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Abstract 

IRIS@ InventorTM is an object-oriented toolkit for devel- 
opers of applications that incorporate interactive, three- 
dimensional graphics. Encapsulation of data and meth- 
ods in high-level graphical objects allows Inventor to 
provide a significant improvement in usability to devel- 
opers, as compared to the standard, low-level set of 
graphics primitives provided in most other graphics li- 
braries. Inventor’s object-oriented framework also fa- 
cilitates extensions, which are necessary in the diverse 
and rapidly changing field of 3D graphics. 

Introduction 

Most three-dimensional graphics libraries available to- 
day provide very simple interfaces to application devel- 
opers. Immediate mode libraries such as IRIS GLTM [3], 
StarbaseTM [8], and RenderManTM [ 101 provide a set of 
drawing commands that can be used by applications to 
create visual representations of modeled 3D objects. 
Display lists are used by packages such as GKS [4] and 
PHIGS+ [7] (and, to a lesser extent, some immediate 
mode libraries) to collect drawing commands into sim- 
ple linear lists. Neither of these approaches truly ex- 
ploits any correlation between modeled objects, such as 
chairs and airplanes, with the commands used to repre- 
sent them visually; these commands usually consist of 
sequences of geometric primitives like polygons and 
lines. The DoreTM [2] and HOOPSTM [l l] 3D graphics 
libraries present a slightly higher level abstraction of 
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models, but they do not allow developers to take good 
advantage of key object-oriented techniques. 

A problem with these conventional approaches is that 
developers are forced to maintain two distinct versions 
of their application models. Maintaining the relation- 
ships between the application data and the graphical 
“objects” used to represent them is a large burden that 
developers are forced to bear. In interactive applica- 
tions, translating graphical gestures of a mouse or other 
input devices into 3D operations on a model is extreme- 
ly difficult unless there is a tight coupling between ap- 
plication and graphical models. As a result, most 3D ap- 
plication writers using conventional graphics libraries 
do not provide much 3D interaction. 

Developers may also be constrained by the set of graph- 
ical primitives provided by most libraries. For example, 
if a developer wants to include spheres as objects in an 
application, those spheres have to be converted into 
primitives that the library supports, such as polygons. 
While this conversion is acceptable for interactive ren- 
dering, it may not be suitable for operations such as 
picking. Picking a sphere, for example, can be done 
much more easily and exactly if the sphere is treated as 
an integral object, rather than as a collection of poly- 
gons. 

Object-oriented techniques have proven to be a boon to 
graphics developers. The Interviews [ 1,6], system has 
been successful for two-dimensional applications, 
However, few papers have been published on 3D sys- 
tems. The work done at Brown University [ 121 presents 
a successful approach to this problem that is different 
from ours; they rely on a message-passing protocol to 
track changes to scenes. 

OOPSLA'93, pp. 192-200 
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This paper presents IRIS Inventor, an object-oriented 
toolkit for developers of interactive, three-dimensional 
graphics applications. Object-oriented techniques pro- 
vide two main advantages to developers: 

l Encapsulation. Developers can embed rendering 
methods and other behaviors, including responses to 
input events, in higher-level objects. Many seemingly 
simple graphical operations require fairly complicat- 
ed implementations; encapsulating them in objects re- 
lieves other developers of the need to code or even to 
understand them. Developers of proprietary algo- 
rithms can hide them safely in the objects’ methods. 
There is also a simple solution to the duplicate data 
problem, since both application and graphical repre- 
sentations can be encapsulated in the same object. 

l Extensibility. Because the state of the art of interac- 
tive 3D computer graphics changes rapidly, graphics 
development tools must be adaptable to new models 
and techniques. An object-oriented toolkit approach 
provides the necessary support and flexibility for its 
designers and its users. 

IRIS Inventor is implemented in C++. The decision to 
use C++ was motivated by the language’s availability, 
(relative) efficiency, and (relatively) short learning time 
for experienced C programmers. Another benefit is the 
ability to provide C bindings, in addition to the C++ 
bindings, using mostly automatic means. Developers 
can derive new C++ classes to extend the toolkit, al- 
though callback mechanisms are provided for easier ex- 
tensibility in many cases. 

