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Abstract
In this paper we introduce a new method for pessimistically
implementing composable, nestable atomic statements. Our
mechanism, called shelters, is inspired by the synchroniza-
tion strategy used in the Jade programming language. Unlike
previous lock-based pessimistic approaches, our mechanism
does not require a whole-program analysis that computes a
global lock order. Further, this mechanism frees us to imple-
ment several optimizations, impossible with automatically
inserted locks, that are necessary for scaling on recent multi-
core systems. Additionally we show how our basic mech-
anism can be extended to support both open- and closed-
nesting of atomic statements, something that, to our knowl-
edge, has not yet been implemented fully-pessimistically in
this context. Unlike optimistic, transactional-memory-based
approaches, programmers using our mechanism do not have
to write compensating actions for open-nesting, or worry
about the possibly awkward semantics and performance im-
pact of aborted transactions.

Similar to systems using locks, our implementation re-
quires programmers to annotate the types of objects with the
shelters that protect them, and indicate the sections of code
to be executed atomically with atomic statements. A static
analysis then determines from which shelters protection is
needed for the atomic statements to run atomically. We have
implemented shelter-based atomic statements for C, and ap-
plied our implementation to 12 benchmarks totaling over
200k lines of code including the STAMP benchmark suite,
and the sqlite database system. Our implementation’s perfor-
mance is competitive with explicit locking, Autolocker, and
a mature software transactional memory implementation.

Categories and Subject Descriptors D.1.3 [Programming
Techniques]: Concurrent Programming; D.3.3 [Program-
ming Languages]: Language Constructs and Features
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1. Introduction
Given recent advances in hardware, writing multithreaded
programs that manipulate shared state is an increasingly
important task. However, it is also very challenging, even
for experienced programmers. Though explicit locking can
yield highly efficient code, its use is prone to errors such as
data-races and deadlocks. Indeed, as of June 2011, according
to their bugzilla databases, there were 38 known, outstanding
race conditions in the Linux kernel, and 136 in Firefox; and
there were 39 known, outstanding deadlocks in the Linux
kernel, and 107 in Firefox [22, 27].

Atomic statements are a convenient language construct
for controlling access to shared state in multithreaded pro-
grams. They ensure that the statements within them execute
atomically. That is, the effects of operations in atomic state-
ments become visible to other threads only all at once when
execution leaves the atomic statement, much like a database
transaction. Because they simply declare what to run atom-
ically, rather than fully specifying how to ensure atomicity,
user studies have shown that the use of atomic statements
is less error prone than explicit locking [34]. In particular,
atomic statements make it much easier to compose indepen-
dently written code as there is no confusion created by hav-
ing different locking disciplines in different modules.

In this paper we introduce an implementation of atomic
statements suitable for use in systems-level C code. Our
mechanism, called shelters, is inspired by the synchroniza-
tion strategy used in the Jade programming language [33].
Our approach is pessimistic, able to support multiple seman-
tics for nested atomic statements, allows atomic statements
to coexist with explicit locks, and does not require whole-
program analysis. These benefits come at the cost of only a
small number of simple annotations on types and functions.
Further, our implementation achieves performance competi-
tive with explicit locking on benchmarks and a few applica-
tions, including the sqlite database system.

Existing optimistic and pessimistic systems have signif-
icant drawbacks. STM systems execute atomic statements
optimistically, at least in part. Atomic sections are allowed
to execute concurrently, but when two or more threads make

865



conflicting accesses, transactions must be aborted, rolled-
back, and retried. Some TM implementations achieve good
performance. However, if transactions are large, or if data
is highly contended, conflicts may be frequent and expen-
sive. Furthermore, roll-back may not be possible if, for ex-
ample, a thread performed I/O during a failed transaction.
STM systems support multiple semantics for nested trans-
actions: closed-nesting, in which the effects of nested trans-
actions become visible only at the end of the outer transac-
tion; and open-nesting, in which the effects of nested trans-
actions become visible at their respective ends. However, in
order to use open-nesting, a programmer may have to write
compensating actions, and reason directly about the seman-
tics of roll-back [26]. We view this requirement as overly-
burdensome.

These considerations lead us to prefer a pessimistic ap-
proach. However, previous pessimistic approaches have re-
lied on whole-program analysis for determining a global
lock order [25], or for inferring fine-grained lock hierar-
chies [13, 19]. But whole-program analysis is often prob-
lematic in practice. First, it is often expensive for large pro-
grams. Second, the source code for the whole program may
not always be available. Furthermore, previous pessimistic,
lock-based approaches have only supported closed-nesting
semantics.

Our approach avoids these problems, thereby making it
suitable for systems-level C programs. In Sections 2 and 3
we give a detailed description of our design, which we for-
malize and prove correct in Section 4. Further, we have im-
plemented compiler transformations and a runtime for the
C language, described in Section 5, and applied our im-
plementation to 12 programs including the STAMP bench-
mark suite [11], and a few representative applications, in-
cluding the sqlite database system, totaling over 200k lines
of code. In Section 6, we present a thorough comparison of
the runtime and programming cost of shelter-based atomic
statements with the Intel STM implementation [21] and Au-
tolocker [25] for the above mentioned benchmarks.

In summary, we make the following contributions:
• We present the design and implementation of shelters, a

pessimistic method for implementing atomic statements,
including straightforward semantics for both open- and
closed-nesting, and interaction with explicit locking, that
requires no whole-program analysis.

• We formalize our design to show that shelters enforce
useful concurrency guarantees and are deadlock-free.

• We present the results or our experiments comparing
the runtime performance and annotation overheads of
shelter-based atomic statements with explicit locking,
Autolocker, and an STM system. In summary, both our
annotation burden and our performance burden are com-
petitive with other systems. We also show that acquiring
all locks upon entering an atomic statement, an obvious

alternative to our system, has worse performance than
shelters.

2. Overview
In this section we give an overview of what shelters are,
how they work, and our extensions to C. Then in Section 3,
using a few examples, we explain in detail the features of
our system.

2.1 Extensions to C
We add to the C language a few basic constructs: atomic
statements, shelters, a type annotation, and a function anno-
tation.

Atomic statements in our extension have the usual seman-
tics: the effects of a “closed” atomic statement on shared ob-
jects, including those in any nested atomic statements, do
not become visible to other threads until the atomic state-
ment is finished. We also provide “open” atomic statements,
in which the effects of any nested atomic statements on
shared objects become visible at their respective ends. In our
system, the programmer identifies what constitutes a single
shared object through a combination of shelters and type an-
notations.

Shelters, like locks, are first-class objects, and can be de-
clared as variables, structure fields, and function arguments.
Further, as in Autolocker [25], the programmer specifies
the shelter that protects a location by writing a type anno-
tation. Thus, what constitutes an object for concurrency-
control purposes are those locations in memory whose C
types, at the static source-code level, are annotated with a
sheltered by(s) qualifier using the same shelter s. Shel-
ters, then, are simply a mechanism for storing all of the
concurrency-control metadata in one place for a collection
of locations that may not be accessed concurrently. From
here on, we simply refer to such a collection of locations
as a single object identified by a single shelter.

Since our approach is fully pessimistic, at the beginning
of an atomic statement, we must know what objects may be
touched within it. We discover these objects by performing
a backwards dataflow analysis over atomic statements. For
the implementation of open atomic statements, the analysis
also notes in which nested atomic statement an object is
accessed. Our compiler transforms a program such that at
the beginning of an atomic statement, the collected shelters
are passed to functions of our runtime, which are described
below.

Unlike previous pessimistic approaches, one of our de-
sign gaols is to avoid whole-program analysis. Since we
must know what objects may be accessed in an atomic state-
ment we require the programmer to write function annota-
tions describing the objects a function will access. These
take the form of needs shelter() annotations on func-
tion types. Our implementation performs a per-module call-
graph analysis so that programmers must only annotate the
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module boundaries and function pointers of those functions
that may be called with in an atomic statement. Further, at
compile time, we provide warnings and errors as appropri-
ate when needs shelters() annotations are missing. We
describe the conditions under which warnings and errors are
emitted in Section 3.

The programmer is responsible for placing the shel-
tered by(s) annotation on shared objects protected by shel-
ter s. The programmer is also responsible for using the
atomic statement with the correct semantics for his situation.
Though our implementation provides errors if annotated ob-
jects are accessed outside of atomic statements, if type anno-
tations are missing, then data-races, but not deadlocks, may
result. Through a straightforward combination with our ear-
lier sharing-checker work [5], we can provide compile-time
and run-time errors for these missing-annotation mistakes.

