
Experience with Representing C++ Program Information

in an Object-Oriented Database

Tamiya Onodera

IBM Reseamh, Tokyo Research Laboratory

1623-14, Shimo-tsuruma, Yamato-shi, Kanagawa-ken 2@ Japan

Abstract

Two major issues related to storing program in-
formation in an OODB are sharing and cluster-
ing. The former is important since it prevents the
database from consuming excessive disk space,
while the latter is crucial, since it keeps clients
running without thrashing. In our database, ob-
jects are shared across multiple programs’ trans-
lation units, and are clustered by combining three
techniques, namely, birth-order, death-order, and
sharing-oriented clusterings. An initial experi-
ment shows that, for a medium-size application,
the database consumes 3.5 times less disk space
than in a conventional environment, and that the
invocation of a client is almost instantaneous.

1 Introduction

The growing size and complexity of software has

intensified the need for advanced programming

environments that can reduce the burden on soft-

ware developers. Such an environment should in-

tegrate tools, including a compiler, a debugger, a

source-code browser, and a builder. Tool integra-

tion, in this narrow context of lower CASE, means

integration of presentation, control, and data [l].

To build such an integrated environment, it is be-

lieved, the correct strategy is to use a database

management system.

Permission to copy without fee all or part of this material is
granted provided ?hat the copies are not made or distributed for
direct commercial advantage, the ACM copyright notice and the
title of the publication and its date appear, and notice is given
fhat copying is by permission of the Association of Computing
Machinery. To copy otherwise, or to republish, requires a fee
and/or specific permission.
OOPSIA 94- 1 O/94 Portland, Ore on USA
Q 1994 ACM O-89791 -688-3194 0010..$3.50 7

Our attempt to represent C++ program infor-

mation by using an object-oriented database fol-

lows these lines, but at the same time we have

aimed to alleviate two serious and pervasive prob-

lems in the development of programs: bloated

working storage and stalled invocation. In the

first, a tremendously large amount of disk space

is used to store information for tools, and in the

second, an intolerably long time is spent before a

tool is ready to accept user interaction.

As an example, we present statistics on a Motif

application that is being developed at our labora

tory by using IBM C Set ++ for AIX/6000. The

numbers given below were all obtained under AIX

3.2.4 on a RISC System/6000 Model 560. When

compiled and linked without any specific option-

s, the library, which consists of 300 source files

and contains a total of 15,541 lines, consumes 3.03

megabytes of disk space, including source files, ob-

ject files, and an executable. To use a debugger,

we must build the executable with the debugger

option specified. This requires 16.86 megabytes

more disk space. When we invoked the dbx de-

bugger against the executable, it took 479 seconds

of real time for the debugger process to show its

first prompt. To allow use of a browser, we must

build the executable with the browser option spec-

ified. This, surprisingly, requires 76.92 megabytes

more disk space. Moreover, the system configu-

ration did not allow us to use the source code

browser; the initialization of the browser process

failed, because of the heavy demand on paging

space.

The reason for bloated working storage is as fol-

403

lows. The use of a library in a C/C++ program

results in one or more header files being included,

and the inclusion of a header file contributes to

increased consumption of disk space; information

on types defined in the header file is generated if

the program is compiled with the debugger op-

tion, while information on cross-references that

originate in the header file is produced if the pro-

gram is compiled with the browser option. When

a header file is included in many source files, the

same number of duplicates result, and are sim-

ply left to occupy disk space. What really ag-

gravates the duplication is that modern software

tends to or is encouraged to rely on more and

more libraries, some of which are very large. For

instance, the source file in the Motif application

contains only 51.8 lines on average. However, af-

ter the file has been preprocessed, the average

number of lines rises to as many as 9,153, since

all the source files but one include Xm. h directly

or indirectly. On the other hand, the reason for

stalling invocation is simply that the dbx debug

ger and the source code browser eagerly attempt

to initialize a large number of objects before they

accept user interaction.

We can amend “bloated working storage” by

enhancing the compiler to allow it to populate a

database with objects, sharing as many objects

as possible. When the compiler is about to store

an object in a database, it first checks whether

the database already contains any equivalent ob-

ject and, if not, adds it to the database. On the

other hand, we can solve “stalled invocation” by

somehow realizing lazy evaluation. For instance,

it may be promising to use memory mapping fa-

cilities if they are available; actually, there is a

debugger that does not suffer from the problem.

