
An Aspect-Oriented Infrastructure for a Typed,
Stack-based, Intermediate Assembly Language

Douglas R. Dechow
Dearborn 311

Oregon State University
Corvallis, OR 97331

541-737-4145

dechow@cs.orst.edu

ABSTRACT
While traditional, one-dimensional approaches to the problem of
separation of concerns have been adequate for current software
development, they are often brittle and resistant to evolutionary
change. Aspects and aspect-orientation offer a controllable,
modular mechanism for describing the separation of concerns that
are orthogonal to the object model that is the primary
developmental focus of a wide range of software applications.
This dissertation research project involves the creation of an
aspect-oriented infrastructure to support a variety of software
development tools. Use of this infrastructure is demonstrated in
domain areas such as ecological modeling software and web
development in order to establish aspect-orientation as a feasible
and straightforward solution to the problem of separation of
concerns in object-oriented software systems. In the process of
establishing the viability of the aspect-oriented solution, this
dissertation investigates several new directions in aspect-
orientation: aspects in system software, language independent
aspects, aspect integration techniques, and opportunities for
aspect reuse. In comparing the two-dimensional, aspect-oriented
approach to the traditional, one-dimensional approach, the
assertion of this research is that a two-dimensional approach
offers an inherently more flexible software system while
maintaining the advantages of modularity and code reuse that
have long been ascribed to object-oriented systems.

simultaneously making the features available to provide the
necessary feedback.

ModCom is a component-based simulation tool for
distributed ecological modeling [5]. ModCom is an object-
oriented application framework (C++), and it is built on the
Microsoft Component Object Model (COM). Although a visual
development environment for ModCom is under development,
current users of the framework must write their simulations in
C++ or Visual Basic (VB developers are, potentially, a large part
of ModCom's user base).

An aspect-oriented infrastructure to interoperate with
ModCom is currently under development. One target of the AO
infrastructure is the Rotor implementation of the .NET Common
Language Runtime (CLR).

Most aspect-weavers operate at compile time
(AspectJ)[2] or runtime (AOP/ST, AspectS) [1][3]. The aspect
weaver that is being developed for ModCom will operate in the
region between the two.

In the strictest sense, the weaver will be a compile time
weaver. However, by making use of multiple translation model
and the runtime facilities (specifically the class loader) of the
CLR, it will appear to the user as if the weaving of aspects is
occurring at runtime. For the purposes of this research, this
intermediate time frame will be referred to as weave-time.

Keywords: Separation of concerns, common intermediate
language (CIL), preprocessors, aspects, aspect-oriented
programming, aspect weaver, compile-time, runtime, weave-time,
components, ecological modeling.

1. Rationale
A distinct problem associated with introducing a new software
simulation system to the world of ecological modeling is that
many would-be users are not proficient programmers.
Mechanisms such as tracing and logging can be used to provide
feedback to model developers. Additionally, the ability to monitor
and evaluate the state variables as the simulation evolves would
be useful. However, such mechanisms are not salient features of
the ecological model itself. As such, they can be seen as
orthogonal to the model and a potential source of tangled code.
Using aspect-oriented approaches to automate the control of these
concerns can remove this burden from the modeler while

Copyright is held by the author/owner(s).
OOPSLA "02, November 4-8, 2002, Seattle, Washington, USA.
ACM 1-58113-626-9/02/0011.

2. Objectives
The goal of this project is to design and implement an aspect-
oriented infrastructure that interoperates with the ModCom
ecological simulation tool. Presently, the only way for a model
developer to obtain feedback while creating a simulation is via the
tried and true method of littering their source code with "print"
statements.

Instead of forcing model developers to tangle their
model's source code in an ad-hoc fashion, the aspect-oriented
infrastructure can be used to instrument a simulation in a
controlled manner. Separating the feedback/instrumentation
concern from the model concern will allow inexperienced
programmers to focus on building simulations.

Visualization is another area of ModCom that is
amenable to treatment via the aspect-oriented infrastructure.
Currently, visualization in ModCom is handled by COM graphing
and charting components.

Additionally, the project will offer opportunities to
evaluate potential aspect reuse techniques in the form of the

tracing and logging aspect libraries. Given the inherent multi-
language support that is present in the CLR, the development of
multi-language aspect libraries will be examined.

Initially, the needs of the ModCom user base require
that the O0 CLR languages-42#, VB, VC++--will be targeted.
Support for the non-O0 CLR languages will be investigated as
the project moves forward.

3. Approach
The core of an aspect-oriented infrastructure rests upon the
system's ability to accomplish three tasks: "a join point model, a
means of identifying join points, and a means of affecting
implementation at join points.'[4] The three key features of the
research project that provide this functionality are outlined below.

3.1 Aspect weaver
The aspect weaver will be a source-to-source preprocessor
designed to manipulate the Common Intermediate Language
(CIL) of the .NET CLR. In the final paragraph of the rationale
section, it was mentioned that the CLR supports a multiple
translation model. The high-level language compilers of the CLR
all emit CIL. This is the first compilation/translation step. Next,
the CIL is compiled into native machine code by the CLR's JIT
compiler. Weave-time is the time frame that exists between the
translation of a high-level language to CIL and the secondary JIT
compilation of the CIL into machine code. In the proposed
system, weave-time takes place under the direction of the user.

3.2 Aspect Libraries
An integral part of this project is identifying and developing the
aspects themselves. Initially, this effort will focus on the creation
of aspects that can aid the users of ModCom in developing
simulations. Eventually, aspect libraries for tracing and logging
will be developed. The use of these aspects in other contexts will
be investigated.

3.3 Aspect Integrator
A visual aspect integration tool will be a modeler's primary
means of interacting with the infrastructure. The tool will allow
the users to select join points in their models and aspects from the
libraries. The visual tool will be designed so that the user will
have no explicit knowledge that they are weaving aspects into the
model.

4. ACKNOWLEDGMENTS
I would like to thank Dr. Tim Budd for serving as my advisor for
this dissertation. I would also like to thank Dr. Budd and Dr. John
Bolte, a professor in the Bioresource Engineering Department at
Oregon StateUniversity, for supporting this work under an EPA
grant entitled "Developing Object-based Simulation Tools for
Distributed Modular Ecological Modeling".

5. REFERENCES
[1] K. Boellert. The AOP/ST homepage, http://www.theoinf.tu-

ihnenau.de/-kaib/aop/.

[2] The AspectJ homepage, http://www.aspectj.org.

[3] R. Hirschfeld. AspectS--AOP with Squeak. OOPSLA 2001
Workshop on Advanced Separation of Concerns in Object-
Oriented Systems. 2001.

[4] (3. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm,
and W.(3. (3riswold. (3etting Started with AspectJ.
Communications of the A CM, 44(10):59-65, October 2001.

[5] The ModCom homepage,
http://biosys.bre.orst.edu/ModCom/.