Next, we give a brief description of how the semantics of
our atomic statements are implemented by our runtime.

2.2 Runtime Semantics
Shelters are inspired by Jade in the sense that both are
based on timestamp-based concurrency control as devel-
oped in the database community [8]. In databases with ba-
sic timestamp-based concurrency control, each transaction
receives a timestamp when it begins. Each object in the
database also has an associated timestamp that records the
timestamp of the transaction that most recently accessed it.
The timestamps are needed to implement optimistic concur-
rency control—the decision to abort a transaction (and main-
tain consistency) is made by comparing transaction times-
tamps with the object timestamps. If a transaction would
read an object that was written by a newer transaction, or
overwrite a value read or written by a newer transaction, then
it must be aborted, rolled-back, and restarted. This approach
is akin to how transactional memory systems operate.

The approach we use with shelters—and the approach
used in Jade—is more similar to strict timestamp-based con-
currency control, in which transactions that began later must
block before accessing objects that may be accessed by
transactions that began earlier, and must remain blocked un-
til these other transactions finish. As one might expect, be-
cause transactions may block, additional logic is needed in
the transaction manager to avoid deadlock. So, in essence,
shelters solve the problem of using strict timestamp-based
concurrency control for deadlock-free, systems-level pro-
gramming.

In our system and Jade, the timestamp takes the form of a
distinct value obtained by a thread from a strictly increasing
thread-safe counter at the beginning of each atomic state-
ment. The implementation details of this counter are dis-
cussed in Section 5.

At the beginning of an atomic statement, a thread atom-
ically “registers” its timestamp with all of the shelters pro-
tecting the objects it will touch in the atomic statement, as
found by the dataflow analysis described above. This regis-

tration operation is the function shelter register() in our
runtime (register() in our formalism). Atomically, in the reg-
ister operation, a thread gets a timestamp and records its
identifier and timestamp in each of the shelters it is regis-
tering for.

Then, to maintain atomicity, threads block before access-
ing an object unless they have the smallest timestamp among
all threads recorded by the shelter that protects the object.
This timestamp check is the function shelter wait(s) in
our runtime, and is captured by the transition semantics
in our formalism. Here a thread examines all of the other
threads registered for the shelter to see if it has the smallest
timestamp.

Since threads in our system may block in an atomic state-
ment, we must ensure that deadlock is not possible. In the
presence of only closed atomic statements, this is straight-
forward. A timestamp is only acquired for the outermost
atomic statement, and if two threads will touch the same ob-
jects in concurrently running atomic statements, the thread
with the larger timestamp blocks right before accessing the
first object it would touch that is shared by both atomic state-
ments, while the thread with the smaller timestamp runs its
atomic statement to completion. Thus, the apparent serial or-
der of the atomic statements is given by the timestamps of
the threads that run them. In other words, a thread that be-
gins an atomic statement earlier never sees the effects from
an atomic statement that started later.

In the presence of open atomic statements, the situation is
more complicated. In particular, since threads must acquire
a timestamp for each nested atomic statement, it is possible
that waits-for cycles will be created when threads registered
for the same shelters have intersecting ranges of timestamps.
To avoid this situation, we require threads to block in the
register operation if the registration would create a cycle.
This cycle avoidance relies on knowing for which shelters
a thread will attempt to register in the future. Therefore, be-
fore registering for a shelter, a thread must declare its intent
to do so, which we call a reservation. This approach is simi-
lar to the “Resource-Allocation-Graph” deadlock-avoidance
algorithm as described by Silberschatz, et al. [37]. The reser-
vation is carried out by the shelter reserve() function of
our runtime, (reserve() in our formalism). In the reserve op-
eration, a thread adds the indicated shelters to its reservation
set.

If a thread will never again register for a shelter within the
scope of the current outermost atomic statement, then it no
longer needs the reservation. The deletion of the reservation
is performed by the shelter unreserve() function of our
runtime. In the unreserve operation, a thread removes the
indicated shelters from its reservation set. This operation is
also performed by the reserve() operation in our formalism.

The precise conditions under which a waits-for cycle may
exist in our system are given in the formalism by the im-
pedes relation between two threads, described informally in
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Section 3 and formally in Section 4. Which threads impede
each other depends on which shelters they are registered for,
and which shelters they have reserved. We detect the poten-
tial for deadlock by looking for cycles in a graph in which
threads are nodes, and the directed edges are given by this
relation.

In open-nesting, a thread completes an atomic statement
by unregistering only from the shelters for the immediately
enclosing atomic statement. In closed-nesting, a thread com-
pletes an atomic statement by unregistering from all shel-
ters when exiting only the outermost atomic statement. This
unregistration is carried out by the shelter register pop()
function of our runtime (pop() in our formalism). It causes
the relevant shelters to forget about the calling thread, which
allows previously blocked threads with larger timestamps to
continue.

Now that we have given an overview of our system’s ex-
tensions to C and the runtime library for these extensions, we
briefly describe two features that are necessary for handling
real code.

In our extensions to C, atomic statements are translated
into calls into the runtime library described briefly above.
This translation is guided by a static analysis that discov-
ers what shelters must be registered for at the start of each
atomic statement. Any static analysis will be imprecise
somewhere. Where ours is imprecise, we automatically in-
troduce a hierarchy of shelters, in which shelters higher in
the hierarchy subsume lower-level shelters. Our hierarchy
is type-based, and we use a two-level hierarchy in which
shelters in the upper level subsume shelters that are fields
of structures. An example of this situation is described in
Section 3.

Our compiler transformations detect where the shelter-
hierarchy may be needed and add calls to set it up when the
program begins, as well as to add new shelters when they are
created dynamically. All a programmer must do is declare
the “leaf” shelters. If the static analysis is imprecise, a thread
will register directly for one of these ancestor shelters. Then,
in the shelter wait(s) function, a thread must wait not only
when a thread with a smaller timestamp is registered for s,
but also when a thread with a smaller timestamp is registered
for a descendant or ancestor of s.

Finally, shelters may coexist with explicit locking. In or-
der to avoid deadlock, our runtime must be informed of
the existence of any explicit locks that may be used within
atomic statements, in addition to their runtime state. To
achieve this, we introduce “shadow” shelters, which capture
the state of explicit locks for use in our deadlock avoidance
algorithm.

3. Examples
In this section we explain each of the features described in
Section 2 using examples. In the course of explaining these

1 typedef struct {

2 int sheltered by(s) id;

3 float sheltered by(s) balance;

4 shelter t s;

5 } account t;

6

7 needs shelters(a->s)

8 void deposit(account t *a, float d) {

9 a->balance += d; // shelter wait(a->s);

10 }

11

12 needs shelters(a->s)

13 void withdraw(account t *a, float w) {

14 a->balance -= w; // shelter wait(a->s);

15 }

16

17 needs shelters(to->s, from->s)

18 void transfer(account t *to, account t *from,

19 float amount) {

20 atomic {

21 //shelter reserve((W,to->s), (W,from->s))

22 //shelter register((W,to->s), (W,from->s));

23 //shelter unreserve((W,to->s), (W,from->s));

24 withdraw(from, amount);

25 deposit(to, amount);

26 } //shelter register pop()

27 }

Figure 1. Code using atomic statements for the atomic
transfer of funds between two accounts. Statements inserted
by the shelters compiled are in comments.

examples, we also give more detail about the operation of
our system.

3.1 Example
In this example we show how shelter-based atomic state-
ments avoid the pitfalls of explicit locking while achieving
the convenience of atomic statements for the example of the
atomic transfer of funds between two bank accounts.

Consider the type and function declarations in Figure 1.
The account t structure type contains a balance field, and
an id field. The structure also contains a shelter t field s.
In our design, shelters, like locks, are first class objects, and
can be declared as variables, structure fields, and function
arguments. The types of the balance and id fields are anno-
tated with sheltered by(s). This indicates that concurrent
access to these structure fields is mediated by the shelter s in
the same structure.

In the transfer function an atomic block indicates that
the withdraw from the from account and the deposit to the
to account happen atomically. That is, no other thread will
see some intermediate inconsistent state.