The graphics-related features of Inventor have been 
documented elsewhere [5,9]. The rest of this paper de- 
scribes in more detail the objects provided by Inventor, 
noting the advantages and disadvantages of object-ori- 
ented design. The first section describes the application- 
programmer interface, using several examples for illus- 
tration. Following that are some details of the design 
and implementation of the toolkit and a discussion of 
extensibility. 

Application-Programmer Interface 

Components 

Inventor provides a variety of classes to help developers 
of 3D graphics applications. At the highest level, there 

maintint argc, char **) 

// Initialize Inventor and create window 
Widget appwindow = SoXt::init(argv[O]); 

// Read input file 
SoInput in: 
SoSeparator*root = SoDB::readAll(&in); 
root->ref(); 

// Set up and display viewer component 
SoXtExaminerViewer *viewer = 

new SoXtExaminerViewer: 

I viewer->setSceneGraph(root); 
viewer->build(appWindow); 
viewer->show(): 
SoXt::show(appWindow]; 
SoXt::mainLoop(); 

1 

Figure 1. Code for a simple application that reads any In- 
ventor scene file and creates an instance of the Examiner- 
Viewer component to view the scene. A view of of the 
component in action is shown in Color Plate 3.1. 

are objects called components. These are pre-packaged, 
interactive application pieces that can be used as is 
within programs. Figure 1 illustrates the use of an EX- 
aminerviewer component, which allows the user to in- 
teractively view a 3D scene from any direction, using 
the mouse to move the virtual camera. The set of Inven- 
tor components includes several other viewers, such as 
fly-through and walk-through, and editors for surface 
materials, colors, and textures. 

Components are derived from the RenderArea class, 
which packages up a window, automatic rerendering, 
and event translation into a single object. 

Nodes and Fields 

The program in Figure 1 reads the representation of a 
3D scene from a file in Inventor’s file format. Once read 
in, a scene is stored as a directed acyclic graph of 
objects called nodes. Node classes can be divided into 
three basic categories: 

l &pest, which represent geometric objects, such as 
cubes and spheres; 

l properties, which are attributes of shapes, such as 
their surface materials and drawing styles; and 

l groups, which have children and are used to collect 
nodes into hierarchies. 

(Note that these categories are not restrictive; there 
could be a class of node that incorporates shape, proper- 

+We use the word “shape” in this context to avoid confusion with 
the more generic term “object.” We hope it works. 
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ty, and group characteristics.) A representative sam- 
pling of node classes supported by Inventor is given in 
Table 2. 

Instance data for nodes are stored in objects called 
fields. For example, the diffuse color, shininess, trans- 
parency, and other values in a Material node are stored 
in corresponding field instances. Field classes are cate- 
gorized by the type of values (integer, float, vector of 
three floats, color, and so on) they contain. Fields pro- 
vide a simple and consistent interface for setting and re- 
trieving values, as well as automatic file read and write 
operations. 

Several nodes may be required to specify fully a single 
3D shape, since properties are stored separately from 
geometry. In Inventor, all aspects of a shape that are not 
specific to that particular shape class are implemented 
as separate properties, to maximize sharing and inherit- 
ance when possible. For example, coordinate values and 
surface normal vectors that are connected to form poly- 
hedral shapes are stored in separate (property) nodes. 
Each shape node class is free to respond to whichever 
properties it wants to handle. 

Applications can read scene graphs from files or build 
them at run-time. Figure 2 shows a sample of code that 
creates a very simple scene graph. 

I I 

Shape nodes: Group nodes: 
Cone Group 
Cube Separator 
Cylinder Switch 
FaceSet Selection 
IndexedFaceSet Array 
IndexedLineSet MultipleCopy 
LineSet 
Nurbscurve Property nodes: 

NurbsSurface 
PointSet 
QuadMesh 
Sphere 
Text2 
Text3 
TriangleStripSet 

Light/camera nodes: 
OrthographicCamera 
Perspectivecamera 
DirectionalLight 
PointLight 
SpotLight 

BaseColor 
Complexity 
Coordinate3 
DrawStyle 
Environment 
Font 
LightModel 
Material 
MaterialBinding 
Normal 
NormalBinding 
ShapeHints 
Texture2 
TextureCoordinate 
Transform 

Table 1. Some Inventor node classes. 