However, a much simpler and cleaner way of re-

alizing lazy evaluation is to rely on a DBMS that

allows objects to be fetched on demand from the

persistent storage. Fortunately, the OODBMS

used in our project, ObjectStore, is known for its

notable use of virtual memory mapping architec-

ture [2, 31; when a client accesses a database ob-

ject for the first time, the OODBMS brings the

entire page containing the object into the client’s

virtual memory.

The following sections are organized as fol-

lows. Section 2 overviews C++ program databas-

es. Section 3 describes how and what objects are

shared, primarily to solve “bloated working stor-

age.” Section 4 is on clustering, which is crucial

to the database performance, even if objects are

fetched on demand. Section 5 gives initial perfor-

mance measurements, while Section 6 deals with

related work. Finally, Section 7 presents our con-

clusions and discusses future work.

2 C++ Program Database

The program database we are attempting to

build stores static information on C++ programs.

This includes build relationships of programs and

cross-references of symbols appearing in program-

s. An important feature is that a single database

holds information on multiple programs. This

is essential to eliminate the problem of bloated

working storage; if we built a database for each

program, it would prevent information originating

in Xm. h from being shared among different Motif

applications.

2.1 Basic Structure

Static information on C + + programs is represent-

ed as graphs of objects, which are grouped into

four categories: files, cross-references (abbreviat-

ed below as xrefs), symbols, and types. A file ob-

ject is constructed for each of the operating sys-

tem’s files that have participated in building C-t +

programs. File objects form graphs to represent

build dependency, or relationships showing which

files are linked into which file and which file in-

cludes which files.

A primary ingredient of the program database

is an zrefgraph, namely an xref object pointing to

a symbol object that may point to a type graph;

the symbol points to a type graph only if it has a

type. This xref graph denotes which symbol op-

tionally having which type is defined or declared

or used in which location; logically, the location

is a triple of file object , line number, and column

number, but physically, it is squeezed into a pair,

404

// a.C
int x;
class A (char x; unsigned y; 1;
double foo(float a)< return x+a; I

Figure 1: A Sample Program to Show the Basic
Structure of the Program Database

as we will see in Section 3. These xref graphs are

then organized according to the block structure

of a C++ program.

Consider the following source file as an exam-

ple. Its compilation results in the population of

objects shown in Figure 2. The block structure

of the translation unit is represented as a graph

formed by three objects: a file object correspond-

ing to a. o, an xref object corresponding to the

class definition, and an xref object correspond-

ing to the function definition. Each of these has

a pointer member to an array of the pointers to

the xref graphs. All the xrefs of the translation

unit, including those for the class and function

definitions, are organized into the arrays. Note

that not alI the objects are shown in the fig-

ure; the database is also populated with special

cross-references, which are introduced below. Not

all the pointers are drawn in the figure, either;

backward pointers, which ahow fast climbing-up

traversal, are also present.

2.2 Intended Clients

The intended tools are initially a debugger, a

source-code browser, a builder, which is similar

to the make utility, and a profiler. Actually, the

information we stored in a database reflects this.

First, the database stores code-static information

as used by a debugger. Symbol objects have mem-

bers for relative addresses, offsets within stack

frames, or offsets within data layouts of classes.

Special xrefs are provided for storing information

on breakpoints. ’ Second, the database does not

‘Since an xref essentially carries information on its lo-
cation, this scheme can accommodate breakpoints at inter-
vals with a finer granularity than lines.

contain parse trees, such as those generated by

a compiler’s front-end, since it is not intended

for code generation and program transformation.

Note, however, that enough information is stored

for incremental compilation or program slicing.

Finally, although the database contains sufficient

information to instrument code for execution pro-

filing, it is not supposed to contain the results of

profiling per se. This does not necessarily exclude

the population of such profiling results; we believe

that static and dynamic program information can

be separate islands in a database, and this paper

simply focuses on the population of static infor-

mation.

The only intended populator is a compiler. To

facilitate turning a conventional compiler into a

populating compiler, we define a population inter-

face, or a collection of methods encapsulated into

a class. Following the definition of the interface,

calls to the methods are inserted at appropriate

locations in an existing compiler’s source code.