The beginning of the atomic statement in the transfer
function is translated into the shelter register() call on
Line 22. Here a thread registers for shelters to->s and from-
>s, which are indicated by the results of the static analysis.
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In this call, W indicates that the shelters are needed for write
access. The calls to reserve (and unreserve) shelters needed
to support open nesting of atomic sections are discussed
further in Section 3.3.

Before accessing a sheltered object, a thread must wait
unless it is the thread registered for the shelter with the
smallest timestamp. Therefore, where the program in our
example accesses objects with types annotated with shel-
tered by(s), calls to shelter wait(s) are added that cause
the calling thread to wait until it is the thread with the small-
est timestamp on s. These calls appear for the accesses to the
balance field of account structures on Lines 9 and 14.

When a thread exits an atomic statement, it unregisters
itself from the shelters associated with that atomic statement.
Accordingly, we add a call to shelter register pop() on
Line 26, which unregisters the calling thread from shelters
to->s and from->s.

The deposit and withdraw functions adjust the balance
of an account. They must be annotated as needs shelter(a-
>s) because they access fields of a that have been annotated
as sheltered by(s). Additionally, the transfer function
must be annotated with needs shelters(to->s,from->s) if
it is ever going to be called from within an atomic statement
because it calls functions that access data protected by those
shelters.

Whether an error or a warning is emitted for missing
needs shelters() annotations depends on where a function
is defined and called. If a function may be called within an
atomic statement, lacks the correct annotation, is called in
the same module it is defined in, and our system cannot
deduce the annotation automatically (for example, when a
shelter is the result of a function call), then an error is emit-
ted. However if the called function is defined in a different
module, then we infer that no shelters are required by the
function, but emit a warning asking for an annotation in the
header file. We found this arrangement to be the most expe-
dient in converting our benchmarks because very few library
calls touch sheltered objects.

Now, consider that one thread calls transfer(A, B,
0.10), and a second thread calls transfer(B, A, 0.10)
at the same time. If the example in Figure 1 were written
with explicit locking, care would have to be taken when
implementing or calling the transfer function in order to
avoid deadlock. With shelter-based atomic statements, how-
ever, deadlock is avoided automatically because the two
threads will have distinct timestamps, one smaller than the
other. If two threads are registered for the same shelter s,
and both arrive at a shelter wait(s) call, the thread with
the smaller timestamp proceeds while the thread with the
larger timestamp must wait until the first thread calls shel-
ter register pop().

In the examples that follow, we show how this basic
mechanism is extended to support both open- and closed-
nesting of atomic statements, something that, to our knowl-

edge, has not yet been implemented fully-pessimistically. Fi-
nally, we show how our mechanism can coexist with soft-
ware using other synchronization mechanisms such as file
locking. First, though, we explain how our design uses the
shelter hierarchy to cope with imprecision in our static anal-
ysis.

3.2 Shelter Hierarchy
Consider the following alternate version of the transfer
function from the example:

void idTransfer(int toId, int fromId, float a) {

atomic {

account t *to = accountLookup(toId);

account t *from = accountLookup(fromId);

withdraw(from, a);

deposit(to, a);

} }

In this example the function accountLookup takes the ac-
count ID, looks up the account t structure in some data
structure implementing a map, and returns a pointer to it.
It might be preferable to write the function like this in case,
for example, accounts may be deleted from the system. De-
pending on how the map data structure is implemented, it
may not be possible for a static analysis to determine exactly
what shelters are needed at the beginning of the atomic state-
ment. In this situation, a thread registers for a coarser grained
shelter protecting all account t structures, which subsumes
the shelters in the individual account t structures. We call
these coarser-grained shelters type-shelters, and will refer to
particular type-shelters as T.s, where T is the structure type
name, and s is the shelter field, for example account t.s.
In our implementation they are only needed to subsume the
shelters that are fields of structure types.1

Our system transforms programs such that calls to shel-
ter wait() are always made on leaf shelters. A thread must
then examine each ancestor of this shelter to determine
whether or not it must wait. For example, suppose thread T1
is registered for a shelter protecting a particular account t
structure, a->s, and has timestamp 3. Further suppose that
thread T2 is in the atomic statement in the alternate trans-
fer implementation, and is registered directly for the ances-
tor of a->s, account t.s, with timestamp 2. Even if T1 is
the thread with the smallest timestamp registered for shelter
a->s, it must wait because T2 is registered with a smaller
timestamp for account t.s, an ancestor of a->s. On the
other hand, if T2 had only been registered for the shelter
for another account t structure, say b->s, then both threads
would be able to proceed.

1 The precision of the static analysis will affect the granularity of the hier-
archy. An analysis that goes beyond our type-based aliasing assumptions
will probably be finer-grained than the two-level hierarchy described here,
and may achieve better performance at the cost of a whole-program pointer
analysis. Our runtime implementation is able to support finer-grained hier-
archies, but they are not generated by our static analysis.
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3.3 Open Atomic Statements
Now consider a function that processes a list of transfers.
The list of transfers is shared among threads, but a thread
processing a list of transfers requires that the list does not
change during processing. However, a thread only requires
exclusive access to a pair of accounts when executing a
particular transfer. It is safe with respect to the semantics
of the program for other threads to access the other accounts
while the rest of the list is being processed.

open atomic {

for (t = l->head; t; t = t->next) {

atomic {

withdraw(t->from, a);

deposit(t->to, a);

} } }

Open atomic statements have the same semantics as reg-
ular atomic statements with the exception that the effects
occurring in any nested atomic statement becomes visible
as soon as the nested atomic statement finishes. Here, the
open atomic statement indicates that accesses to l->head
will not be interfered with during the execution of the en-
closed statements. This would also be true if an atomic state-
ment had been used. The open atomic statement differs be-
cause it allows the effects of the transfers performed within
the nested atomic statements to become visible at their re-
spective ends.

Typically in implementations of open-nesting, it is the
inner atomic statements that specify the semantics. In our
design it is possible to use either convention. However, we
felt it would be clearer if, by default, outer atomic statements
could constrain the semantics of atomic statements nested
within them. Consider that the inner atomic statement in the
above example could be replaced by a call to the transfer
function. If, by default, inner atomic statements specified the
nesting semantics, then we would need two versions of this
function, one with an open atomic statement, and the other
with a closed atomic statement. When the default is for the
outer atomic statement to specify the semantics, only one
version is needed.

On the other hand, in some situations, it is always safe
for the effects of an atomic statement to become visible im-
mediately, regardless of where it is nested, for example for a
malloc call. To handle these situations, we include a “forced-
open” atomic statement, written force open atomic {...}.
They have the same semantics as open atomic statements
with the exception that the effects occurring in them become
visible as soon as they finish, regardless of where they are
nested.

To prevent deadlock in the presence of open nesting,
the system needs to know an approximation of all shel-
ters a thread will register for before the end of the outer-
most atomic statement (see Section 3.4). Recall that our
static analysis tracks not only the shelters needed for the

present atomic statement, but also about the shelters needed
for nested atomic statements, and the atomic statement
nesting structure where they are needed. This informa-
tion is used to construct calls to shelter reserve() and
shelter unreserve(). Our implementation instruments the
above example as follows:

// open atomic {

shelter reserve((R,l->s), (W,account t.s));

shelter register((R,l->s));

shelter unreserve((R,l->s));

shelter wait(l->s);

for (t = l->head; t; t = t->next) {

// atomic {

shelter register((W,t->from->s), (W,t->to->s));

withdraw(t->from, a);

deposit(t->to, a);

shelter register pop();

// }

}

shelter unreserve((W,account t.s));

shelter register pop();

// }

The call to shelter reserve() expresses the fact that
forthcoming nested atomic statements will register for read-
only access to l->s and for write access to account t
structures. However, no actual registration occurs. The first
call to shelter register() registers the thread on shelter
l->s with a first timestamp. In the second call to shel-
ter register() for the nested atomic statement, the thread
registers itself on the indicated account t shelters with a
second timestamp. The calls to shelter unreserve() indi-
cate that the thread will perform no new registrations (until
the end of the outermost atomic statement) on the speci-
fied shelters. In the first call to shelter register pop() the
thread only unregisters from t->from->s and t->to->s, but
does not unregister from l->s or forget that it may still in
the future attempt to register for an account t shelter.

