
Workshop on Transitioning to MultiCore (TMC 2011)

Caitlin Sadowski Jaeheon Yi

University of California at Santa Cruz

{supertri, jaeheon}@cs.ucsc.edu

Abstract

Multicore programming is both prevalent and difficult. In-

dustry programmers deal with large amounts of legacy code

and are increasingly relying on multithreading to provide

scalability. For legacy systems, it may not be possible to

change this programming model. The Transitioning to Mul-

tiCore (TMC) workshop is focused on tools and systems

for parallel programming that are interoperable with legacy

code, that minimize the annotation burden for developers,

and match well with current industry practice. We solicit in-

dustry experience reports about working or unworkable ex-

amples of such tools or systems, as well as research reports.

Categories and Subject Descriptors D.1.3 [Programming

Techniques]: Concurrent Programming–Parallel Program-

ming; D.2.2 [Software Engineering]: Design Tools and

Techniques

General Terms Design, Reliability, Human Factors

Keywords Tools, Systems, Usability, Legacy Programs

1. Background

In the early 2000s, we hit a power wall; the energy out-

put of a chip with increased processor speed has become

untenable [1]. Today, all major chip manufacturers have

switched to producing computers that contain more than

one CPU [12]; parallel programming has rapidly moved

from a special-purpose technique to standard practice in

writing scalable programs. Taking advantage of parallel

processors often entails using concurrent software, where

multiple threads work simultaneously. However, concurrent

software suffers from concurrency-specific errors, such as

data races, atomicity violations, determinism violations, and

deadlocks [4, 8, 9]. Achieving parallel performance is also

difficult. In fact, in previous studies which compared parallel

Copyright is held by the author/owner(s).

SPLASH’11 Companion, October 22–27, 2011, Portland, Oregon, USA.

ACM 978-1-4503-0940-0/11/10.

programming models or techniques a large subset of the par-

ticipants in different groups did not successfully complete

a correct solution that exhibited any speedup (e.g. [5, 10]).

Furthermore, a large survey on current development prac-

tices found that a large portion of developers have to regu-

larly deal with multithreaded code [6].

2. Main Theme and Goals

It is clear from the above discussion that multicore program-

ming is both prevalent and difficult. To address that dif-

ficulty, numerous programming models and systems have

been proposed, including transactional memory [7, 11], revi-

sions [3], and type systems [2]. However, industry program-

mers face large amounts of legacy code, and so it may not

always be feasible to change the programming model.

The TMC workshop is focused on tools and systems

for parallel programming that are interoperable with legacy

code, that minimize the annotation burden for developers,

and match well with current industry practice. We solicit in-

dustry experience reports about working or unworkable ex-

amples of such tools or systems, as well as research reports.

The topics for these reports may include:

• Surveys or empirical studies focused at measuring the

current state of practice for multicore programming in

industry

• Field studies identifying barriers and benefits to using

existing tools

• Analysis tools focused on correctness, performance, or

understandability analysis of existing programs

• New programming models which are interoperable with

legacy multithreaded systems

We aim to bring together industry developers and re-

searchers who are interested in improving the current transi-

tion to multicore.

3. Participant Preparation

We accept shorter, two to four page experience reports fo-

cused on experiences with scalable systems used in industry,

or problems with existing systems. We also accept longer,

four to six page research reports focused on development

323



of new systems, tools, or ideas in the multicore space. Ad-

ditionally, we accept two page position papers focused on

proposals for improving existing systems or tools. Although

this is a small new workshop, we care about reviewers re-

turning high-quality paper reviews and have picked our pro-

gram committee accordingly.

4. Activities and Format

We plan to spend the morning on paper presentations. Each

presentation slot will be approximately 10-15 minutes long,

followed by a five minute question period.

We plan to start the afternoon with a panel presentation,

moderated by the workshop organizers, comprising a mix of

industry and academic panelists who can describe some of

the challenges experienced with transitioning to multicore.