Linked with an implementation of the interface

class, it is made a populating compiler.

3 Sharing

One purpose of sharing is to alleviate the prob-

lem of “bloated working space,” and xrefs from

commonly included header files must be shared.

Sharing xrefs implies sharing symbols pointed to

by them. Putting it another way, sharing symbols

is considered to facilitate the sharing of xrefs. Ob-

viously, sharing symbols can and should be based

on the C++ semantics of linkage. However, s-

toring multiple programs’ information in a single

database presents a significant challenge to this,

as we will discuss.

3.1 Objects Shared

The entities that can be shared among translation

units in our program database are global symbols,

global types, and global zrefs. A symbol is said to

be global if it is not a member or local. For a glob-

al symbol to be shared, it must represent what is

common across translation units. For compari-

son, assume that the data structure of a function

405

0 meobjeas

0 xrcfobjects

[7 symbolobjects

0 typcdd-

Figure 2: Basic Structure of the Program Database: only the relevant values are shown within the

objects.

symbol is defined to have a member that points

to a graph representing its definition. This is of-

ten the case in internal data structures of a con-

ventional compiler, since at most one definition is

legally given to a function symbol in a translation

unit. However, this is no longer allowed in our

database setting, and thus the function symbol

shown in Figure 2 results. An alternative would

be to have a function symbol’s member point not

to a definition but to a list of definitions. Howev-

er, doing so might slightly degrade performance,

since inserting a new definition results in the up-

dating of an existing object , such as a list node; in

general, modifying existing objects is more costly

than simply constructing new objects.

A type is said to be global if it is not locally de-

fined or a derived type constructed from a locally

defined type. We attempt to share derived types

as well as fundamental types. Thus, only a sin-

gle representation exists in a database for each of

int, char*, double (float), int (*n)(int,

char*), and so forth.

An xref is said to be global if it occurs with

file scope. Xrefs are our primary targets for shar-

ing, since this eliminates duplicated objects due

to commonly included header files. Though the

preprocessor’s conditional commands might cause

the compiler to attempt to store different sets of

objects for different inclusions of a header file, on-

ly objects corresponding to the delta are added.

Note, however, that the granularity of sharing is

a global xref; when a conditional compilation e-

liminates the text of a declaration of a member,

the xref graph representing the definition of the

member’s class is newly stored in its entirety.

The compilations of two translation units in

Figure 3 populate a database with objects, as in

Figure 4. We assume that a. o and b. o are com-

piled in this order.

3.2 Computing the Hash Values of
Graphs

Whenever the compiler is about to add an objec-

t, it looks for any structurally equivalent objec-

t. Obviously, the database maintains hash tables

406

// a.h
class A (
char x; unsigned J;

3;
// a.C
extern int x ;

#include “a h" .
double foo(float);

// b.C
extexn int x;

#include “a. h”
double hoo(float);

Figure 3: A Sample Program to Show Object

Sharing

for these lookups. Precisely, the population of an

object involves the following steps. The compil-

er first constructs an object in the transient heap.

For each of the candidate persistent objects in the

hash table, the compiler performs the structural

equivalence test. If this succeeds for some can-

didate, the compiler subsequently uses the per-

sistent object and discards the transient object.

Otherwise, it makes a persistent copy of the tran-

sient object, inserts it into the hash table, and

discards the transient object.

It might be interesting to compute a hash val-

ue for a graph. To facilitate this, the compiler

maintains an invariant specifying that, when it

attempts to store an object, only the root of that

object is transient and its siblings or subgraphs

have already been made persistent, or stored into

a database. The hash value of a graph is comput-

ed by using one or more values of fundamental

types in the root object and one or more direct

siblings’ persistent addresses.2 The computation

is very fast, since it does not involve traversal of

the graph, but it still effectively takes into account

all the objects contained in the entire graph.

3.3 Overlinking

The object files resulting from the compilation

of two translation units, shown in Figure 4, are

not necessarily linked into the same program. If

they are not, the symbol object for int x actual-

ly represents two different symbolic entities; this

is inevitable, since it is not necessarily known in

advance which executable a particular object file

is eventually linked into, especially if it is a mem-

ber of an archive. Similarly, even within a single

program a single symbol for a class may be used

to represent different C++ classic entities of the

same name, since they may have internal linkages.