3.4 Deadlock Avoidance
As described above, to prevent deadlock in the presence of
open atomic statements, the static analysis ensures that we
reserve with shelter reserve() all the shelters that may be
needed for the current and for nested atomic statements. We
explain the reason for this by way of the artificial example
of function foo.

In foo, deposits are made into two accounts, one in an
outer atomic statement, and one in a nested atomic state-
ment with open semantics. Now suppose that Thread 1 calls
foo(x,y), and Thread 2 calls foo(y,x) at the same time.
Further suppose that Thread 1 obtains timestamp 1 when
making its first registration call for x->s. Without any sort
of deadlock avoidance, Thread 2 could then succeed at its
registration with timestamp 2 for y->s. Thread 1 would then
proceed through the first call to deposit on account x, and
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void foo(account t *a, account t *b) {

open atomic {

//shelter reserve((W,a->s),(W,b->s));

//shelter register((W,a->s));

//shelter unreserve((W,a->s));

deposit(a,0.10);

atomic {

//shelter register((W,b->s));

//shelter unreserve((W,b->s));

deposit(b,0.10);

} //shelter register pop();

} //shelter register pop();

}

obtain timestamp 3 when it registers for shelter y->s, and
Thread 2 would proceed to obtain timestamp 4 when it reg-
isters for shelter x->s. Then, when both threads make their
second call to deposit, they will be stuck. Registered for
y->s, Thread 2 has an earlier timestamp than Thread 1, and
registered for x->s, Thread 1 has an earlier timestamp than
Thread 2.

However, when Thread 2 reaches its first registration call,
it can observe that Thread 1 is already registered for shelter
x->s and may try to register for y->s in a nested atomic
statement, and that if it were to complete its own registration,
a cycle like the one described above could be created. We
formalize this notion of a cycle, and specify precisely our
deadlock avoidance algorithm in Section 4, but here we give
an informal description.

First, we say that two shelters may interfere with each
other if they are the same shelter or if one is an ancestor of
the other. Next, we say that thread A impedes thread B if
thread A has a shelter registration that may cause thread B
to block. Thread A may cause thread B to block if they are
registered for shelters that interfere and thread A is regis-
tered with a smaller timestamp than thread B. Thread A is
also said to impede thread B if thread A is registered for a
shelter that interferes with a shelter that thread B has only
reserved—that is, thread B could block waiting for thread
A after it registers one of its reserved shelters. If there is a
cycle in this relation, for example if we have impedes(A,B),
impedes(B,C), and impedes(C,A), then a deadlock may oc-
cur. We find cycles in the relation by constructing a graph
in which threads are nodes, and in which there is a directed
edge between a pair of nodes when the relation is true of the
corresponding pair of threads.

It may seem superfluous for reservations to occur even
before the beginning of a closed-atomic statement. However,
this is necessary because we must perform deadlock avoid-
ance not only before registration for an open atomic state-
ment, but also for closed ones, as well.

3.5 Coexisting with Explicit Locking
In low-level systems code it is often necessary to retain
some explicit locking, for example file locking in a database

system. To see why this might be problematic, consider the
following example.

void accountFileLock(account t *a, int mode) {

fcntl(a->file, mode);

}

void account file open(account t *a) {

atomic {

accountFileLock(a, WRITE);

} }

void account file close(account t *a) {

atomic {

accountFileLock(a, UNLOCK);

} }

In this example we have added a file field to our ac-
count t structure, which is also protected by the account
structure’s shelter. The atomic statements here protect ac-
count structures from concurrent access while an account’s
file is being opened and locked, and closed and unlocked.
But the possibility for deadlock exists when, for example,
the thread holding the file lock must wait on the shelter pro-
tecting the account structure before releasing the lock on the
file. When code like this is exposed as library calls, as in
sqlite, it is not possible to fix the problem by adding addi-
tional atomic statements.

We address this problem by introducing “shadow” shel-
ters that follow the state, and track the owning thread, of an
explicit lock in the program. Shadow shelters are declared
with type shadow shelter t. The shadow shelters change
state when explicit locking calls are made based on program-
mer supplied annotations on the explicit locking functions.
The annotation shadow change(s,c) on a function indicates
that the function changes the state (e.g. locked, unlocked)
of an explicit lock. Here, s is an expression for the shadow
shelter for the lock, and c is an integer expression for the
new state, both in terms of formal parameters and global
variables. Our static analysis determines that an atomic state-
ment requires shadow shelter s’ when a function annotated
with shadow change(s,c) is called within it, where s’ is s
with actual arguments substituted for formal arguments.

In the above example, we would add a shadow s field to
the account t structure of type shadow shelter t, and anno-
tate the accountFileLock function with shadow change(a-
>shadow s, mode). Our implementation then instruments
calls to accountFileLock with calls to a function in our
runtime called shadow change state(a->shadow s,mode),
which updates the shadow shelter a->shadow s to reflect the
state of the explicit lock, mode. In our implementation, we
assume that the external lock is unlocked when the mode is
zero, and locked otherwise. Further, shadow change state(a-
>shadow s,mode) must block when a thread is attempting to
set the mode to a locked mode, but the thread does not have
the smallest timestamp on the shadow shelter. We leave as
future work extending this mechanism to support other lock-
ing modes.
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Declaration d ::= int v sheltered by x
Trace T ::= (t1, s1), . . . , (tm, sm)
Statement s ::= reserve(σ1, . . . , σm)

| register(σ1, . . . , σm)
| pop
| v := v1 + v2 + n

Shelter (Σ) σ ::= vσ | x

Identifiers v, x Integers t, n,m

Figure 2. Traces of shelter-based programs.

Finally, a thread may only complete a registration when
the shadow shelter says that the file lock is unlocked, or
when the current thread is the file lock’s owner. Thus, the
call to accountFileLock will never block and cause dead-
lock. This strategy will also work for explicit locking calls
where both the lock and unlock call are in the same atomic
statement.

3.6 Discussion
This preponderance of annotations undoubtedly makes our
design seem no less complex and confusing than simply
using explicit locks. In particular, our insistence on avoiding
whole-program analysis, and the inclusion of open-nesting,
and shadow shelters, requires us to add several constructs
beyond simple atomic statements and the sheltered by type
qualifier. However, this increase in complexity comes only
in response to the complex protocols and invariants that
we see in existing software. If we removed some of these
annotations for the sake of simplicity, our design would be
demonstrably less efficient, or less complete.

4. Atomicity
We give a trace-based formalism for our design in order
to clarify the requirements on a shelter compiler and show
that our system provides two useful guarantees: progress
(no deadlock) and partial atomicity (atomic statement effects
are visible once committed to those statements that started
later). Our formalization is fairly different to that used for
Jade [32] as we are proving a different property (progress
and atomicity vs. equivalence to a sequential program).

A trace T (Figure 2) captures the essential operations
executed by a shelter-based program. A trace is executed in
the context of declarations d1, . . . , dn of the global integer
variables used in the trace. Each variable v is protected by
its own fine-grained shelter vσ and a coarse-grained shelter
s (possibly shared with other variables). These declarations
implicitly define a partial order on shelters (vσ ≤ vσ, vσ ≤
s, s ≤ s). This order mirrors our implementation’s hierarchy,
with the fine-grained shelters matching shelter t objects and
the coarse-grained shelters matching the type-based shelters
like account t.s. We say that a shelter σ1 subsumes a shelter

σ2 if σ2 ≤ σ1. For simplicity, we omit the distinction
between read and write shelter access.

The trace itself is a sequential interleaving of statements
from multiple threads, with each thread identified by a dis-
tinct integer t. The statements, executed atomically, are ei-
ther assignments of a computed value to a variable v,2 or one
of the three low-level operations used to implement atomic
statements: reserve,3 register and pop. The reserve operation
allows future registration for shelters, or shelters subsumed
by, σ1, . . . , σm, while the register operation begins an atomic
statement, registering for shelters, σ1, . . . , σm. Finally, the
pop operation releases the shelters registered for by the most
recent, still active reserve statement. For instance, a possible
trace for atomic { j := 3 } is

(0, reserve( jσ)), (0, register( jσ)), (0, reserve()),
(0, j := 3), (0, pop)

Thread 0 simply reserves then registers for the required
shelter, performs the atomic statement body, then releases all
its shelters. The reserved shelters are released as soon as they
will no longer need to be registered for, to avoid impeding
other threads (see below).

