
Improving Live Debugging of Concurrent Threads

Max Leske
University of Bern, Switzerland

maxleske@gmail.com

Abstract
Contemporary live debuggers do not display the complete
call stack history for concurrent threads. Hence, developers
have less information at their disposal when debugging con-
current threads than when debugging a single threaded, se-
quential program. We solve the problem of incomplete thread
history by creating a debugger that operates on a virtual call
stack comprised of multiple threads. With live debuggers dis-
playing at least the equivalent information for both single
threaded, sequential programs and concurrent threads, devel-
opers can focus on the hard parts of concurrency issues.

Categories and Subject Descriptors D.2.5 [Software Engi-
neering]: Testing and Debugging—Debugging aids

Keywords Debugging, Concurrency, Threads, Domain-
specific Tools

1. Research Problem and Motivation
We use the term child to describe a thread that has been
created by another thread, which we call the child’s parent.
Every parent thread is itself a child of another thread, so
that threads form a hierarchy (the thread at the root of
the hierarchy has no parent). The history of a child thread
includes all activation records of all its parent threads that
led to the creation of the child.

1 void createThread() {

2 this.thread = Thread.new();

3 this.thread.startIn("runThread", this);

4 }

5 Object run() {

6 this.createThread();

7 this.thread.join();

8 return this.readThreadResult()

9 }

#join

#runThread
#start:in:

#run

parent child

#runThread
#start:in:

child with
complete history

#run
#createThread

Figure 1. The call stack on the right shows the call stack of
the child as it would appear in a live debugger if the child and
its parent were executed as a single sequential program. Note
that the frame of createThread() is accessible in neither the
parent nor the child.

The pseudo code on lines 1 through 9 shows how a parent
thread creates a child and waits for it to exit. Figure 1 depicts
the call stacks of the two threads at the point where the parent
is waiting for the child to exit and the child is executing
the method runThread(). The rightmost call stack shows the
child thread as it would appear with the complete history.
With the usual approach to threading, the activation record
of createThread() is lost from the child’s history, as the
parent has already returned from it and so its memory has
been reclaimed.

When the information contained in the missing activation
records is (or could be) relevant to the issue a developer is
investigating, she has to find other ways to gain access to it,
in addition to the actual debugging work. Concurrency issues
are hard enough to debug without burdening developers with
an unnecessary hunt for information. We propose to solve
the problem of missing thread history by creating a virtual
call stack comprised of the child thread and its parents.

2. Background and Related Work
The POSIX standard [6] defines threads such that the activa-
tion records of the parent thread will never be executed by
the child. From the point of implementation, the parent’s acti-
vation records are therefore independent of the child and the
memory occupied by them can be reclaimed when the parent
returns from them. With respect to thread history, however,
the activation records of the parent that belong to the child’s
history should be retained until the child has exited.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.

SPLASH Companion’16, October 30 – November 4, 2016, Amsterdam,
Netherlands
ACM. 978-1-4503-4437-1/16/10...$15.00
http://dx.doi.org/10.1145/2984043.2998544

61

garbage collection time average median max
included 130.211 130 167
excluded 57.127 57 71

Table 1. Benchmark for copying a call stack of 100 000
frames in Pharo. The times are given in milliseconds and
shown for bare computation time and computation including
time needed for intermittent garbage collection.

Only little research focuses on live debuggers. Zhang et
al., for their Directive-based lazy futures implementation in
Java, proposed a serialised view of the events of both the
child thread and its parent [7]. The Chrome development
tools1 and the Scala asynchronous debugger2 use a simil-
iar idea to improve debugging of promises, events, asyn-
chronous network requests, and asynchronous messages sent
between actors.

3. Approach and Uniqueness
We propose to address the problem of missing thread history
by creating a virtual call stack, comprised of the call stacks
of the child thread and the activation records of its parents
(as depicted in Figure 1). This approach requires that a parent
thread create a copy of its call stack when spawning a new
child. In addition, the copy of the parent’s call stack must
be bound to the child. The virtual call stack can then be
constructed by traversing the thread hierarchy from the child
towards the root, using the binding from each thread to its
parent.

