
Experience with Representing C++ Program Information 

in an Object-Oriented Database 

Tamiya Onodera 

IBM Reseamh, Tokyo Research Laboratory 

1623-14, Shimo-tsuruma, Yamato-shi, Kanagawa-ken 2@ Japan 

Abstract 

Two major issues related to storing program in- 
formation in an OODB are sharing and cluster- 
ing. The former is important since it prevents the 
database from consuming excessive disk space, 
while the latter is crucial, since it keeps clients 
running without thrashing. In our database, ob- 
jects are shared across multiple programs’ trans- 
lation units, and are clustered by combining three 
techniques, namely, birth-order, death-order, and 
sharing-oriented clusterings. An initial experi- 
ment shows that, for a medium-size application, 
the database consumes 3.5 times less disk space 
than in a conventional environment, and that the 
invocation of a client is almost instantaneous. 

1 Introduction 

The growing size and complexity of software has 

intensified the need for advanced programming 

environments that can reduce the burden on soft- 

ware developers. Such an environment should in- 

tegrate tools, including a compiler, a debugger, a 

source-code browser, and a builder. Tool integra- 

tion, in this narrow context of lower CASE, means 

integration of presentation, control, and data [l]. 

To build such an integrated environment, it is be- 

lieved, the correct strategy is to use a database 

management system. 

Permission to copy without fee all or part of this material is 
granted provided ?hat the copies are not made or distributed for 
direct commercial advantage, the ACM copyright notice and the 
title of the publication and its date appear, and notice is given 
fhat copying is by permission of the Association of Computing 
Machinery. To copy otherwise, or to republish, requires a fee 
and/or specific permission. 
OOPSIA 94- 1 O/94 Portland, Ore on USA 
Q 1994 ACM O-89791 -688-3194 0010..$3.50 7 

Our attempt to represent C++ program infor- 

mation by using an object-oriented database fol- 

lows these lines, but at the same time we have 

aimed to alleviate two serious and pervasive prob- 

lems in the development of programs: bloated 

working storage and stalled invocation. In the 

first, a tremendously large amount of disk space 

is used to store information for tools, and in the 

second, an intolerably long time is spent before a 

tool is ready to accept user interaction. 

As an example, we present statistics on a Motif 

application that is being developed at our labora 

tory by using IBM C Set ++ for AIX/6000. The 

numbers given below were all obtained under AIX 

3.2.4 on a RISC System/6000 Model 560. When 

compiled and linked without any specific option- 

s, the library, which consists of 300 source files 

and contains a total of 15,541 lines, consumes 3.03 

megabytes of disk space, including source files, ob- 

ject files, and an executable. To use a debugger, 

we must build the executable with the debugger 

option specified. This requires 16.86 megabytes 

more disk space. When we invoked the dbx de- 

bugger against the executable, it took 479 seconds 

of real time for the debugger process to show its 

first prompt. To allow use of a browser, we must 

build the executable with the browser option spec- 

ified. This, surprisingly, requires 76.92 megabytes 

more disk space. Moreover, the system configu- 

ration did not allow us to use the source code 

browser; the initialization of the browser process 

failed, because of the heavy demand on paging 

space. 

The reason for bloated working storage is as fol- 
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lows. The use of a library in a C/C++ program 

results in one or more header files being included, 

and the inclusion of a header file contributes to 

increased consumption of disk space; information 

on types defined in the header file is generated if 

the program is compiled with the debugger op- 

tion, while information on cross-references that 

originate in the header file is produced if the pro- 

gram is compiled with the browser option. When 

a header file is included in many source files, the 

same number of duplicates result, and are sim- 

ply left to occupy disk space. What really ag- 

gravates the duplication is that modern software 

tends to or is encouraged to rely on more and 

more libraries, some of which are very large. For 

instance, the source file in the Motif application 

contains only 51.8 lines on average. However, af- 

ter the file has been preprocessed, the average 

number of lines rises to as many as 9,153, since 

all the source files but one include Xm. h directly 

or indirectly. On the other hand, the reason for 

stalling invocation is simply that the dbx debug 

ger and the source code browser eagerly attempt 

to initialize a large number of objects before they 

accept user interaction. 