In short, ouerla’nlca’ng occurs.

Overlinking is much easier to cope with than

“underlinking.” For this purpose, the coverage of

an object is defined to be a subset of database

objects that can be reached from the object by

tracing pointers. Though a symbol object does

not necessarily uniquely identify a C+ + symbolic

entity, it really does if paired with an appropriate

coverage. For instance, a pair of the symbol de-

noting int x and the coverage of the file object

into which the file a. o is linked uniquely identifies

the symbolic entity declared in a.c. This pairing

effectively means that a database client limits it-

s interest to the specified coverage when dealing

with queries.

4 Clustering

Clustetings is a technique of populating together

objects that are referenced together, thereby im-

proving reference locality. The client of a poorly

clustered database is very likely to cause thrash-

ing, which effectively prevents it from running any

further. Reference locality, however, totally de-

pends on clients’ access patterns. In particular,

burst access made by clients is of great concern.

Obviously, we cannot list all the clients in ad-

2The persistent address of an object within a database
is a pair of segment identifier and offset in ObjectStore.
Since these values are stored in the protected members of
a class ObjectStore supplies, we need a hacking method for
deriving a class to breach the access control.

30bjectStore allows two levels of clustering, by what
are called “segments” and “object clusters.” What we have
used for clustering the program database are “segments.”
However, in this paper we consistently use the term “clus-
ter,” which means a segment in ObjectStore terminology.

407

Figure 4: Sharing of Objects between Translation Units

Vance, and access patterns of clients may impose

conflicting demands on clustering. What we can

do at best is to prepare for major, known clients.

This section first considers burst access that ex-

pected clients are likely to make. It then sum-

marizes three methods of clustering applicable to

our program database, and describes the cluster-

ing actually used. Finally, it presents further ef-

fects of the clustering, one of which contributes to

a substantial reduction in the size of a database.

4.1 Burst Access

Expected clients that heavily access a program

database are a compiler, a scavenger, a source-

code browser, and a debugger. Though a compiler

is primarily considered as a populator, it is also a

heavy accessor; it does a large number of lookups

for sharing, which is likely to cause burst access.

A scavenger is a tool for reclaiming database

objects that are no longer referenced; this tool is

needed because ObjectStore leaves it up to user-

s to garbage-collect database objects. Since the

C-t-t convention is to call the delete operator

for each unused object, burst access is likely to

result.

A browser does not madly access a database as

long as it is processing such requests as “show

members of a class” and “show all the break-

pointable locations of a function.” However, burst

access may happen when it attempts to show the

entire inheritance graph, the entire call graph, all

the cross-references of a symbol, or all the func-

tions and global variables defined in a program.

A debuggei is also a modest client as long as it

handles such requests as “set a breakpoint here”

and “print an automatic variable’s value.” Burst

access may result for a request such as “show the

call stack’s contents” for a long stack and Ushow

all the values of global variables.”

Our observation is that coping with burst ac-

cess by a compiler and a scavenger should have

top priority. The reason is that both lookups and

deletes may touch pages in the persistent storage

scattered in the database-wide, while access by a

browser or a debugger is limited to pages that

contain objects representing a program.

4.2 Methods for Clustering

Three methods of clustering are considered

promising for CT++ program databases. First,

408

birth-order clustering simply stores objects in the

order in which they are created. Since a popula-

tor can easily follow this order, it is used wide-

ly, even unconsciously. Not surprisingly, it can

be observed that the birth order is respected by

many access patterns; objects are never created in

a random order, and the order reflects the logical

structure of a program.

Death-order clustering stores together object-

s that die more or less at the same time. This

method of clustering is very beneficial for a s-

cavenger or, more generally, in terms of memo-

ry management, although we cannot always know

the death times of objects. Furthermore, if a

database management system allows us to delete

a cluster, we can delete a bunch of database ob-

jects at the cost of a single function call, as is

often done in implementing a customized memo-

ry management system for C and C++.

Finally, sharing-oriented clustering stores to-

gether objects that are shared among translation

units, in order to prepare for lookup operations.

As mentioned earlier, what are shared in a pro-

gram database are global objects. If we simply fol-

low the birth-order clustering, lookups may cause

thrashing, since the method interleaves global ob-

jects with objects from inner blocks. In short,

where there is sharing, there must be clustering.

