier comparison.

Alert readers may note that render caching is equivalent
to storing two versions of the application data, which, as
mentioned in the introduction, is usually something to
avoid. However, there are two important differences
here. One is that only part of the scene is being duplicat-
ed, and the application writer has complete control over
what that part is. The second difference is that the
cached version of the scene is created automatically by
the toolkit, so the application is not at all responsible for
maintaining links between the two representations.

Caching can also be used to speed up operations besides
rendering. For example, cached 3D bounding boxes are
used to speed up picking.

Extensibility

Developers can derive new classes from most of the
public classes in Inventor, including nodes, fields, en-
gines, actions, manipulators, components, and viewers.
Most of these base classes provide a set of C preproces-
sor macros to facilitate subclassing.

Nodes

When deriving a new node class, a programmer has to

implement virtual functions for whichever actions that
node supports. Property nodes typically need only a
subset of these functions; for example, me Material
node has no effect during traversal of the GetBounding-
BoxAc t ion. Group nodes typically implement traversal
for all actions, sharing a common method.

Shape classes are required to implement at least two
methods: generating primitives (triangles, line seg-
ments, and points) representing the shape and bounding
box computation. Shape classes may also provide ren-
dering and picking methods for efficiency. If they fail to
do so, the primitive generation method will be used to
do the rendering or picking.

Of course, a node class that uses fields to store instance
data does not have to implement file reading or writing
methods.

Actions

Implementing an action class is somewhat complicated,
requiring a method for each node class that affects or is
affected by the action traversal. The dispatch table must
be loaded with pointers to these functions.

However, an action class that is derived from an exist-
ing class inherits the methods from that class. There-
fore, it is easy to define an action that differs from an ex-
isting action in the way one node is affected. For exam-
ple, it is easy to derive a class from WriteAction that
never writes out cameras, creating and registering a
method for the Camera node that does nothing.

Manipulators

The surrogate geometries and feedback appearance of
existing manipulator classes can be customized by edit-
ing resource files, so it is not always necessary to create
a new class to create a new manipulator. Also, com-
pound manipulator classes that use existing primitive
manipulators can be created fairly easily. For example,
the Trackball ChSS illustrated earlier uses SeVeral Sim-

pler instances for the spherical and cylindrical rotation
effects.

Creating a new manipulator class to edit a different type
of node is similarly easy. For example, many manipula-
tors are derived from the Transform node, which it re-
places when active. Programmers that create a new

199

types of transformation nodes can define easily new ma-
nipulator classes derived from those nodes.

Summary

By using object-oriented techniques, IRIS Inventor is
able to provide a higher level of 3D graphics program-
ming to application developers, compared to conven-
tional 3D libraries. Encapsulation of rendering, picking,
and other behaviors in 3D objects means that users of
those objects do not need to know how they are imple-
mented and can take advantage of the built-in perfor-
mance features. The object-oriented design of the li-
brary also makes extensibility much easier.

Most users of the toolkit have reported significant in-
creases in productivity, compared to developing appli-
cations with a lower-level graphics library. In practice,
reasonably structured Inventor scene graphs exhibit lit-
tle or no additional performance costs in typical appli-
cations.

Inventor has been used to create a variety of applica-
tions, ranging from industrial design to motion picture
special effects. A snapshot of a sample application is
shown in Color Plate 3.4; this is a document presenta-
tion program that uses Inventor to incorporate 3D
graphics.

Acknowledgments

The other members of the Inventor team at Silicon
Graphics are Gavin Bell, Rikk Carey, Alain Dumesny,
Dave Immel, Paul Isaacs, Howard Look, David Mott,
and Josie Wemecke. Thanks to Alan Boming for his
many helpful suggestions and his support.

References

[l] Paul Calder and Mark Linton, “The Object-Ori-
ented Implementation of a Document Editor,”
ACM SIGPLAN Notices (OOPSLA ‘92 Confer-
ence Proceedings) 27(10) pp. 154-165 (October,
1992).

[2] Do& Programmer’s Guide, Release 5.0, Kubota
Pacific Computer, Incorporated, Santa Clara, Ca-
lif., 1991.

[3] Graphics Library Programming Guide, Silicon
Graphics Computer Systems, Mountain View, Ca-
hf., 1991.

[61

[71

181

PI

International Standards Organization, Internation-
al Standard Information Processing Systems -
Computer Graphics - Graphical Kernel System
for Three Dimensions (GKS3D) Functional De-
scription, IS0 Document Number 8805: 1988(E),
American National Standards Institute, New
York, 1988.

IRIS Inventor Programming Guide, Silicon
Graphics Computer Systems, Mountain View, Ca-
lif., 1992.

Mark Linton, Paul Calder, John A. Interrante,
Steven Tang, and John M. Vlissides, ZnterViews
Reference Manual, Version 3.0. l., Stanford Uni-
versity, October 199 1.

PHIGS+ Committee, Andries van Dam, chair,
“PHIGS+ Functional Description, Revision 3.0,”
Computer Graphics, 22(3), pp. 125-218 (July
1988).

Starbase Graphics Techniques and Display List
Programmer’s Guide, Hewlett-Packard Compa-
ny, Fort Collins, Colo., 1991.

Paul S. Strauss and Rikk Carey, “An Object-Ori-
ented 3D Graphics Toolkit,” Computer Graphics
(SIGGRAPH ‘92 Proceedings) 26(2) pp. 341-349
(July, 1992).

lo] Steve Upstill, The RenderMan Companion, Addi-
son-Wesley, Reading, Mass., 1990.

111 Garry Wiegand and Bob Covey, HOOPS Refer-
ence Manual, Version 3.0, Ithaca Software, 1991.

121 Robert C. Zeleznik, D. Brookshire Conner, Matth-
ias M. Wloka, Daniel G. Aliaga, Nathan T. Huang,
Philip M. Hubbard, Brian Knep, Henry Kaufman,
John F. Hughes, and Andries van Dam, “An Ob-
ject-oriented Framework for the Integration of In-
teractive Animation Techniques,” Computer
Graphics (SIGGRAPH ‘91 Proceedings) 25(4) pp.
105-l 11 (July, 1991).

200