We can amend “bloated working storage” by 

enhancing the compiler to allow it to populate a 

database with objects, sharing as many objects 

as possible. When the compiler is about to store 

an object in a database, it first checks whether 

the database already contains any equivalent ob- 

ject and, if not, adds it to the database. On the 

other hand, we can solve “stalled invocation” by 

somehow realizing lazy evaluation. For instance, 

it may be promising to use memory mapping fa- 

cilities if they are available; actually, there is a 

debugger that does not suffer from the problem. 

However, a much simpler and cleaner way of re- 

alizing lazy evaluation is to rely on a DBMS that 

allows objects to be fetched on demand from the 

persistent storage. Fortunately, the OODBMS 

used in our project, ObjectStore, is known for its 

notable use of virtual memory mapping architec- 

ture [2, 31; when a client accesses a database ob- 

ject for the first time, the OODBMS brings the 

entire page containing the object into the client’s 

virtual memory. 

The following sections are organized as fol- 

lows. Section 2 overviews C++ program databas- 

es. Section 3 describes how and what objects are 

shared, primarily to solve “bloated working stor- 

age.” Section 4 is on clustering, which is crucial 

to the database performance, even if objects are 

fetched on demand. Section 5 gives initial perfor- 

mance measurements, while Section 6 deals with 

related work. Finally, Section 7 presents our con- 

clusions and discusses future work. 

2 C++ Program Database 

The program database we are attempting to 

build stores static information on C++ programs. 

This includes build relationships of programs and 

cross-references of symbols appearing in program- 

s. An important feature is that a single database 

holds information on multiple programs. This 

is essential to eliminate the problem of bloated 

working storage; if we built a database for each 

program, it would prevent information originating 

in Xm. h from being shared among different Motif 

applications. 

2.1 Basic Structure 

Static information on C + + programs is represent- 

ed as graphs of objects, which are grouped into 

four categories: files, cross-references (abbreviat- 

ed below as xrefs), symbols, and types. A file ob- 

ject is constructed for each of the operating sys- 

tem’s files that have participated in building C-t + 

programs. File objects form graphs to represent 

build dependency, or relationships showing which 

files are linked into which file and which file in- 

cludes which files. 

A primary ingredient of the program database 

is an zrefgraph, namely an xref object pointing to 

a symbol object that may point to a type graph; 

the symbol points to a type graph only if it has a 

type. This xref graph denotes which symbol op- 

tionally having which type is defined or declared 

or used in which location; logically, the location 

is a triple of file object , line number, and column 

number, but physically, it is squeezed into a pair, 
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// a.C 
int x; 
class A ( char x; unsigned y; 1; 
double foo(float a)< return x+a; I 

Figure 1: A Sample Program to Show the Basic 
Structure of the Program Database 

as we will see in Section 3. These xref graphs are 

then organized according to the block structure 

of a C++ program. 

Consider the following source file as an exam- 

ple. Its compilation results in the population of 

objects shown in Figure 2. The block structure 

of the translation unit is represented as a graph 

formed by three objects: a file object correspond- 

ing to a. o, an xref object corresponding to the 

class definition, and an xref object correspond- 

ing to the function definition. Each of these has 

a pointer member to an array of the pointers to 

the xref graphs. All the xrefs of the translation 

unit, including those for the class and function 

definitions, are organized into the arrays. Note 

that not alI the objects are shown in the fig- 

ure; the database is also populated with special 

cross-references, which are introduced below. Not 

all the pointers are drawn in the figure, either; 

backward pointers, which ahow fast climbing-up 

traversal, are also present. 

2.2 Intended Clients 

The intended tools are initially a debugger, a 

source-code browser, a builder, which is similar 

to the make utility, and a profiler. Actually, the 

information we stored in a database reflects this. 

First, the database stores code-static information 

as used by a debugger. Symbol objects have mem- 

bers for relative addresses, offsets within stack 

frames, or offsets within data layouts of classes. 

Special xrefs are provided for storing information 

on breakpoints. ’ Second, the database does not 

‘Since an xref essentially carries information on its lo- 
cation, this scheme can accommodate breakpoints at inter- 
vals with a finer granularity than lines. 

contain parse trees, such as those generated by 

a compiler’s front-end, since it is not intended 

for code generation and program transformation. 

Note, however, that enough information is stored 

for incremental compilation or program slicing. 