8 
Separator 

BaseColor Transform Sphere BaseColor Cube 

SoSeparator *root, *sepl, *sep2; 
SoBaseColor *bl, l b2; 
SoSphere *sphere: 
SoTransform *xf; 

// Create the subgraph with the sphere 
sepl = new SoSeparator: 
bl = new SoBaseColor; 
bl->rgb.setValue(l.O, 0.2, 0.2); 
xf = new SoTransform; 
xf->translation.setValue(O.O, 3.0, 0.0): 
sphere = new SoSphere: 
sphere->radius = 0.3; 
sepl->addChild(bl); 
sepl->addChild(xf); 
sepl->addChild(sphere); 

/I Create the subgraph with the cube 
sep2 = new Soseparator: 
b2 = new SoBaseColor; 
b2->rgb.setValue(0.2, 0.2, 1.0); 
sep2->addChild(b2); 
sep2->addChild(new SoCube); 

/! Put them together 
root = new SoSeparator: 
root->ref(); 
root->addChild(sepl): 
root->addChild(sep2); 

#Inventor V2.0 ascii 

Separator { 

Separator ( 
BaseColor { 

rgb 1 .2 .2 
1 
Transform { 

translation0 3 0 
1 
Sphere ( 

radius.3 

Separator I 
BaseColor { 

wb .2 .2 1 
1 
Cube () 

1 

Figure 2. Top: a very simple scene graph containing a 
small red sphere positioned above a blue cube. Center: 
ASCII file format representing the scene. Bottom: code 
that builds the scene within an application. Color Plate 3.2 
shows the result of rendering the scene with appropriate 
camera and light nodes added. 
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Actions and Traversal 

Operations on a scene or part of a scene are applied us- 
ing objects called actions. For example, a scene is ren- 
dered by applying an instance of the RenderAction ob- 
ject to the root node of the scene graph, like so: 

renderAction->apply(sceneRoot); 

Similarly, a scene may be written to a file by applying a 
WriteAction to the graph. Other actions include 
searching, computing bounding boxes, and picking. An- 
other important action is the HandleEventAction, 

which lets objects in a scene process input or window- 
system events, allowing interaction handling to be built 
into scenes. A list of action classes provided by Inventor 
is shown in Table 2. 

When an action is applied to a graph, the action 
traverses each node in the graph, maintaining traversa2 
state. This state contains all current property values, 
such as surface material, lighting model, and drawing 
style, allowing these properties to be inherited and 
shared among shapes in the scene. 

Different classes of group nodes implement different 
behaviors for traversing their children. The base Group 

class merely traverses all of its children in order (from 
left to right in the scene graph diagrams). The Switch 

node, however, usually traverses only the child indicat- 
ed by the value in a field; this can be used, for example, 
to choose one of several representations of a shape. The 

CallbackAction Generic traversal with user call- 
backs 

GLRenderAction Renders 

GetBoundingBoxAction Computes 3D bounding box 

GetMatrixAction Computes cumulative transforma- 
tion matrix 

HandleEventAction Offers nodes a chance to handle an 
input event 

RayPickAction Returns frontmost shape or all 
shapes intersected by a ray cast into 
scene 

Sear&Action Looks for specific node or type of 
node 

WriteAction Outputs ASCII or binary representa- 
tion 

Table 2. Action classes 
I , 

ubiquitous Separator group node saves the current tra- 
versal state before traversing its child nodes and restores 
it afterwards, effectively isolating any state changes that 
occur in its children from the rest of the scene. Separa- 
tors allow different parts of a scene to be modeled inde- 
pendently. 

Animation 

Inventor provides objects and mechanisms for adding 
animation to scenes and for tracking changes to scenes. 
A class of objects called SensorS implements a callback 
mechanism. Data sensors invoke callbacks when a par- 
ticular node or any node below it has changed. The Ren- 

derArea class uses a data sensor on the root node of a 
graph to detect when to re-render. Timer sensurs invoke 
callbacks when a particular time of day is reached, or 
regularly at some specified interval. Since sensors oper- 
ate through callbacks, they require programming, can 
be defined only during run-time, and cannot be stored in 
files. 