The goal of this panel will be to highlight issues that may

not be obvious within the research community.

Afterwards, we will facilitate a group discussion about

what workshop participants feel are the largest issues raised

in the workshop, and any issues they feel are not adequately

addressed by current research literature. First we will break

into focus groups (containing approximately 4-5 people per

group) for about 30-45 minutes. These groups sessions will

serve as a networking event so that participants will ideally

make some new connections at the workshop. We aim to

have at least one industry representative in each group. Each

group will come together with 2-3 specific points for future

or ongoing research which we will collate on the projected

screen.

5. Organizers

Caitlin Sadowski (University of California at Santa Cruz)

Jaeheon Yi (University of California at Santa Cruz)

6. Program Committee

Michael Bond (Ohio State University)

Rachel Brill (IBM Haifa Research Lab)

Sebastian Burckhardt (Microsoft Research)

Joe Devietti (University of Washington)

Eitan Farchi (IBM Haifa Research Lab)

Benedict Gaster (AMD)

Ganesh Gopalakrishnan (University of Utah)

Shan Lu (University of Wisconsin - Madison)

Shankar Pasupathy (NetApp)

Neha Rungta (NASA Ames Research Center)

Koushik Sen (University of California, Berkeley)

Konstantin Serebryany (Google)

Stephen Toub (Microsoft, Parallel Computing Platform)

References

[1] K. Asanovic, R. Bodik, J. Demmel, T. Keaveny, K. Keutzer,

J. Kubiatowicz, N. Morgan, D. Patterson, K. Sen,

J. Wawrzynek, D. Wessel, and K. Yelick. A view of

the parallel computing landscape. Communications of the

ACM, 52(10):56–67, 2009.

[2] R. L. Bocchino, Jr., V. S. Adve, D. Dig, S. Adve, S. Heumann,

R. Komuravelli, J. Overbey, P. Simmons, H. Sung, and

M. Vakilian. A type and effect system for Deterministic Paral-

lel Java. Technical Report UIUCDCS-R-2009-3032, Depart-

ment of Computer Science, University of Illinois at Urbana-

Champaign, 2009.

[3] S. Burckhardt, A. Baldassion, and D. Leijen. Concurrent pro-

gramming with revisions and isolation types. In Symposium

on Object-Oriented Programming Systems, Languages, and

Applications (OOPSLA), 2010.

[4] S. Choi and E. Lewis. A study of common pitfalls in simple

multi-threaded programs. ACM SIGCSE Bulletin, 32(1):329,

2000.

[5] K. Ebcioglu, V. Sarkar, T. El-Ghazawi, J. Urbanic, and P. Cen-

ter. An experiment in measuring the productivity of three par-

allel programming languages. In Workshop on Productivity

and Performance in High-End Computing (P-PHEC), 2006.

[6] P. Godefroid and N. Nagappan. Concurrency at Microsoft: An

exploratory survey. In Workshop on Exploiting Concurrency

Efficiently and Correctly, 2008.

[7] J. R. Larus and R. Rajwar. Transactional Memory. Synthe-

sis Lectures on Computer Architecture. Morgan & Claypool

Publishers, 2006.

[8] E. A. Lee. The problem with threads. Computer, 39(5):33–42,

2006.

[9] S. Lu, S. Park, E. Seo, and Y. Zhou. Learning from mistakes:

a comprehensive study on real world concurrency bug charac-

teristics. SIGPLAN Notices, 43(3):329–339, 2008.

[10] M. Luff. Empirically investigating parallel programming

paradigms: A null result. In Workshop on Evaluation and

Usability of Programming Languages and Tools (PLATEAU),

2009.

[11] C. Rossbach, O. Hofmann, and E. Witchel. Is transactional

programming actually easier? In Symposium on Principles

and Practice of Parallel Programming (PPoPP), 2010.

[12] H. Sutter. The free lunch is over: A fundamental turn toward

concurrency in software. Dr. Dobbs Journal, 30(3):16–20,

2005.

324