Finally, although the database contains sufficient 

information to instrument code for execution pro- 

filing, it is not supposed to contain the results of 

profiling per se. This does not necessarily exclude 

the population of such profiling results; we believe 

that static and dynamic program information can 

be separate islands in a database, and this paper 

simply focuses on the population of static infor- 

mation. 

The only intended populator is a compiler. To 

facilitate turning a conventional compiler into a 

populating compiler, we define a population inter- 

face, or a collection of methods encapsulated into 

a class. Following the definition of the interface, 

calls to the methods are inserted at appropriate 

locations in an existing compiler’s source code. 

Linked with an implementation of the interface 

class, it is made a populating compiler. 

3 Sharing 

One purpose of sharing is to alleviate the prob- 

lem of “bloated working space,” and xrefs from 

commonly included header files must be shared. 

Sharing xrefs implies sharing symbols pointed to 

by them. Putting it another way, sharing symbols 

is considered to facilitate the sharing of xrefs. Ob- 

viously, sharing symbols can and should be based 

on the C++ semantics of linkage. However, s- 

toring multiple programs’ information in a single 

database presents a significant challenge to this, 

as we will discuss. 

3.1 Objects Shared 

The entities that can be shared among translation 

units in our program database are global symbols, 

global types, and global zrefs. A symbol is said to 

be global if it is not a member or local. For a glob- 

al symbol to be shared, it must represent what is 

common across translation units. For compari- 

son, assume that the data structure of a function 
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0 meobjeas 

0 xrcfobjects 

[7 symbolobjects 

0 typcdd- 

Figure 2: Basic Structure of the Program Database: only the relevant values are shown within the 

objects. 

symbol is defined to have a member that points 

to a graph representing its definition. This is of- 

ten the case in internal data structures of a con- 

ventional compiler, since at most one definition is 

legally given to a function symbol in a translation 

unit. However, this is no longer allowed in our 

database setting, and thus the function symbol 

shown in Figure 2 results. An alternative would 

be to have a function symbol’s member point not 

to a definition but to a list of definitions. Howev- 

er, doing so might slightly degrade performance, 

since inserting a new definition results in the up- 

dating of an existing object , such as a list node; in 

general, modifying existing objects is more costly 

than simply constructing new objects. 

A type is said to be global if it is not locally de- 

fined or a derived type constructed from a locally 

defined type. We attempt to share derived types 

as well as fundamental types. Thus, only a sin- 

gle representation exists in a database for each of 

int, char*, double (float), int (*n)(int, 

char*), and so forth. 

An xref is said to be global if it occurs with 

file scope. Xrefs are our primary targets for shar- 

ing, since this eliminates duplicated objects due 

to commonly included header files. Though the 

preprocessor’s conditional commands might cause 

the compiler to attempt to store different sets of 

objects for different inclusions of a header file, on- 

ly objects corresponding to the delta are added. 

Note, however, that the granularity of sharing is 

a global xref; when a conditional compilation e- 

liminates the text of a declaration of a member, 

the xref graph representing the definition of the 

member’s class is newly stored in its entirety. 

The compilations of two translation units in 

Figure 3 populate a database with objects, as in 

Figure 4. We assume that a. o and b. o are com- 

piled in this order. 

3.2 Computing the Hash Values of 
Graphs 

Whenever the compiler is about to add an objec- 

t, it looks for any structurally equivalent objec- 

t. Obviously, the database maintains hash tables 
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// a.h 
class A ( 
char x; unsigned J; 

3; 
// a.C 
extern int x ; 

#include “a h" . 
double foo(float); 

// b.C 
extexn int x; 

#include “a. h” 
double hoo(float); 

Figure 3: A Sample Program to Show Object 

Sharing 

for these lookups. Precisely, the population of an 

object involves the following steps. The compil- 

er first constructs an object in the transient heap. 

For each of the candidate persistent objects in the 

hash table, the compiler performs the structural 

equivalence test. If this succeeds for some can- 

didate, the compiler subsequently uses the per- 

sistent object and discards the transient object. 

Otherwise, it makes a persistent copy of the tran- 

sient object, inserts it into the hash table, and 

discards the transient object. 