A better animation mechanism is implemented using 
field connections and engines. A field in a node may be 
connected directly to another field, providing a simple 
constraint. Alternatively, a field may be connected to an 
output of an engine, which has other fields as inputs. For 
example, an engine that adds a 3D vector to a 3D loca- 
tion can be used to offset one shape from another by a 
given vector. A globalfleld containing the current real 
clock time is always maintained by Inventor; connect- 
ing fields or engines to this field creates clock-based an- 
imation. 

One advantage of using engines over sensors is that en- 
gines and their connections can be stored in files. For 
example, it is possible to save a spinning windmill in a 
file. When it is read in, the rotation of the mill is con- 
nected automatically to the real time field, so it spins 
continuously. 

There are also some node classes that contain instances 
of engines to define moving properties. Figure 3 illus- 
trates how an instance of the Rotor class can be used to 
spin the cube in the graph from Figure 2. The Rotor 

node is derived from the static RO tat ion node; on con- 
struction, it creates an instance of an ElapsedTime en- 
gine and connects its input to the real time clock and its 
output to the rotation field of the node. Therefore, this 
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node creates animated rotation when added to a scene. 
If we were to read the scene in Figure 3 into the appli- 
cation from Figure 1, the cube would spin automatical- 

ly. 

Paths 

A node that is the child of more than one group is said 
to be multiply instanced. This feature allows for com- 
mon subgraphs to be shared and re-used, reducing 
memory requirements, and is essential for large graph- 
ics applications. For example, a model of a bicycle 
might instance a subgraph representing a wheel twice. 
An unfortunate result of multiple instancing is that it is 
not possible to traverse upwards in a graph from a par- 
ticular node. It also makes it impossible to refer unam- 
biguously to a shape in a 3D scene, such as the bicycle’s 
front wheel, with a single node pointer. 

To make such references possible, Inventor includes a 
path object that contains a contiguous chain of nodes 
from a root of a graph down to some node. A path un- 
ambiguously refers to a node in a graph in a particular 
context, such as the hub of the front wheel of the third 
bicycle. Paths are returned by the picking operation, 
which is used to correlate 2D locations in a rendered 
window to 3D locations on surfaces of shapes; in typical 

~ #Inventor V2.0 ascii 

~ Separator { 

Separator { 
BaseColor ( 

rgb 1 .2 .2 
I 
Transform { 

translation0 3 0 
1 
Sphere ( 

radius.3 

Separator ( 
BaseColor { 

rgb .2 .2 1 
l 

Rotor ( 

# 1 revolution every 2 seconds 
speed .5 

1 

Cube 1) 
1 

Figure 3. Adding an instance of a Rotor node to the graph 
from Figure 1. The rotor defines an animated transformation 
that is applied to subsequent objects. In this case, the cube 
spins. 

i- 

use it returns a path to the shape visible under the cursor. 

Paths are also needed to provide context for removing 
or replacing nodes in graphs, since nodes do not provide 
access to their parents. This feature is important for sup- 
porting a class of objects called manipulators. A manip- 
ulator is an interactive 3D object that is used to edit an- 
other object. The most common types of manipulators 
are those that edit transformations applied to shapes; 
they typically employ some sort of surrogate shapes to 
provide a handle for users to interact with, as well as for 
displaying feedback. For example, the Trackball ma- 
nipulator places a virtual sphere around the affected 
shape and converts mouse motion input into 3D rota- 
tions applied to that shape. A manipulator of this type 
replaces the appropriate transformation node while op- 
erating, then restores it when it is done, as illustrated in 
Figure 4. A path to the transformation node is used to 
supply the context so the manipulator can replace it. 

Design and Implementation Details 

Several decisions in the design and implementation of 
the Inventor toolkit were motivated by the need to satis- 
fy concurrently the goals of simplicity, efficiency, and 
extensibility. These goals are often at odds with each 
other, so compromises must be made. As a result, some 
of the object classes and methods are not always intui- 
tive. Some of the more important decisions are ex- 
plained below. 

r 

i 

// Assume we have a path to the transformation 
// node in pathToXf . . . 