An open atomic statement is more complicated. A possi-
ble trace for

open atomic { p := p+1; atomic { q := p+q; } }

in a context where both p and q are sheltered by s is:

(0, reserve(s)), (0, register(pσ)), (0, reserve(qσ)),
(0, p := p + 1), (0, register(qσ)), (0, reserve()),
(0, q := p + q), (0, pop), (0, pop)

Thread 0 initially reserves the coarse-grained shelter s which
protects both p and q. The first open atomic statement only
registers for fine-grained shelter pσ. The thread then refines
its reservation to the qσ shelter, which it will subsequently
register for. To start the inner atomic statement, it addition-
ally registers for the qσ shelter and releases all its reserva-
tions as it no longer needs them. Finally, it ends by terminat-
ing both atomic statements, releasing all shelters.

Traces do not necessarily represent a valid execution of
a shelter-based program. For instance, if p is sheltered by s,
(0, p = 2) accesses p without being registered for either its
fine-grained shelter pσ or its coarse-grained shelter s. This
corresponds to a thread accessing a shelter-protected object
outside of an atomic statement, which is an error in the
program itself. We call this type of error a single-threaded
error. Our trace operational semantics will send traces with
this kind of error into an error state.

2 The atomic execution of v := v1 + v2 + n is not essential and could easily
be relaxed with the addition of per-thread variables to the trace formalism.
3 The shelter unreserve function is represented in the trace by a reserve
on the resulting reservation set.
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regfor(H, t, v) regfor(H, t, v1) regfor(H, t, v2)

R,H |= (t, v := v1 + v2 + n)

access(H, t, v) access(H, t, v1) access(H, t, v2)

M,R,H, a : (t, v := v1 + v2 + n)→
M[v→ M(v1) + M(v2) + n],R,H, a

H(t) = ∅ ∨ subsumed({σ1, . . . , σm},R(t))

R,H |= (t, reserve(σ1, . . . , σm))

R′ = R[t → {σ1, . . . , σm}]

M,R,H, a : (t, reserve(σ1, . . . , σm))→ M,R′,H, a

subsumed({σ1, . . . , σm},R(t)) m ≥ 1

R,H |= (t, register(σ1, . . . , σm))

H′ = H[t → H(t) ∪ {(a, σ1), . . . , (a, σm)}]
¬cycle(impedes(R,H′))

M,R,H, a : (t, register(σ1, . . . , σm))→ M,R,H′, a + 1

H(t) , ∅

R,H |= (t, pop)

b = max {a | (a, σ) ∈ H(t)}
H′ = H[t → {(a, σ) | (a, σ) ∈ H(t) ∧ a , b}]

M,R,H, a : (t, pop)→ M,R,H′, a

R,H 6|= (t1, s1)

M,R,H, a : (t1, s1), . . . , (tm, sm)→ ⊥,⊥,⊥,⊥ : ε

R,H |= (t1, s1) M,R,H, a : (t1, s1)→ M′,R′,H′, a′

M,R,H, a : (t1, s1), . . . , (tm, sm)→
M′,R′,H′, a′ : (t2, s2), . . . , (tm, sm)

regfor(H, t, v) = ∃(a, σ) ∈ H(t).vσ ≤ σ subsumed(Σ1,Σ2) = ∀σ1 ∈ Σ1.∃σ2 ∈ Σ2.σ1 ≤ σ2

interferes(σ1, σ2) = σ1 ≤ σ2 ∨ σ2 ≤ σ1
access(H, t, v) = ∃(a, σ) ∈ H(t).(vσ ≤ σ ∧ ∀t′ , t.∀(a′, σ′) ∈ H(t′).interferes(vσ, σ′)⇒ a < a′)

impedes(R,H)(t1, t2) = ∃(σ1, a1) ∈ H(t1).(∃(σ2, a2) ∈ H(t2).a1 < a2 ∧ interferes(σ1, σ2)∨
∃σ2 ∈ R(t2). ∧ interferes(σ1, σ2))

Figure 3. Trace Operational Semantics

A different kind of error is present in the following trace:

(0, reserve(pσ), (0, register(pσ)), (0, reserve()),
(1, reserve(pσ), (1, register(pσ)), (1, reserve()),
(1, p := 1)

Thread 1 accesses p, but it should have been blocked because
thread 0 registered the shelter pσ earlier in the trace. We call
this kind of error a multi-threaded error. We will show that
these kinds of errors are forbidden by our trace operational
semantics; there will be an implicit shelter wait() opera-
tion in front of each variable access.

Figure 3 gives an operational semantics for traces that
makes a clear distinction between these two kinds of invalid
traces. The state of the operational semantics is a four-tuple
M,R,H, a where M : id → � maps variables to their
values, R : � → P(Σ) maps threads to their current shelter
reservations, H : �→ P(�×Σ) maps threads to the shelters
they are registered for, and a : � is the timestamp of the last
register statement. Registrations for a shelter are described
by a pair (a, σ) of the register statement’s timestamp and the
shelter itself.

The single-threaded errors are explicitly checked for by
the |= relation: R,H |= (t, s) holds if executing s is not a
single-threaded error for thread t in state R,H — it is easy to
verify by inspection of the rules in Figure 3 that violations

of the |= relation can only be caused by the thread itself.
The M,R,H, a : (t, s) → M′,R′,H′, a′ transition models
the atomic execution of a single statement s by thread t
and the corresponding state change. This transition is only
defined when it does not cause a multi-threaded error; the
requirements of the → transition effectively represent the
conditions for which a thread must wait until it can execute
s.

The single-threaded errors formalize the requirements on
(and freedoms of) the shelter compiler: it must never gener-
ate code that would violate the |= relation. That is, in the trace
semantics and our implementation, the |= relation checks
at runtime that the results of the static analysis that gener-
ated the calls to reserve() and register() was correct. The
two assignment rules use the regfor relation to check that
the thread is registered for a shelter that subsumes the vari-
able’s shelter. The reserve statement can reserve new shel-
ters when the thread is not currently registered for any shel-
ters (H(t) = ∅): this corresponds to the requirement dis-
cussed in the overview to conservatively estimate the shel-
ters required by an atomic statement prior to entering it. The
reserve statement can also release or refine its current reser-
vation (checked by the subsumed relation); this effectively
allows a shelter compiler to change the reservation at any
time to its best approximation of the shelters that will still be

873



registered for in the remainder of the outermost atomic state-
ment. The register statement can only register for shelters
that have been previously reserved, and the pop statement
cannot occur when no atomic statement is active.

The→ transitions perform straightforward updates to the
current state. Only two rules include preconditions that could
lead to a multi-threaded error: the two assignment rules use
the access rule to check that no other thread has registered
for a shelter for the variable with a smaller timestamp. The
access rule encodes the conditions under which a thread does
not need to block for a shelter wait() call.

The rule for register requires that registering for the shel-
ters will not create a cycle in the the directed graph formed
by considering the threads to be nodes, and the edges given
by the impedes(R,H) relation (we call this the impediment-
graph). Essentially, impedes captures when a thread might
block the progress of another thread sometime in the future:
when a thread is registered before another for an interfering
shelter, or when a thread is registered for a shelter that inter-
feres with a shelter that another thread plans to register for
later. The impedes relation itself depends on the current state
of registrations and reservations, so we write it as a function
of these mappings. Throuh a little abuse of notation, we write
¬cycle(impedes(R,H)) to indicate that there are no cycles
in the impediment-graph given the registrations and reser-
vations in R and H. This cycle-detection is necessary for us
to avoid deadlock while supporting open atomic statements
as described earlier. In particular, it deals with the fact that
threads may be registered for different shelters with different
timestamps.

Definition 1. Trace evaluation. In the context of declara-
tions d1, . . . , dn, trace:

(t1, s1), . . . , (tm, sm)

evaluates to M,R,H, a if

M0,R0,H0, 0 : (t1, s1), . . . , (tm, sm)
∗
−→ M,R,H, a : ε

where the initial state has M0(v) = 0 for all variables v in
d1, . . . , dn, and R0(t) = H0(t) = ∅ (no shelters registered for
or reserved) for all threads t in t1, . . . , tm.

Trace evaluation ends in the error state (⊥,⊥,⊥,⊥) if the
trace has a single-threader error, but is not defined in the
presence of a multi-threaded error.