It might be interesting to compute a hash val- 

ue for a graph. To facilitate this, the compiler 

maintains an invariant specifying that, when it 

attempts to store an object, only the root of that 

object is transient and its siblings or subgraphs 

have already been made persistent, or stored into 

a database. The hash value of a graph is comput- 

ed by using one or more values of fundamental 

types in the root object and one or more direct 

siblings’ persistent addresses.2 The computation 

is very fast, since it does not involve traversal of 

the graph, but it still effectively takes into account 

all the objects contained in the entire graph. 

3.3 Overlinking 

The object files resulting from the compilation 

of two translation units, shown in Figure 4, are 

not necessarily linked into the same program. If 

they are not, the symbol object for int x actual- 

ly represents two different symbolic entities; this 

is inevitable, since it is not necessarily known in 

advance which executable a particular object file 

is eventually linked into, especially if it is a mem- 

ber of an archive. Similarly, even within a single 

program a single symbol for a class may be used 

to represent different C++ classic entities of the 

same name, since they may have internal linkages. 

In short, ouerla’nlca’ng occurs. 

Overlinking is much easier to cope with than 

“underlinking.” For this purpose, the coverage of 

an object is defined to be a subset of database 

objects that can be reached from the object by 

tracing pointers. Though a symbol object does 

not necessarily uniquely identify a C+ + symbolic 

entity, it really does if paired with an appropriate 

coverage. For instance, a pair of the symbol de- 

noting int x and the coverage of the file object 

into which the file a. o is linked uniquely identifies 

the symbolic entity declared in a.c. This pairing 

effectively means that a database client limits it- 

s interest to the specified coverage when dealing 

with queries. 

4 Clustering 

Clustetings is a technique of populating together 

objects that are referenced together, thereby im- 

proving reference locality. The client of a poorly 

clustered database is very likely to cause thrash- 

ing, which effectively prevents it from running any 

further. Reference locality, however, totally de- 

pends on clients’ access patterns. In particular, 

burst access made by clients is of great concern. 

Obviously, we cannot list all the clients in ad- 

2The persistent address of an object within a database 
is a pair of segment identifier and offset in ObjectStore. 
Since these values are stored in the protected members of 
a class ObjectStore supplies, we need a hacking method for 
deriving a class to breach the access control. 

30bjectStore allows two levels of clustering, by what 
are called “segments” and “object clusters.” What we have 
used for clustering the program database are “segments.” 
However, in this paper we consistently use the term “clus- 
ter,” which means a segment in ObjectStore terminology. 
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Figure 4: Sharing of Objects between Translation Units 

Vance, and access patterns of clients may impose 

conflicting demands on clustering. What we can 

do at best is to prepare for major, known clients. 

This section first considers burst access that ex- 

pected clients are likely to make. It then sum- 

marizes three methods of clustering applicable to 

our program database, and describes the cluster- 

ing actually used. Finally, it presents further ef- 

fects of the clustering, one of which contributes to 

a substantial reduction in the size of a database. 

4.1 Burst Access 

Expected clients that heavily access a program 

database are a compiler, a scavenger, a source- 

code browser, and a debugger. Though a compiler 

is primarily considered as a populator, it is also a 

heavy accessor; it does a large number of lookups 

for sharing, which is likely to cause burst access. 

A scavenger is a tool for reclaiming database 

objects that are no longer referenced; this tool is 

needed because ObjectStore leaves it up to user- 

s to garbage-collect database objects. Since the 

C-t-t convention is to call the delete operator 

for each unused object, burst access is likely to 

result. 

A browser does not madly access a database as 

long as it is processing such requests as “show 

members of a class” and “show all the break- 

pointable locations of a function.” However, burst 

access may happen when it attempts to show the 

entire inheritance graph, the entire call graph, all 

the cross-references of a symbol, or all the func- 

tions and global variables defined in a program. 

A debuggei is also a modest client as long as it 

handles such requests as “set a breakpoint here” 

and “print an automatic variable’s value.” Burst 

access may result for a request such as “show the 

call stack’s contents” for a long stack and Ushow 

all the values of global variables.” 

Our observation is that coping with burst ac- 

cess by a compiler and a scavenger should have 

top priority. The reason is that both lookups and 

deletes may touch pages in the persistent storage 

scattered in the database-wide, while access by a 

browser or a debugger is limited to pages that 

contain objects representing a program. 