4.3 Our Clustering

Objects are clustered in a C++ program

database, as shown in Figure 5. First, we apply

sharing-oriented clustering, following the prioriti-

zation mentioned earlier. Global symbols are clus-

tered together with the hash table, as are global

types.

As can be seen in the figure, objects that orig-

inate in the same file form a cluster, or what we

call a fire cluster. This file-based clustering is a

combination of sharing-oriented and death-order

clusterings. It is sharing-oriented because it clus-

ters globals xrefs, which come from the same file,

together with the hash table. It is not accept-

able to put all the global xrefs into a single clus-

ter, since the cluster would grow gigantic; divid-

ing them among files prevents this. On the oth-

er hand, file-based clustering is also a death-order

clustering, since objects from the same file tend to

become unused simultaneously; this demographic

fact reflects the current way of developing a C++

program, namely, on a file basis.

To add an object to a file cluster, the compiler

must first look for the cluster corresponding to the

operating system’s file in which the object origi-

nates. It does so by using not only the file’s name

but also the file’s timestamp. In this way, a file

cluster is created for each version of an operating

system’s file.

Finally, birth-order clustering is applied with-

in each cluster, and file objects form their own

cluster.

4.4 Further Effects

File-based clustering also helps to reduce the size

of a database. It allows us to squeeze the location

of an xref object into a pair, instead of a triple

of the source file, line number, and column num-

ber, by cluster-tagging, which is very similar to

the page-tagging used in many Lisp interpreters.

Given a virtual address of an xref, ObjectStore al-

lows us to obtain the persistent address. In other

words, we can find out which cluster (or segment

in ObjectStore terminology) the xref is allocat-

ed to. If we build a table that maps clusters to

files, we can eventually obtain the file in which the

xref originates. The source file of an xref’s loca-

tion thus becomes a computable attribute. Notice

that xref objects are by far the most dominant

objects in a program database; squeezing a word

from an xref leads to a substantial reduction in

the database size.

Finally, we touch on the garbage collection of

database objects. Owing to death-order clus-

tering, individual objects do not have to be

deleted; we simply delete a cluster. File clus-

ters themselves are maintained by applying the

reference-counting technique; we believe that ref-

erence counting on the granularity of clusters is

quite acceptable. The clusters for shared sym-

bols and types are never reclaimed by using ref-

erence counting. However, shared objects with-

in the clusters are garbage-collected by using the

409

ah

share4l xrefs
the hash table IC xrefs

symbols

types

Figure 5: Clustering in the C-+-t Program Database

mark-and-sweep technique, which is much less fre-

quently invoked. Note that the abovementioned

arrangement of a file cluster for a version allows

the reference count to be zero soon enough; if a

file cluster contained objects from all the versions

of an operating system’s file, the reference count

could not reach zero. However, it would be rather

expensive to create a cluster each time a source

file is modified and compiled; a good trade-off is to

let a file cluster hold program information across

a few versions of a source file.

5 Performance Measurements

We have implemented three important compo-

nents, and built two clients with them. The first

component, called pd, defines the scheme of the

C++ program database, and must be linked into

every client. It is also responsible for sharing and

clustering, though such functions are only used

by a populator. Another component, dop, defines

the population methods mentioned in Section 2.

We have built a populating version of the C++

compiler with dop and pd. Lastly, the pq compo-

nent implements basic queries on top of pd; among

them are collective queries such as “show all the

classes” and navigational queries such as “find the

definition of a function.” We have built a simple

source code browser with pq and pd. The pd, dop,

and pq components are all written in C++, using

ObjectStore Release 2.0, and contain 9053, 8575,

and 1808 lines, respectively.

We have run two clients against three programs:

these are a Lisp interpreter; a simple X applica-

tion, which bounces balls in a window; and a GUI

library, which is used for building GUI on Motif.

The applicatien mentioned in Section 1 was built

by using the library. Table 1 summarizes the char-

acteristics of these programs. We have performed

measurements under AIX 3.2.4 on a RISC Sys-

tem/6000 Model 560 with 384 megabytes of main

memory. We set the size of the client cache at 8

megabytes, which is one of the parameters for the

client environment in ObjectStore.