// Save the current transformation node - the 
// tail of the path. Also save the parent info 
// so we can restore it later. 
SoTransform *saveXf = 

(SoTransform *) pathToXf->getTail(); 
int pathLen = pathToXf->getLength(); 
SoNode *parent = pathToXf->getNode(pathLen - 2); 
int childIndex = pathToXf->getIndex(pathLen-1); 

// Create a new instance of the trackball 
// manipulator 
SoTrackballManip*manip = new SoTrackballManip; 
manip->ref(): 

// Replace the existing transformation node in the 
I/ path with the manipulator 
manip->replaceNode(pathToXf); 

1 

// . . . use the manipulator . . . I 

// When done, the manipulator can be replaced 
// as follows: 
manip->replaceManip(parent, childIndex, save)(f); , 

Figure 4. Code to create and activate a Trackball manip- 
ulator. Color Plate 3.3 is a snapshot of one in action. 

I 
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Shapes, Properties, and Groups 

Some structured graphics libraries (such as PHIGS+) 
define geometric entities in terms of primitives, at- 
tributes applied to those primitives, and some hierarchi- 
cal structures that hold them; sometimes the hierarchy is 
built into the primitives themselves. In Inventor, these 
things are all nodes. The decision to define scenes this 
way was based on several considerations. 

The storage and traversal models have to be simple and 
consistent. If each class is derived from the same base 
class (Node), there are fewer inter-object relations that 
programmers have to understand. Creating or modify- 
ing any aspect of a scene uses the same paradigm, set- 
ting values of field instances within nodes. 

The sets of shapes, properties, and traversal behaviors 
(groups) have to be extensible, and a consistent sub- 
classing mechanism is advantageous. This scheme also 
allows hybrid classes to be created. For example, Inven- 
tor supplies a set of encapsulated sets of nodes called 
node kits, each of which bundles up a set of node in- 
stances into one entity; these classes provide a simpler 
scene construction and editing interface for less-experi- 
enced programmers. 

Traversal behavior is the responsibility of each group 
class. The base Group node class does the most obvious 
thing, traversing all of its children from left to right. It 
allows property nodes under it to affect nodes to its 
right. This scheme allows a single group node contain- 
ing several properties to be added to affect a scene or 
part of a scene. The Separator node adds save/restore 
to this behavior, which makes it useful for defining in- 
dependent subgraphs. Other types of groups, such as the 
Switch and Array classes, implement traversal behav- 
ior for specialized purposes. 

Inventor uses reference counting for nodes in the data- 
base because C++ does not provide garbage collection. 
Users must explicitly increment the reference count for 
nodes that are roots of graphs or for those nodes to 
which they maintain static pointers. 

Nodes and Actions 

Actions are implemented as separate objects, rather than 
as methods on nodes, for two reasons, both of which 
have to do with extensibility. The first reason is that an 

instance of an action object provides a convenient 
mechanism for setting parameters of the implemented 
operation, as well as for accessing the results of that op- 
eration. For eXXr@k, the RayPickAction COnbinS 

methods that let users set up a picking ray as a world- 
space vector or as a ray from the current camera through 
a pixel in a rendering window on the screen. It also con- 
tains methods to access the paths to the shapes that were 
picked. Separating these methods into the action sub- 
class allows for greater leeway in the design of actions, 
including their parameters and return values. 

The other main reason for having action classes is to al- 
low developers to extend more easily the set of opera- 
tions that can be applied to graphs. If these operations 
were methods on node classes, developers would not be 
able to add new ones, since that would require moditi- 
cations to the base Node class, which they do not have 
access to. Instead, they would have to derive new node 
classes, one subclass for each node that was to imple- 
ment behavior for the operation. This would rapidly be- 
come a mess for any developer intrepid enough to try it. 

Because actions are separate objects, the standard C++ 
(single dispatch) virtual function mechanism cannot be 
used to determine the correct function to call for a spe- 
cific action class and a specific node class. Instead, In- 
ventor implements a multiple dispatch scheme using a 
two-dimensional table in which the rows represent ac- 
tion classes and the columns represent node classes. 
Each cell in the table contains a pointer to the function 
to call to apply an instance of the action class to an in- 
stance of the node class. This scheme is totally extensi- 
ble, since rows and columns can be added to the table 
fairly easily. However, adding a new class requires 
some (hidden) work to maintain inheritance of func- 
tions, filling in empty cells in the table. 