4.2 Methods for Clustering 

Three methods of clustering are considered 

promising for CT++ program databases. First, 
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birth-order clustering simply stores objects in the 

order in which they are created. Since a popula- 

tor can easily follow this order, it is used wide- 

ly, even unconsciously. Not surprisingly, it can 

be observed that the birth order is respected by 

many access patterns; objects are never created in 

a random order, and the order reflects the logical 

structure of a program. 

Death-order clustering stores together object- 

s that die more or less at the same time. This 

method of clustering is very beneficial for a s- 

cavenger or, more generally, in terms of memo- 

ry management, although we cannot always know 

the death times of objects. Furthermore, if a 

database management system allows us to delete 

a cluster, we can delete a bunch of database ob- 

jects at the cost of a single function call, as is 

often done in implementing a customized memo- 

ry management system for C and C++. 

Finally, sharing-oriented clustering stores to- 

gether objects that are shared among translation 

units, in order to prepare for lookup operations. 

As mentioned earlier, what are shared in a pro- 

gram database are global objects. If we simply fol- 

low the birth-order clustering, lookups may cause 

thrashing, since the method interleaves global ob- 

jects with objects from inner blocks. In short, 

where there is sharing, there must be clustering. 

4.3 Our Clustering 

Objects are clustered in a C++ program 

database, as shown in Figure 5. First, we apply 

sharing-oriented clustering, following the prioriti- 

zation mentioned earlier. Global symbols are clus- 

tered together with the hash table, as are global 

types. 

As can be seen in the figure, objects that orig- 

inate in the same file form a cluster, or what we 

call a fire cluster. This file-based clustering is a 

combination of sharing-oriented and death-order 

clusterings. It is sharing-oriented because it clus- 

ters globals xrefs, which come from the same file, 

together with the hash table. It is not accept- 

able to put all the global xrefs into a single clus- 

ter, since the cluster would grow gigantic; divid- 

ing them among files prevents this. On the oth- 

er hand, file-based clustering is also a death-order 

clustering, since objects from the same file tend to 

become unused simultaneously; this demographic 

fact reflects the current way of developing a C++ 

program, namely, on a file basis. 

To add an object to a file cluster, the compiler 

must first look for the cluster corresponding to the 

operating system’s file in which the object origi- 

nates. It does so by using not only the file’s name 

but also the file’s timestamp. In this way, a file 

cluster is created for each version of an operating 

system’s file. 

Finally, birth-order clustering is applied with- 

in each cluster, and file objects form their own 

cluster. 

4.4 Further Effects 

File-based clustering also helps to reduce the size 

of a database. It allows us to squeeze the location 

of an xref object into a pair, instead of a triple 

of the source file, line number, and column num- 

ber, by cluster-tagging, which is very similar to 

the page-tagging used in many Lisp interpreters. 

Given a virtual address of an xref, ObjectStore al- 

lows us to obtain the persistent address. In other 

words, we can find out which cluster (or segment 

in ObjectStore terminology) the xref is allocat- 

ed to. If we build a table that maps clusters to 

files, we can eventually obtain the file in which the 

xref originates. The source file of an xref’s loca- 

tion thus becomes a computable attribute. Notice 

that xref objects are by far the most dominant 

objects in a program database; squeezing a word 

from an xref leads to a substantial reduction in 

the database size. 

Finally, we touch on the garbage collection of 

database objects. Owing to death-order clus- 

tering, individual objects do not have to be 

deleted; we simply delete a cluster. File clus- 

ters themselves are maintained by applying the 

reference-counting technique; we believe that ref- 

erence counting on the granularity of clusters is 

quite acceptable. The clusters for shared sym- 

bols and types are never reclaimed by using ref- 

erence counting. However, shared objects with- 

in the clusters are garbage-collected by using the 
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Figure 5: Clustering in the C-+-t Program Database 

mark-and-sweep technique, which is much less fre- 

quently invoked. Note that the abovementioned 

arrangement of a file cluster for a version allows 

the reference count to be zero soon enough; if a 

file cluster contained objects from all the versions 

of an operating system’s file, the reference count 

could not reach zero. However, it would be rather 

expensive to create a cluster each time a source 

file is modified and compiled; a good trade-off is to 

let a file cluster hold program information across 

a few versions of a source file. 