5.1 Database Sizes

We first compiled these programs using the pop-

ulating compiler, and built a database for each

program; it is worth emphasizing that we were

successful in populating a database even for the

GUI library. The last column of Table 1 shows

the sizes of the resulting databases. The levels of

disk consumption are very much lower than in a

conventional approach. Taking the GUI library

as an example, the additional disk space needed

to do browsing and debugging is 68.47 megabytes

in the conventional system in Section 1, while the

410

Program Number of Number of Lines Size of

Translation Before Preprocessing After Preprocessing Database

Units Total Average Total Average (kilobytes)

Interpreter 3 673 224.3 4,695 1,565 761

Bouncing Ball 46 4,018 87.3 361,924 7,868 5,881

GUI Library 294 15,071 51.3 2,686,647 9,138 32,498

Table 1: Characteristics of Measured Programs and Database Sizes

size of the database covering such information is

much smaller, as shown in the table.

Though we constructed a database for each pro-

gram in this measurement, our database can ac-

commodate information on multiple programs, as

mentioned earlier. This turns out to be a cru-

cial advantage when, for instance, we are using

the library to build multiple applications simulta-

neously; otherwise, we would have to create as

many databases containing at least about 32.5

megabytes of objects as the number of the ap-

plications.

5.2 Browsing Times

Next, we invoked the simple browser against the

above databases, and issued typical collective

queries. The invocations were instantaneous, and

it did not take long to retrieve necessary informa-

tion from the databases. Table 2 lists the result

in detail. It shows the amounts of time taken

to retrieve objects necessary for building inheri-

tance graphs and call graphs; the amounts of time

measured do not include those spent on actually

drawing graphs. We have measured them both

in “cold” and “warm” ways. Since the times are

proportional to the numbers of objects to be re-

trieved, the table also shows the numbers of nodes

and arcs in the graphs.

In the measurements, we prepared the databas-

es for these queries by building appropriate tables;

this is a common tactic in database application-

s. Had we not done so, we would have had to

traverse the entire database. In general, the time

needed to traverse a database gives a good indi-

cation of the performance in processing a query

for which the database is not prepared. The table

therefore includes the amounts of time needed for

hot and cold traversals, along with the numbers

of objects to be visited.

Notice that the database size for the GUI li-

brary exceeds the cache size we set in the mea-

surements; we suspect that this caused the times

to increase irregularly for the GUI library.

5.3 Discussion

Though we found that our approach is promis-

ing in terms of disk consumption and client invo-

cation, a severe problem, is the large amount of

extra compilation time, that is, the time needed

to construct a database. The populating compiler

currently takes 4 to 5 times longer on average than

the original compiler does when invoked with the

debugger and browser options turned on. This

is not due to database operations such as trans-

actions and persistent allocations; the underlying

database per se performs well enough as long as

we create an appropriate clustering. At any rate,

we are now working to resolve this problem.

In addition, we are not necessarily satisfied with

the current sizes of program databases. Actually,

more space can be squeezed. In many OODBMSs,

including ObjectStore, objects are stored in per-

sistent storage in almost the same formats as in

virtual memory; they are still objects in persistent

storage. However, objects are not a compact way

of representing information. For instance, the x-

coff format encodes the pointer type to the integer

type as *-1, taking a mere three bytes, while the

corresponding type graph in our scheme consist-

s of two type objects, taking a total of 16 bytes.

411

Database Inheritance Graph I Call Graph Entire Traversal
Time set Size 1 Time (set) Size Time set #Objects

Cold Warm #Nodes Cold Warm #Nodes Cold Warm Visited

+ + WI
#Arcs #Arcs

Interpreter 0.0983 0.00773 105+41 11 0.100 0.0339 501+451 0.0310 0.0107 10.1

Bouncing Ball 1.39 0.0211 293+38 11 0.820 0.146 2,001+1,193 4.10 0.483 463

GUI Library 4.68 0.0613 517+165 1 13.5 0.749 7,600+6.988 51.4 37.8 3,492

Table 2: Performance of Browser’s Typical Queries

Even the compress command in AIX attains 49%

to 63% reductions for the databases in Table 1.

More reduction can definitely be expected if we

extensively use type information, which is also s-

tored in the databases. Obviously, we should per-

form compression page-wise, thereby allowing on-

demand compression. We are now designing the

details of this procedure, which we call type-dtiuen

compression.