Because graphics developers are much more likely to 
add new node classes than action classes, virtual func- 
tions are used to make node subclassing much easier. 
For each supported action, the base Node class enters in 
the lookup table a method that calls a virtual function to 
implement that action. For example, the Node class en- 

ters a pointer to a static method that implements the 
GetBoundingBoxAction; this method just calls the vir- 
tual getBoundingBox ( ) function. Developers can then 
create new node classes without ever having to deal 
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with the lookup table. 

The table lookup scheme makes it easy to change the 
behavior of a node for a particular action. It also makes 
it possible to add new actions, including those that are 
derived from existing action classes. A developer can 
enter in the table a function that implements the action 
for the base Node class, so all nodes will use that method 
by default. The developer can override this behavior for 
specific node classes by entering other functions in the 
appropriate columns. 

Of course, the implementation of the node/action look- 
up table requires the ability to determine class types at 
run time, a feature which C++ should but does not pro- 
vide. Therefore, run-time typing is implemented explic- 
itly for most classes in Inventor, Using the Type Class, 
which provides a set of class inquiry methods. It also iu- 
eludes a CreateInstance ( ) method to make it possible 
to create an instance of a (non-abstract) class knowing 
only its type. Coupled with a name registry in the typing 
information, this method allows the Inventor file reader 
to create a node of the correct type after reading its 
name. The association of names with types also makes 
debugging and error reporting easier. 

versal continue. 

The interactive manipulator objects have already been 
described. Another type of interactive object is the Se- 
lection node, a group node that maintains a list of 
paths to all objects under it that have been selected in- 
teractively. When given a mouse-down event, the Se- 
lection node first lets all of its children get a crack at 
handling it. If none of its children handled the event, the 
Selection node determines (by asking the Han- 

dleEventAction) which shape, if any, is under the cur- 
sor. It then updates its list of selected objects according- 
ly. The Selection node also highlights selected objects 
automatically. 

Event Handling 

Distributing an input event such as a mouse button press 
to shapes in a 3D scene is much more complicated than 
it is in two dimensions. In a 2D application, it is fairly 
easy to determine which object is visible under the cur- 
sor, whereas it is not possible in 3D for a shape to know 
if it is visible without performing a pick operation on all 
objects in the scene. 

The event handling mechanism in Inventor is designed 
to be as simple and flexible as possible without incur- 
ring a significant performance cost. The basic mecha- 
niSm iS implemented by the HandleEventAction, 

which is applied to the root of a scene to determine how 
to handle an event. (This action is typically initiated by 
the RenderArea class.) The action traverses the graph, 
allowing each node, in turn, to respond to the event. 
Most nodes, such as properties and shapes, do not care 
about events and ignore them. However, there are class- 
es of nodes that process events. Each of these nodes 
may choose to handle the event and terminate the tra- 
versal, or it may do something with the event and let tra- 

State Elements and Caching 

Interactive graphics applications should be fast enough 
that there is little or no lag between user gestures and re- 
rendering of a scene. Although achieving this perfor- 
mance goal is not always possible for complex scenes, 
developers want to take advantage of every efficiency 
improvement. One way that an object-oriented graphics 
toolkit like Inventor can assist is to use render caching, 
which involves storing a faster representation of parts of 
scenes that are not changing from frame to frame. In- 
ventor includes heuristics that build caches automatical- 
ly when they are likely to improve rendering perfor- 
mance. 

The implementation of caching is based on the objects 
used to represent traversal state, which are called state 
elements in Inventor. Each element represents a single, 
simple property of the state, such as the diffuse color of 
the surface material or the current list of coordinates, 

Each type of element is stored in a stack in the state, al- 
lowing save and restore operations (as are required for 
Separator nodes) to be implemented easily. The essen- 
tial feature of an element is that when its value is 
changed, the value is replaced completely. (There are 
some exceptions to this rule, such as geometric transfor- 
mations, which are accumulated. These cases are han- 
dled through a slightly more complicated mechanism.) 
When a node being traversed changes the value of an el- 
ement, it stores in the element a unique identifier that in- 
dicates who changed it and when. Given this informa- 
tion, it is fairly easy for a given state to determine how 
all of its elements’ current values came to be set. 
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Caches are stored primarily in Separator group nodes, 
since they are effectively isolated from the rest of the 
scene. As is always the case, cache invalidation is the 
hardest part. In Inventor, caches are typically invalidat- 
ed in one of two ways. If a node under a separator 
changes, the cache in that separator is invalidated im- 
mediately. This mechanism is implemented using the 
internal notification process built into all Inventor nodes 
and fields; when a field in a node changes, that node is 
notified, and it then notifies all parent nodes and paths 
that refer to it. 