A survey of current live debuggers for a wide range of
programming languages showed that only the Chrome de-
velopment tools and the Scala asynchronous debugger pro-
vide functionality comparable to what we propose [3]. The
Chrome development tools can show the history for promises,
asynchronous network requests, and events, the Scala asyn-
chronous debugger for promises and asynchronous messages
sent between actors. Neither debugger applies the approach
to threads (the Chrome development tools are used to debug
JavaScript, which has no thread model). In contrast to the so-
lutions used by those debuggers, our approach is generic and
solves the problem of missing history for promises as well
as for asynchronous messages, events, and asynchronous net-
work requests. In a related work [4] we proved the technical
feasibility by presenting an implementation of a virtual call
stack for promises and remotely executed promises.

4. Results and Contributions
We created a prototype implementation of a virtual call stack
and an accompanying debugger in Pharo [1] to demonstrate
the technical feasability. An implementation of promises

1 https://developer.chrome.com/devtools
2 http://scala-ide.org/docs/current-user-doc/features/

async-debugger/index.html

based on the prototype shows that our model solves the
problem of missing history for other concepts as well. Con-
cepts solvable as special cases include promises, events, asyn-
chronous messages between actors, and asynchronous net-
work requests.

Table 1 shows the result of a benchmark in which we cre-
ated copies of call stacks in Pharo with a depth of 100 000
frames. Given that call stacks typically are less than 1000
frames deep [5; 2], the overhead for creating call stack copies
can safely be ignored. The additional memory required for
the copied activiation records, with an upper bound of 512 B
per activation record in Pharo, is also neglectable. However,
the impact on memory requirements, due to memory that
is prevented from being reclaimed, warrants further investi-
gation. As the activation record copies reference the same
object graphs as the original activation records, the memory
of those object graphs can only be reclaimed once the child
thread has exited.

We have shown that it is feasible to use a virtual call stack
in order to make the complete call stack history of threads
available in live debuggers. The main focus of future work
lies on investigating how the memory consumption can be
reduced, for example, by limiting the history that is visible in
the debugger or by adding virtual machine support. The user
interface of the debugger could also be improved, e.g., by dis-
playing visual cues to distinguish different threads. Improv-
ing the prototype implementation and the user experience in
the debugger is especially important for a future integration
of this work into the Pharo IDE.

References
[1] A. Black, S. Ducasse, O. Nierstrasz, D. Pollet, D. Cassou, and

M. Denker. Pharo by Example. Square Bracket Associates,
2009.

[2] D. R. Ditzel and H. R. McLellan. Register allocation for free:
The c machine stack cache. SIGPLAN Not., 17(4):48–56, Mar.
1982.

[3] M. Leske. Improving live debugging of concurrent threads.
Masters thesis, University of Bern, Aug. 2016. URL http:

//scg.unibe.ch/archive/masters/Lesk16a.pdf.

[4] M. Leske, A. Chiş, and O. Nierstrasz. A promising approach for
debugging remote promises. In IWST’ 16, page to appear, 2016.
URL http://scg.unibe.ch/archive/masters/Lesk16b.

pdf.

[5] K. Srinivas and H. Srinivasan. Summarizing application perfor-
mance from a components perspective. SIGSOFT Softw. Eng.
Notes, 30(5):136–145, Sept. 2005.

[6] The Open Group. International standard - information tech-
nology portable operating system interface (posix)base specifi-
cations, issue 7. ISO/IEC/IEEE 9945:2009(E), pages 1–3880,
Sept. 2009.

[7] L. Zhang, C. Krintz, and P. Nagpurkar. Supporting exception
handling for futures in Java. In PPPJ ’07, pages 175–184, 2007.

62

https://developer.chrome.com/devtools
http://scala-ide.org/docs/current-user-doc/features/async-debugger/index.html
http://scala-ide.org/docs/current-user-doc/features/async-debugger/index.html
http://scg.unibe.ch/archive/masters/Lesk16a.pdf
http://scg.unibe.ch/archive/masters/Lesk16a.pdf
http://scg.unibe.ch/archive/masters/Lesk16b.pdf
http://scg.unibe.ch/archive/masters/Lesk16b.pdf

	Research Problem and Motivation
	Background and Related Work
	Approach and Uniqueness
	Results and Contributions