5 Performance Measurements 

We have implemented three important compo- 

nents, and built two clients with them. The first 

component, called pd, defines the scheme of the 

C++ program database, and must be linked into 

every client. It is also responsible for sharing and 

clustering, though such functions are only used 

by a populator. Another component, dop, defines 

the population methods mentioned in Section 2. 

We have built a populating version of the C++ 

compiler with dop and pd. Lastly, the pq compo- 

nent implements basic queries on top of pd; among 

them are collective queries such as “show all the 

classes” and navigational queries such as “find the 

definition of a function.” We have built a simple 

source code browser with pq and pd. The pd, dop, 

and pq components are all written in C++, using 

ObjectStore Release 2.0, and contain 9053, 8575, 

and 1808 lines, respectively. 

We have run two clients against three programs: 

these are a Lisp interpreter; a simple X applica- 

tion, which bounces balls in a window; and a GUI 

library, which is used for building GUI on Motif. 

The applicatien mentioned in Section 1 was built 

by using the library. Table 1 summarizes the char- 

acteristics of these programs. We have performed 

measurements under AIX 3.2.4 on a RISC Sys- 

tem/6000 Model 560 with 384 megabytes of main 

memory. We set the size of the client cache at 8 

megabytes, which is one of the parameters for the 

client environment in ObjectStore. 

5.1 Database Sizes 

We first compiled these programs using the pop- 

ulating compiler, and built a database for each 

program; it is worth emphasizing that we were 

successful in populating a database even for the 

GUI library. The last column of Table 1 shows 

the sizes of the resulting databases. The levels of 

disk consumption are very much lower than in a 

conventional approach. Taking the GUI library 

as an example, the additional disk space needed 

to do browsing and debugging is 68.47 megabytes 

in the conventional system in Section 1, while the 
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Program Number of Number of Lines Size of 

Translation Before Preprocessing After Preprocessing Database 

Units Total Average Total Average (kilobytes) 

Interpreter 3 673 224.3 4,695 1,565 761 

Bouncing Ball 46 4,018 87.3 361,924 7,868 5,881 

GUI Library 294 15,071 51.3 2,686,647 9,138 32,498 

Table 1: Characteristics of Measured Programs and Database Sizes 

size of the database covering such information is 

much smaller, as shown in the table. 

Though we constructed a database for each pro- 

gram in this measurement, our database can ac- 

commodate information on multiple programs, as 

mentioned earlier. This turns out to be a cru- 

cial advantage when, for instance, we are using 

the library to build multiple applications simulta- 

neously; otherwise, we would have to create as 

many databases containing at least about 32.5 

megabytes of objects as the number of the ap- 

plications. 

5.2 Browsing Times 

Next, we invoked the simple browser against the 

above databases, and issued typical collective 

queries. The invocations were instantaneous, and 

it did not take long to retrieve necessary informa- 

tion from the databases. Table 2 lists the result 

in detail. It shows the amounts of time taken 

to retrieve objects necessary for building inheri- 

tance graphs and call graphs; the amounts of time 

measured do not include those spent on actually 

drawing graphs. We have measured them both 

in “cold” and “warm” ways. Since the times are 

proportional to the numbers of objects to be re- 

trieved, the table also shows the numbers of nodes 

and arcs in the graphs. 

In the measurements, we prepared the databas- 

es for these queries by building appropriate tables; 

this is a common tactic in database application- 

s. Had we not done so, we would have had to 

traverse the entire database. In general, the time 

needed to traverse a database gives a good indi- 

cation of the performance in processing a query 

for which the database is not prepared. The table 

therefore includes the amounts of time needed for 

hot and cold traversals, along with the numbers 

of objects to be visited. 

Notice that the database size for the GUI li- 

brary exceeds the cache size we set in the mea- 

surements; we suspect that this caused the times 

to increase irregularly for the GUI library. 

5.3 Discussion 

Though we found that our approach is promis- 

ing in terms of disk consumption and client invo- 

cation, a severe problem, is the large amount of 

extra compilation time, that is, the time needed 

to construct a database. The populating compiler 

currently takes 4 to 5 times longer on average than 

the original compiler does when invoked with the 

debugger and browser options turned on. This 

is not due to database operations such as trans- 

actions and persistent allocations; the underlying 

database per se performs well enough as long as 

we create an appropriate clustering. At any rate, 

we are now working to resolve this problem. 