6 Related Work

It is well known that the C++ programming

environment formerly named Cadillac [4] stores

C++ program information in an object-oriented

database. It too uses ObjectStore. However, as

far as we know, no paper describes the database

organization in enough detail for us to compare it

with our work.

CIA++ [5] is a tool that stores a C++ pro-

gram information in a database. The information

covered is largely the same as in our scheme, but

does not include code-static information. In ad-

dition, the database is relational. We are curious

to learn how sharing and clustering are dealt with

in relational setting.

Reprise [6] is a graph representation of C++

programs. It represents source-static information

in much more detail than our scheme, but does

not give any code-static information. Though the

paper describes how such representations are gen-

erated, it does not say how or where they are s-

tored.

Kendall and Allin [7] discuss how the size of a

program database can be reduced. They propose

eliding unused declarations and combining objects

among translation units, which can be performed

in two ways, by sharing and by linking. They

also present detailed measurements of the degree

of effectiveness of these methods in reducing the

database size. One difference from our work is

that their database is main-memory and contains

only a single program. Databases accommodating

multiple programs are very different and require

the notion of overlinking. Another difference is

that they attempt to reduce the database size by

varying the requirements imposed on the program

database; that is why elision becomes applicable,

although the resulting database is not suitable for

source code browsing. Our requirement is that the

program database must be used for the browser,

debugger, and builder.

7 Concluding Remarks

We have described how objects are shared and

clustered in an object-oriented C++ program

database. Sharing is important to prevent a

program database from occupying too much sec-

ondary storage. Our initial experiment showed

that the database occupies much less space than

is required in a conventional file-based environ-

ment .

Clustering is crucial to keep clients running

without thrashing. Though we have prepared for

major expected clients, we have already found a

client that has a conflicting demand on clustering.

An instance tmnsformer, which supports schema

evolution, turns instances of updated classes into

new versions, accessing all the instances of each

412

class. The best clustering for this is a class-based

clustering, which allocates instances of a class to-

gether. However, it obviously conflicts with the

sharing-oriented and death-order clustering. Dy-

namic reorganization of a database might be pur-

sued in this case.

As we have seen, populating objects involves

linking symbolic entities. We expect to be able

to completely eliminate the phase of batch linking

in the not-sodistant future; this will considerably

accelerate the development cycle. In addition, it

is believed that C++ program databases can au-

tomate a complicated process of template instan-

tiations [8]. We believe that the evolution from

separate compilation to populating compilation

will have a significant impact on C++ program

development.

Acknowledgments

We thank the members of the Compiler Tool-

s Group at IBM Canada’s Language Technology

Centre and of the Programming Languages Group

at IBM Japan’s Tokyo Research Laboratory for

their detailed discussions, which very much im-

proved this work. Ed Merks and Kazu Yasuda

defined the population interface, and Shoichi Ni-

nomiya implemented the dop component.

Trademarks

ObjectStore is a trademark of Object Design, In-

c. AIX, RISC System/6000, and C Set ++ are

trademarks of IBM.

References

[l] Thomas, I. and B. A. Nejmeh. Definitions

of Tool Integration for Environments. IEEE

Software 9(2), 29-35 (1992).

[2] Lamb, C. et al. The ObjectStore Database

System. Communications of the ACM

34(10), 50-63 (1991).

[3] ObjectStore User Guide, Object Design, Inc.,

1992.

[4] Gabriel, R. P. et al. Foundation for a C-t-l-

Programming Environment. Pvxeedings of

C++ At Work 1990, pp. 85-102.

[5] Grass, J. E. and Y. Chen. The C++ Infor-

mation Abstractor. Proceedings of the 1990

USENIX C++ Conference 1990, pp. 265-

277.

[6] Rosenblum, D. S. and A. L. Wolf. Represent-

ing Semantically Analyzed C++ Code with

Reprise. Proceedings of the 1991 USENIX

C++ Conference 1991, pp. 119-134.

[7] Kendall, S. C. and G. Allin. Sharing Between

Translation Units in C++ Program Databas-

es. Proceedings of the 1994 USENIX C++

Conference 1994, pp. 247-263.

[8] McCluskey, G. Template Instantiation For

C++. ACM SIGPLAN Notices 37(12), 47-

56 (1992).

413

