
Panini: a Capsule-oriented Programming Language
for Implicitly Concurrent Program Design

Eric Lin Hridesh Rajan
Iowa State University

Ames IA, USA
{eylin, hridesh}@iastate.edu

Abstract
This demonstration will present Panini, a new programming lan-
guage designed with an objective to help programmers with con-
current programming. Current abstractions for concurrency fall
into two categories: explicit abstractions for concurrency such as
threads, and implicit abstractions for concurrency such as actors.
Explicit concurrency abstractions are hard to use, reason about, and
error prone. Implicit abstractions like actors help solve these prob-
lems, but they require programmers to adapt to the asynchronous
style of programming. Many programmers find this adaptation
hard. We will demonstrate the notion of capsules in Panini. A
capsule is an implicit abstraction for concurrency that has many
properties of actors, but provides a logically synchronous program-
ming model to programmers. Main technical challenge in realizing
capsules was to maximize concurrency while minimizing overhead
and abstracting away all the details of concurrency from the Panini
programmer. We will also demonstrate scalability benefits of Panini
programs without writing a single line of explicitly parallel code,
and compile-time checking of concurrency-related properties such
as confinement violation, and sequential consistency.

Categories and Subject Descriptors D.3.3 [Language Constructs
and Features]: Concurrent programming structures

Keywords capsules, implicit concurrency, modularity, synergy

1. Problem: Concurrent Programming is Hard
Concurrent programming is hard. Most programmers find it diffi-
cult to write concurrent programs. Moreover, a large number of pro-
grammers are used to thinking sequentially about their programs.
This makes the task of reasoning about a concurrent program even
more difficult because it requires reasoning about interleaving of
concurrent tasks. On top of that, to ensure concurrency safety, the
concurrency construct applied in the program often obscures the
logic flow of the program, resulting in difficulty understanding both
the logic of the program and the concurrency constructs.

As an example, Figure 1 is a simple concurrent program in
which a number of “worker” tasks execute a Monte Carlo approx-

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
SPLASH ’13, October 26–31, 2013, Indianapolis, Indiana, USA.
Copyright is held by the owner/author(s).
ACM 978-1-4503-1995-9/13/10.
http://dx.doi.org/10.1145/2508075.2514573

imation of π concurrently; a “master” task combines the results
as the workers finish. Figure 1, left shows an explicitly concurrent
implementation of this program in Java. The explicitly concurrent
Java program has the application’s concerns tangled with two con-
currency concerns: creation and starting of new threads, and syn-
chronization between these threads. This makes it harder to write,
test, reason about, and evolve this concurrent program.

2. Solution: Eliminate Concurrent Programming
Capsule-oriented programming is a new style designed to address
these challenges of concurrent programming [1]. The first objec-
tive of capsule-oriented programming is to allow programmers to
design and implement more modular programs, and in doing so
expose implicit concurrency in program design. To achieve this
goal, we have developed a new abstraction called capsule. A cap-
sule is like a process, it encapsulates objects stored in its local re-
gion of memory and provides public operations that can be called
by other capsules. A significant difference between capsules and
similar abstraction actor is that inter-capsule calls are logically
synchronous, and the topology of capsule-oriented can be stati-
cally determined. These differences decrease the impedance mis-
match between capsule-oriented programming model and the main-
stream imperative programming model, and makes it easier to de-
sign polynomial-time algorithms for analyzing capsule-oriented
programs that can be integrated into industry-strength compilers.

To illustrate, consider a capsule-oriented implementation of our
motivating example in Figure 1, right. This program has two cap-
sules that are combined to form a static topology in the design block
on lines 13-16. As in the Java program, a “Master” task combines
the results as the workers finish, but all of the concurrency details
are hidden from the programmer. Each call to compute on line 21
executes asynchronously in an instance of a Worker capsule; the
returned Number object is transparently replaced by a future for
the eventual result. The futures provide an implicit barrier; that is,
in the call to value on line 22, the execution of the run proce-
dure in master capsule blocks until the corresponding Worker has
finished computing its result.

The explicitly concurrent Java program has the applications’s
concerns tangled with the concurrency concerns, whereas the
Panini program abstracts away the details of concurrency. As Fig-
ure 1 shows, the performance of the Panini program is comparable
to that of the thread-based program. A more significant potential
benefit is that the Panini compiler can be employed to guard against
race conditions when parallelism is introduced into an application.

The Panini language and associated tools are made available
as an open source project under Mozilla Public License 1.1. The
source code and examples, as well as pre-built binaries, are avail-
able for download from http://www.paninij.org/.