Theorem 1. Atomic-statement progress. If trace

(t1, s1), . . . , (tm, sm)

evaluates to M,R,H, a in context d1, . . . , dn then the ex-
tended trace

(t1, s1), . . . , (tm, sm), (t, s)

evaluates to M′,R′,H′, a′, where either:

• if ∀t′.H(t′) = ∅, then t is any thread, s is any statement,
or

• H(t) , ∅, and s is any statement

Proof: By induction over traces, using the fact the trace
semantics ensures that ¬cycle(impedes(R,H)). As a conse-
quence, some thread t with H(t) , ∅ has no incoming edge
from any other thread in the impediment-graph. This thread
can attempt to execute any statement s: either this statement
will cause a single-threaded error, or by construction of t,
M,R,H, a : (t, s)→ M′,R′,H′, a′.

In essence, the above theorem states that programs that
have no single-threaded errors and wait for the preconditions
of → can always make progress, and, in particular, it can
never be the case that all threads in atomic statements are
blocked.

Theorem 2. Partial Atomicity. In a trace

(t1, s1), . . . , (tn, sn)

that evaluates to M,R,H, a, let Mi,Ri,Hi, ai be the state of
M,H,R, a before the ith step of the trace. If

si = register(s1, . . . , sm)

and s j = pop is the end of this atomic statement then, for all
variables v such that ¬regfor(Hi, ti, v)∧regfor(Hi+1, ti, v) (the
atomic statement gave access to v) the effects of the writes by
thread ti to v between si and s j are visible to exactly those
atomic statements of other threads that started after si and
ended after s j.

We prove Theorem 2 in Appendix A. It essentially states
that updates to objects protected by an atomic statement be-
come visible to other threads only after the end of the atomic
statement. Note that it is safe for threads with concurrently
running atomic statements to access the same objects, but the
atomic statement that started later may not access these ob-
jects until the atomic statement that started earlier ends. This
theorem applies to both open and closed atomic statements.

5. Implementation
Our implementation is written in about 3600 lines of OCaml
using the CIL [29] library, with a runtime library written
in about 4000 lines of C. We use a combination of lock-
free algorithms and other optimizations to ensure that our
implementation scales.

In this section we describe optimizations. We also discuss
issues that arise when using shelters in existing C programs,
such as condition variables, library calls, polymorphism,
and interaction with synchronization strategies not based on
atomic statements.

5.1 Optimizations
In practice, a number of optimizations are required for shel-
ters to scale. In particular, the following optimizations were
critical to achieving performance similar to, and in some
cases, better than explicit locking. Without any one of these
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optimizations, at least one of our benchmarks will fail to ex-
ceed sequential performance when explicit locks do.

First, we track shelter registration using a queue on each
shelter of registered threads, sorted by timestamp. Further-
more, threads are also placed on the queues of a shelter’s an-
cestor, with an indication that their initial registration was for
a descendant. This allows us to efficiently implement shel-
ter wait() (and the cycle-detection for deadlock-avoidance
in shelter register()); we only ever need to inspect a
short initial segment of the queues at each level of the hi-
erarchy.

When a shelter is acquired for read-only access, waiting
for a shelter can be optimized: a thread must only wait until
it has a timestamp smaller than threads on the shelter’s queue
that have registered for write access. This mechanism is
essentially equivalent to explicit read/write locking, however
our shelter-based atomic statement implementation invokes
it automatically wherever possible.

It is often the case that atomic statements are used to
protect access to objects for which there is not much con-
tention. To take advantage of this, instead of adding itself
to a shelter’s queue, our runtime allows a thread to acquire
a spinlock—or to increment a counter in the case of read-
only access when there are no writers—during the registra-
tion phase in the case that there are no other threads on the
shelter’s queue. This also reduces contention for the global
timestamp counter.

Furthermore, not all programs will use the various levels
of the shelter hierarchy, and those that do will not be using
them at all times. Therefore, our runtime includes a mech-
anism to activate shelters higher up in the hierarchy only
when they are needed—that is, when a thread attempts to
register for them directly. When a shelter is inactive, threads
registering for its children must simply read a flag that indi-
cates inactivity, and check that its queue is empty to see that
no further action is required. Threads also record for which
inactive shelters they have registered. When a thread wishes
to register directly for a shelter with children, it registers as
usual, but during a wait call, it must also wait until there are
no threads registered for a child shelter that make use of the
inactivity of the parent shelter. This check is made by ex-
amining the inactive shelters that each thread has registered
for. When there are no more such threads, the thread unsets
the inactive flag in the parent shelter, and proceeds when the
usual conditions for a shelter wait() are met.4

As the number of threads and cores increases, contention
for the global sequence number counter increases. To ad-
dress this, when the compare-and-swap operation used to in-
crement the counter fails, after retrying immediately a small
number of times, we use a binary exponential back-off algo-

4 It may seem simpler for threads registering for a child shelter to simply
acquire read-access to the inactive parent shelter by way of a counter, as in
a reader-writer lock. However, in practice, contention for this counter can
incur an unacceptably high overhead. We shift the cost to the uncommon
operation of waiting on a non-leaf shelter.

rithm [17]. In our experiments, this approach reduced by sev-
eral orders of magnitude the number of compare-and-swap
failures without compromising performance.

Potential Optimizations Our static analysis can tell when
a shelter will no longer be used before the end of an atomic
statement, when a shelter will no longer be used for write
access, and when a child shelter can be held instead of
a parent shelter. These optimizations are all sound in the
absence of open atomic statements, but we have not yet
determined the full conditions under which they can be used
with nested atomic statements (see Appendix A), so we leave
them for future work.

Another potential optimization that we leave for future
work involves the way that timestamps are allocated to
threads. If it can be determined that two threads will never
use the same shelter, then their timestamps need not be dis-
tinct. An analysis supporting such an optimization would
likely rely on some form of a must-not-alias analysis [28].

Finally, another potential optimization for timestamp al-
location proceeds as follows. Each shelter could be ran-
domly placed in one of a fixed number of sets of shelters.
Each set would have a separate timestamp counter. When a
thread registers for a set of shelters at the start of an atomic
statement it would atomically acquire timestamps from each
of the sets the shelters belong to. That is, for each reg-
istration, a thread would be granted a set of timestamps.
shelter wait would proceed as before, using the appro-
priate timestamp for each shelter.

We have not yet implemented these techniques for reduc-
ing contention on the timestamp counter because the backoff

optimization was effective enough on our benchmarks that
this contention was no longer the performance bottleneck.

5.2 Condition Variables
Our implementation includes support for condition vari-
ables. That is, threads may send signals and wait on con-
dition variables based on shared state that is protected by
shelters. Shelter condition variables are much like tradi-
tional condition variables. They are declared like pthread
condition variables, e.g. shelter cond t scv, and are sig-
naled in the same way, e.g. shelter cond signal(scv).
However, a conditional wait on shelter protected state is
slightly different. We introduce the following construct:
shelter cond wait(scv,e) s.

The meaning of this statement is as follows. The thread
waits on the shelter condition variable scv while the condi-
tion, e, is false. If the thread is then signaled, and the con-
dition is true, it executes the statement s atomically. This is
accomplished by our analysis treating the shelter wait block
as an atomic statement and collecting the shelters necessary
for protecting both the block and the condition e. Then, the
above construct can be translated as follows. The thread reg-
isters for the shelters found by the analysis, waits on them,
and then checks e. If e is false, it atomically releases the shel-
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ters and sleeps on scv. If e is true, then the thread proceeds
as in a normal atomic statement. We leave as future work an
extension to our implementation that ensures that condition
variables are signaled when appropriately specified state is
updated.

5.3 Library Calls and Polymorphism
If a call is made into a library that does not use shelters, and
does not use any callbacks, then it will not cause a thread
to register for any shelters. Therefore, it is only necessary
to know what objects such a library call will access in case
any of these locations are protected by a shelter. We allow
programmers to indicate this by providing annotations that
summarize the read and write behavior of library calls, so
that our implementation can automatically place the appro-
priate wait calls ahead of them. Library calls invoking call-
backs that access shelter protected state are not currently
supported by our system, though we believe this issue could
be addressed by allowing the programmer to describe the
behavior of callbacks with an annotation.

In our current implementation we do not support type-
qualifier polymorphism for the sheltered by(s) annota-
tions. This sort of feature has not been needed in the bench-
marks we analyze in Section 6 due to the limited use of
polymorphism in C programs. However, more modern lan-
guages may require increased support of polymorphism to
allow code-reuse, and other good software engineering prac-
tices. We leave support for polymorphism as future work.