A more insidious case of cache invalidation occurs 
when a node above and to the left of a separator chang- 
es, where that node affects elements that are used by 
some node under the separator. To detect these cases, it 
is necessary for each separator to know which elements 
are used by nodes under it; if any of those elements is 
“different” when the separator is traversed again, the 
cache must be invalidated. Determining what is meant 
by “different” is up to each element class, but is usually 
a simple value or identifier comparison. 

Alert readers may note that render caching is equivalent 
to storing two versions of the application data, which, as 
mentioned in the introduction, is usually something to 
avoid. However, there are two important differences 
here. One is that only part of the scene is being duplicat- 
ed, and the application writer has complete control over 
what that part is. The second difference is that the 
cached version of the scene is created automatically by 
the toolkit, so the application is not at all responsible for 
maintaining links between the two representations. 

Caching can also be used to speed up operations besides 
rendering. For example, cached 3D bounding boxes are 
used to speed up picking. 

Extensibility 

Developers can derive new classes from most of the 
public classes in Inventor, including nodes, fields, en- 
gines, actions, manipulators, components, and viewers. 
Most of these base classes provide a set of C preproces- 
sor macros to facilitate subclassing. 

Nodes 

When deriving a new node class, a programmer has to 

implement virtual functions for whichever actions that 
node supports. Property nodes typically need only a 
subset of these functions; for example, me Material 
node has no effect during traversal of the GetBounding- 
BoxAc t ion. Group nodes typically implement traversal 
for all actions, sharing a common method. 

Shape classes are required to implement at least two 
methods: generating primitives (triangles, line seg- 
ments, and points) representing the shape and bounding 
box computation. Shape classes may also provide ren- 
dering and picking methods for efficiency. If they fail to 
do so, the primitive generation method will be used to 
do the rendering or picking. 

Of course, a node class that uses fields to store instance 
data does not have to implement file reading or writing 
methods. 

Actions 

Implementing an action class is somewhat complicated, 
requiring a method for each node class that affects or is 
affected by the action traversal. The dispatch table must 
be loaded with pointers to these functions. 

However, an action class that is derived from an exist- 
ing class inherits the methods from that class. There- 
fore, it is easy to define an action that differs from an ex- 
isting action in the way one node is affected. For exam- 
ple, it is easy to derive a class from WriteAction that 
never writes out cameras, creating and registering a 
method for the Camera node that does nothing. 

Manipulators 

The surrogate geometries and feedback appearance of 
existing manipulator classes can be customized by edit- 
ing resource files, so it is not always necessary to create 
a new class to create a new manipulator. Also, com- 
pound manipulator classes that use existing primitive 
manipulators can be created fairly easily. For example, 
the Trackball ChSS illustrated earlier uses SeVeral Sim- 

pler instances for the spherical and cylindrical rotation 
effects. 

Creating a new manipulator class to edit a different type 
of node is similarly easy. For example, many manipula- 
tors are derived from the Transform node, which it re- 
places when active. Programmers that create a new 
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types of transformation nodes can define easily new ma- 
nipulator classes derived from those nodes. 

Summary 

By using object-oriented techniques, IRIS Inventor is 
able to provide a higher level of 3D graphics program- 
ming to application developers, compared to conven- 
tional 3D libraries. Encapsulation of rendering, picking, 
and other behaviors in 3D objects means that users of 
those objects do not need to know how they are imple- 
mented and can take advantage of the built-in perfor- 
mance features. The object-oriented design of the li- 
brary also makes extensibility much easier. 

Most users of the toolkit have reported significant in- 
creases in productivity, compared to developing appli- 
cations with a lower-level graphics library. In practice, 
reasonably structured Inventor scene graphs exhibit lit- 
tle or no additional performance costs in typical appli- 
cations. 

Inventor has been used to create a variety of applica- 
tions, ranging from industrial design to motion picture 
special effects. A snapshot of a sample application is 
shown in Color Plate 3.4; this is a document presenta- 
tion program that uses Inventor to incorporate 3D 
graphics. 
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