19

http://www.paninij.org/

Java program with threads and synchronization to compute π
1 class Worker implements Runnable {

2 long num;

3 private final CountDownLatch doneSignal;

4 Worker(long num, CountDownLatch doneSignal) {
5 this .num = num;

6 this .doneSignal = doneSignal;

7 }

8 Number _circleCount = null; //Emulates return value of worker
9 Number getCircleCount() { return _circleCount; }

10 public void run() {
11 _circleCount = new Number(0);
12 for (long j = 0; j < num; j++) {
13 double x = Math.random();
14 double y = Math.random();
15 if ((x ∗ x + y ∗ y) < 1) _circleCount. incr () ;
16 }

17 doneSignal.countDown();

18 }
19 }
20 class Master {
21 void assign(long totalCount, int numWorkers) {

22 CountDownLatch l = new CountDownLatch(numWorkers);

23 Worker[] workers = new Worker[numWorkers];
24 for (int i = 0; i < numWorkers; ++i) {
25 workers[i] = new Worker(totalCount/numWorkers, l);

26 new Thread(workers[i]).start () ;

27 }

28 try {
29 l .await() ;
30 } catch (InterruptedException e) { /∗ Error recovery ∗/ }

31 Number[] results = new Number[numWorkers];
32 for (int i=0; i< numWorkers; i++)
33 results [i] = workers[i]. getCircleCount();
34 long total = 0;
35 for (Number result: results) total += result .value() ;
36 double pi = 4.0 ∗ total / totalCount;
37 }
38 }
39 public class Pi {
40 public static void main(String[] args) {
41 Master master = new Master();
42 master.assign(50000000,10);
43 }
44 }

Panini program to compute π
1 capsule Worker { // Capsule declaration
2 Number compute(int num) { // Capsule procedure
3 Number _circleCount = new Number(0);
4 for (int j = 0; j < num; j++) {
5 double x = Math.random();
6 double y = Math.random();
7 if ((x ∗ x + y ∗ y) < 1) _circleCount. incr () ;
8 }
9 return _circleCount;

10 }
11 }
12 capsule Master {
13 design {
14 Worker workers[5000000]; //Capsule arraydeclaration

16 }
17 void run(){
18 Number[] results = new Number[workers.length];
19 for (int i = 0; i < workers.length; i++)
20 results [i] = workers[i]. compute(50000000);
21 // Inter-capsule procedure

calls long total = 0;
22 for (Number result: results) total += result .value() ;

23 double pi = 4.0 ∗ total / 50000000;
24 }
25 } Performance results

Figure 1. Panini programs are shorter, get speedup, and don’t have 2 type of bugs: sequential inconsistencies and data races due to sharing.

3. Demonstration Description
We will present the key features of the Panini Language through
several examples. In particular, we will show a comparison of an
example with a traditional approach of using explicitly concurrent
language features, and the same example in Panini for contrast. We
will demonstrate installation of the Panini compiler, compilation,
and profiling process for Panini programs. The Panini compiler is
built on top of the standard OpenJDK Java compiler (javac) and is
fully backwards compatible with pure Java programs.

Acknowledgements This work has been supported in part by
the US National Science Foundation (NSF) under grants CCF-
11-17937, CCF-10-17334, and CCF-08-46059.

References
[1] H. Rajan, S. M. Kautz, E. Lin, S. Kabala, G. Upadhyaya, Y. Long,

R. Fernando, and L. Szakács. Capsule-oriented programming. Tech-
nical Report 13-01, Iowa State U., Computer Sc., 2013.

Biographies This demonstration will be carried out by Eric Lin
and Hridesh Rajan. Eric Lin is a graduate student in the depart-
ment of computer science at Iowa State University. He earned his
undergraduate degree in Computer Science from Iowa State Uni-
versity in 2012. Eric has worked on the frontend and the backend
of the OpenJDK-based Panini compiler, focusing on code transfor-
mation strategies and type-checking. Hridesh Rajan has extensive
experience in developing new languages. He developed the Panini
language. Prior to that, he developed the Boa language, a language
for data-mining large software repositories. He has also developed
the Ptolemy language, an event-based language for advanced sepa-
ration of concerns and the aspect-oriented language Eos. Rajan has
successfully given multiple tutorials and demonstrations on other
topics at AOSD’10, FSE’10, ECOOP’11, AOSD’11, and ASE’11.

Target Audience The target audience for this demonstration is in-
termediate level developers and researchers. Participants will need
a working knowledge of Java and object-oriented development. The
demonstration will provide any additional background material.

20

	Problem: Concurrent Programming is Hard
	Solution: Eliminate Concurrent Programming
	Demonstration Description