5.4 Other Synchronization Strategies
It is not realistic to assume that all shared data will be
protected by shelters and accessed within atomic statements.
For instance, some shared data will be read-only and need no
synchronization, while other data will be protected by other
means: barrier synchronization, data obtained from work
queues and worked on exclusively by a single thread, etc.
The programmer must ensure that data is shared correctly
using consistent mechanisms. Our own previous work in
SharC uses sharing annotations on all types [5], while Martin
et al. [24] use dynamic ownership assertions to detect where
such rules are violated. Furthermore, external libraries may
already use locks to protect their own data — converting
these libraries to use shelters may not be desirable, practical
or even possible. For these cases in our sqlite benchmark,
our shadow shelters mechanism has proved adequate.

6. Evaluation
We have modified a number of programs to use shelters as
the mechanism for enforcing atomic statements, and we have
measured the runtime performance of these programs on re-
alistic inputs. The purpose of this evaluation is to investigate
the convenience of using shelter-based atomic statements,
and to compare the runtime performance of our implemen-
tation with five other mechanisms for enforcing atomicity,

namely explicit locking, Autolocker, software transactional
memory, a single global lock, and shelters implemented with
pthread reader-writer locks. We chose these implementa-
tions for comparison because they cover existing techniques
for C not requiring special hardware or by-hand instrumenta-
tion. The STM implementation allows us to compare against
an optimistic approach, and Autolocker and the others al-
low us to compare against the various ways of implementing
atomic statements pessimistically.

In the alternate implementation of shelters using reader-
writer locks (RWLocks) each shelter contains a lock. When
registering for shelters at the beginning of atomic statements,
the locks are sorted by address to avoid deadlock before
being acquired. When a fine-grained shelter is registered, the
shelter’s lock is acquired in read mode if the section only
reads the sheltered data, and in write mode otherwise. When
a coarse-grained shelter is registered, the lock is acquired in
write mode. A shelter’s ancestors’ locks are always acquired
in read mode.

6.1 Experimental Setup
All of our experiments were performed on a 2.27GHz Intel
Xeon X7560 machine with four processors each with eight
cores having 32GB of main memory running Linux. Hy-
perthreading was turned off. We chose to compare against
an Intel compiler for C/C++ that includes an STM imple-
mentation [35]. Other STM implementations may give better
performance [11], but the Intel STM compiler has an anno-
tation burden that is similar to that of our implementation,
and requires no additional real or simulated hardware. We
also used the Intel compiler with the STM features disabled
as the back-end of our implementation, and to compile the
other versions of the benchmarks. The compile-time analy-
ses used for our implementation did not add significantly to
compilation time.

6.2 Benchmarks
Our benchmark programs consist of the STAMP STM
benchmark suite [11], along with: pbzip2, a parallel ver-
sion of bzip2; pfscan, a parallel file scanning tool; ebarnes,
an n-body simulation using the Barnes-Hut algorithm [6];
open-atomic, a micro-benchmark that uses open atomic
statements; and the sqlite database system. Table 1 shows
the size of each of the benchmark programs, the number of
atomic statements in each, and the number of other anno-
tations that were needed to use Intel’s STM, shelters, and
Autolocker, respectively. The other annotations for Intel’s
STM are the tm callable annotations that must be placed
on functions called from transactions. The other annotations
for our system are the sheltered by() annotations and the
needs shelters() function annotations. Autolocker’s only
annotations are its protected by annotations.

The STAMP benchmarks are distributed with the
tm callable annotations already placed, some of which are
redundant. We also made redundant annotations when adapt-
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Figure 4. Graphs (a) - (k) show speedup over sequential runs versus the number of threads used for our benchmark programs when run
with explicit locking (Locks), Autolocker (AL), shelters (Shelters), Intel STM (STM), a single global lock (SGL), and shelters implemented
with reader-writer locks (RWLocks). Higher is better.

ing the application benchmarks for shelters as we also found
the annotations to be useful for documentations purposes.
The annotation counts in the table include these redundant
annotations. This is why in the STAMP benchmarks the an-
notation count for STM is sometimes higher than it is for
shelters. The annotation count for shelters on the sqlite ap-
plication would have been as high as the count for STM, but
our call-graph analysis allowed us to avoid making module-
local function annotations. A similar analysis would benefit
STM to the same extent.

The results of all our experiments except sqlite are given
by the graphs in Figure 4. The graphs show speedup over
sequential runs (i.e. Tsequential/Tparallel) versus the number of
cores used. Each reported result is the average of 50 runs.
Command line arguments passed to the STAMP benchmarks
are also given in the captions. Below, we describe all the

results we observe before discussing the conclusions we
draw from them.

6.2.1 STAMP Benchmarks
The intended usage of the STAMP benchmark suite is to
compare different transactional memory implementations. In
addition, we believe that it is also a suitable benchmark suite
for the more general task of comparing different implemen-
tations of atomic statements. The algorithms used in some
of the benchmarks have synchronization strategies that are
very challenging to handle well with any implementation.

We note that the suite covers variation across the follow-
ing dimensions: contention, length of time in atomic state-
ments, and the number of shared memory accesses in atomic
statements. Because it attempts to cover this space, on sev-
eral of the benchmarks, none of the automatic software-
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Name Size Atm. STM Shelt. AL Seq.
(kloc) stms. Anns. Anns. Anns. Time

bayes 12.0 15 47 42 11 9.97s
genome 10.0 5 16 25 11 8.58s
intruder 11.3 3 61 64 9 2.26s
kmeans 3.9 3 4 7 6 9.17s
labyrinth 8.2 3 50 46 13 3.02s
ssca2 9.2 1 5 12 9 9.73s
vacation 11.0 3 159 122 6 1.53s
yada 13.4 6 105 86 12 4.19s
ebarnes 13.4 3 8 9 7 16.07s
pbzip2 10.0 10 4 14 12 10.46s
pfscan 2.8 6 4 11 12 2.56s
oatomic 0.3 4 0 9 8 8.56s
sqlite 131.0 97 2229 161 156 -
total 236.5 149 2692 608 272

Table 1. Program size, number of atomic statements, number of
annotations for Intel STM, Shelters, and Autolocker, and sequential
runtime for our benchmark programs.

based approaches we investigate here manage to scale. Scal-
ing on these benchmarks seems to require either specialized
hardware, or by-hand instrumentation along with a knowl-
edge of implementation details [11].

For the bayes, intruder, labyrinth, vacation, and yada
benchmarks contention is high, and threads make many
shared memory accesses in atomic statements. The genome
benchmark includes lightly contended atomic statements
that make many shared memory accesses. The kmeans
benchmark includes highly contended atomic sections that
make many updates to shared memory. The ssca2 bench-
mark includes lightly contended atomic statements that
make only a few shared memory accesses. Scaling of ssca2
is limited by the sequential portion of the benchmark.

The bayes, vacation, and yada benchmarks required ac-
tivation of our shelter hierarchy. The others did not. Au-
tolocker initially reported deadlock for these benchmarks
due to its inability to compute a global lock-order. To ad-
dress this, following the technique outlined by Autolocker’s
authors, we added global locks by hand until it accepted the
programs.

6.2.2 Open Atomic Statements
To show the benefit of open nesting, we constructed a micro-
benchmark to compare our implementation of open-nesting
with explicit locking, Autolocker, and Intel STM. The form
of this micro-benchmark is taken from a pattern that appears
a number of times in the Linux kernel, the MySQL database
server, and sqlite. The micro-benchmark resembles the open-
nesting example in Section 3.

Occasionally one thread computes a summary of data
contained in a collection of linked lists. While this thread is
computing, other threads are permitted to access individual

linked-lists, but not to add or remove lists from the collec-
tion:
lock acquire(S.lock);

for (i = 0; i < S.len; i++) {

list *l = S.lists[i];

lock acquire(l->lock);

list ops(l);

lock release(l->lock);

}

lock release(S.lock);

A system having only closed atomic statements would be
unable to capture this safe way of increasing concurrency.

In our oatomic benchmark, one thread computes a sum-
mary of the collection of linked lists, while a number of other
threads modify randomly selected lists from the collection.
The results of this experiment are presented in Figure 4(l).