In addition, we are not necessarily satisfied with 

the current sizes of program databases. Actually, 

more space can be squeezed. In many OODBMSs, 

including ObjectStore, objects are stored in per- 

sistent storage in almost the same formats as in 

virtual memory; they are still objects in persistent 

storage. However, objects are not a compact way 

of representing information. For instance, the x- 

coff format encodes the pointer type to the integer 

type as *-1, taking a mere three bytes, while the 

corresponding type graph in our scheme consist- 

s of two type objects, taking a total of 16 bytes. 

411 



Database Inheritance Graph I Call Graph Entire Traversal 
Time set Size 1 Time (set) Size Time set #Objects 

Cold Warm #Nodes Cold Warm #Nodes Cold Warm Visited 

+ + WI 
#Arcs #Arcs 

Interpreter 0.0983 0.00773 105+41 11 0.100 0.0339 501+451 0.0310 0.0107 10.1 

Bouncing Ball 1.39 0.0211 293+38 11 0.820 0.146 2,001+1,193 4.10 0.483 463 

GUI Library 4.68 0.0613 517+165 1 13.5 0.749 7,600+6.988 51.4 37.8 3,492 

Table 2: Performance of Browser’s Typical Queries 

Even the compress command in AIX attains 49% 

to 63% reductions for the databases in Table 1. 

More reduction can definitely be expected if we 

extensively use type information, which is also s- 

tored in the databases. Obviously, we should per- 

form compression page-wise, thereby allowing on- 

demand compression. We are now designing the 

details of this procedure, which we call type-dtiuen 

compression. 

6 Related Work 

It is well known that the C++ programming 

environment formerly named Cadillac [4] stores 

C++ program information in an object-oriented 

database. It too uses ObjectStore. However, as 

far as we know, no paper describes the database 

organization in enough detail for us to compare it 

with our work. 

CIA++ [5] is a tool that stores a C++ pro- 

gram information in a database. The information 

covered is largely the same as in our scheme, but 

does not include code-static information. In ad- 

dition, the database is relational. We are curious 

to learn how sharing and clustering are dealt with 

in relational setting. 

Reprise [6] is a graph representation of C++ 

programs. It represents source-static information 

in much more detail than our scheme, but does 

not give any code-static information. Though the 

paper describes how such representations are gen- 

erated, it does not say how or where they are s- 

tored. 

Kendall and Allin [7] discuss how the size of a 

program database can be reduced. They propose 

eliding unused declarations and combining objects 

among translation units, which can be performed 

in two ways, by sharing and by linking. They 

also present detailed measurements of the degree 

of effectiveness of these methods in reducing the 

database size. One difference from our work is 

that their database is main-memory and contains 

only a single program. Databases accommodating 

multiple programs are very different and require 

the notion of overlinking. Another difference is 

that they attempt to reduce the database size by 

varying the requirements imposed on the program 

database; that is why elision becomes applicable, 

although the resulting database is not suitable for 

source code browsing. Our requirement is that the 

program database must be used for the browser, 

debugger, and builder. 

7 Concluding Remarks 

We have described how objects are shared and 

clustered in an object-oriented C++ program 

database. Sharing is important to prevent a 

program database from occupying too much sec- 

ondary storage. Our initial experiment showed 

that the database occupies much less space than 

is required in a conventional file-based environ- 

ment . 

Clustering is crucial to keep clients running 

without thrashing. Though we have prepared for 

major expected clients, we have already found a 

client that has a conflicting demand on clustering. 

An instance tmnsformer, which supports schema 

evolution, turns instances of updated classes into 

new versions, accessing all the instances of each 
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class. The best clustering for this is a class-based 

clustering, which allocates instances of a class to- 

gether. However, it obviously conflicts with the 

sharing-oriented and death-order clustering. Dy- 

namic reorganization of a database might be pur- 

sued in this case. 

As we have seen, populating objects involves 

linking symbolic entities. We expect to be able 

to completely eliminate the phase of batch linking 

in the not-sodistant future; this will considerably 

accelerate the development cycle. In addition, it 

is believed that C++ program databases can au- 

tomate a complicated process of template instan- 

tiations [8]. We believe that the evolution from 

separate compilation to populating compilation 

will have a significant impact on C++ program 

development. 
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