6.2.3 Application Benchmarks
Our three multithreaded C applications that use threads and
locks were chosen to compare the real-world performance of
shelters with the other implementations. The pbzip2 bench-
mark is a parallel implementation of the popular block-based
compression algorithm. Atomic statements are short, lightly
contended, and make only a small number of shared memory
accesses. For this benchmark, a 50MB text file was com-
pressed. The pfscan benchmark is a tool that searches for
a string in all files under a given directory tree. For this
benchmark, we searched for the string “ab” in the Linux
source code tree. The atomic statements are short, lightly
contended, and make only a few shared memory accesses.
Calls into the operating system and limited workload size
impeded performance gains beyond 8 cores for each of the
synchronization mechanisms. The ebarnes benchmark is an
n-body simulation adapted from the Barnes-Hut Splash2
benchmark [38]. Performance of its oct-tree building phase
is very sensitive to the synchronization strategy. Contention
is low, but many shared memory accesses are made in atomic
statements. For this benchmark, we simulated 1 million bod-
ies so that building the oct-tree in parallel would give a sig-
nificant performance advantage.

6.2.4 Sqlite
To show that our implementation is capable of scaling to
large pieces of systems-level software, we ported the sqlite
database system to use shelters instead of explicit locking
with mutexes. Sqlite is composed of about 130k lines of
code, and uses mutexes to protect database connections,
btrees, a shared page cache, the memory-management sub-
system, and its pseudo-random number generator. Addition-
ally, it uses file locks and locking of pages in btrees to ensure
the atomicity of database transactions. These file and page
locks are frequently held across API calls.

In porting sqlite, we exercised all of the features of our
implementation. In particular, we used open-nesting for the
memory, page-cache, and random number generator subsys-

878



tems. Furthermore, shadow shelters were required to prevent
locks on files and btree pages from causing deadlock, as in-
dicated by the example in Section 3. This deadlock problem
was not created by our use of atomic statements and shel-
ters, though in the absence of our shadow shelters, it is ex-
posed more readily when imprecision in our static analysis
requires the use of the shelter hierarchy. The default explicit
locking version of sqlite deals with this issue by requiring
application code to manually roll-back database transactions
when certain lock acquisitions fail. Our shadow shelters hide
this issue from client applications, however it is likely some-
times useful for applications to deal directly with contention
of this sort. We leave the addition of customizable contention
management to our shelters-based implementation for future
work.

Statistics for the sqlite benchmark appear in Table 1. We
evaluated the performance of our implementation by running
sqlite’s multithreaded regression suite, which uses between
2 and 12 threads, and comparing only against the original
explicit locking version; attempting to use Autolocker, the
Intel STM, or a single global lock resulted in deadlock due
to the file locking problem.

The unmodified sqlite runs the multithreaded regression
suite in roughly 4 minutes, whereas the shelters version took
around 8 minutes. Because of the imprecision of our static
analysis, namely the type-based aliasing assumptions, many
of the atomic statements acted effectively as a single global
lock. We believe that an automatic approach to acquiring
finer-grained locks or shelters in this context may only be
possible in the presence of at least some information about
the shape of data structures.

It is also interesting to note that in the process of convert-
ing sqlite to use atomic statements, we were able to remove
a few hundred lines of code dedicated to deadlock avoidance
in its btree implementation.

6.2.5 Effects of Workload Size
We also did an experiment in which the number of bodies
simulated in the ebarnes benchmark was varied from 100k
bodies, which fit comfortably in the CPU caches, to 8 mil-
lion bodies, which exceeded the capacity of the caches. We
ran the simulations with each implementation, and on 4, 8,
16, and 32 cores. We did not observe any changes in rela-
tive overhead with respect to the explicit locking version as
workload size increased.

6.2.6 Discussion
Our implementation obtains performance comparable to ex-
plicit locking while having much of the convenience of a ma-
ture STM implementation. The graph in Figure 5 shows the
average percent slowdown over all of the benchmarks (ex-
cluding sqlite and oatomic) of the Autolocker, shelters, sin-
gle global lock, reader/writer locks, and STM runs with re-
spect to the locking runs versus the number of threads used.
Our implementation scales up where possible as threads are
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Figure 5. Average percent slowdown with respect to explicit
locking over all benchmarks versus the number of threads. Lower
is better.

added in many cases where the the other implementations
fail to do so.

In particular, the Intel STM scales well when atomic
statements are short or touch little shared memory, but suf-
fers significant performance penalties when atomic sections
are long and make many accesses to shared memory due to
the cost of rollback and the cost of the instrumentation of
shared memory accesses. Autolocker has performance simi-
lar to explicit locking and our implementation, however it is
occasionally necessary to add locks by hand in order for it
to accept a program. This could be avoided if it also used a
hierarchy like our implementation does. However, we have
shown that the performance of a hierarchy built out of locks
would be poor (RWLocks). Furthermore, Autolocker fails to
allow open-nesting. On the other hand, Autolocker requires
a smaller annotation burden due to its use of whole program
analysis. Finally, our implementation outperforms the use of
a single global lock, and a naive implementation of shelters
with a hierarchy of reader/writer locks, demonstrating that
our techniques help achieve good performance in this space.

On the other hand, our implementation does not scale
as well as explicit locking in the cases where contention
is very low, but in which the ratio of synchronization calls
to actual work is somewhat high. This overhead is exposed
by the ebarnes benchmark, but is not an issue in the pbzip2
benchmark, for example.

7. Related Work
Many researchers have investigated the implementation of
atomic statements, and more generally, language constructs
enabling correct concurrency. Fortress [3], Chapel [12], and
X10 [14] are recent languages intended to be used for writ-
ing highly scalable, high-performance code. Each of them
includes atomic statements for protecting shared state.

The relative merits of optimistic and pessimistic con-
currency control have been investigated by the database
community. The consensus seems to be that optimistic
approaches are desirable in the presence of abundant re-
sources, so that the cost of roll-back and retry is not sig-
nificant, whereas pessimistic approaches are desirable when
resources are scarce [2].

A few projects are more closely related to our own. We
have already discussed Autolocker in detail [25]. Cherem et
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al. [13] present a system in which the locks required for an
atomic statement are inferred from the structure of expres-
sions accessed in the atomic statement. The granularity of
the locks may vary depending on the precision of the un-
derlying analyses. Like Autolocker, this approach requires a
whole program analysis for calculating pointer aliasing and
for refining the expressions accessed in an atomic statement.
The approach of Hicks et al. [19] is somewhat similar, re-
quiring a whole program alias analysis to acquire a coarse-
grained lock for the possible targets of a pointer when a
precise target cannot be determined. The coarsening strat-
egy for our system is similar, however instead of perform-
ing a whole-program alias analysis, we simply assume that
pointers of the same type may alias. A more precise anal-
ysis could be integrated into our implementation to obtain
a finer-grained shelter hierarchy, however, due to the practi-
cal problems it presents, we chose to avoid whole-program
analysis.

In the Jade [33] programming language, programmers
make annotations to describe how concurrent tasks will ac-
cess shared state so that the Jade compiler can then automat-
ically extract concurrency. We use the shelter mechanism to
enforce atomic statements in an explicitly parallel program
rather than as a way to help a compiler extract parallelism
in an implicitly parallel language. Our system’s implemen-
tation also expands on this mechanism by introducing ex-
plicit shelter objects that allow the programmer to declare
what objects need protection, eliminating the need for the
programmer to make annotations at each atomic block, and
by introducing a shelter hierarchy.

There also exist several transactional memory systems
that can be used to implement atomic statements, both hard-
ware [4, 31] and software [16, 23, 36] based. We believe
that the STM system for C most similar to our own in terms
of programmer convenience is the Intel STM implemen-
tation [21]. Other STM implementations for C give better
performance [11], but they require by-hand instrumentation
of reads and writes of shared memory. The Intel STM im-
plementation incurs overhead from the instrumentation of
all shared memory reads and writes inside of transactions,
and from the rollback of transactions during which con-
flicts are detected. Because our system is pessimistic, it does
not incur these overheads. Boehm argues that transactional
memory should be viewed as a mechanism for providing
atomicity rather than a programming interface [9]. Some re-
searchers have suggested that atomic statements with trans-
actional semantics are for concurrency what garbage collec-
tion is for memory management [18]. The nesting seman-
tics of transactions and atomic sections has been explored
by both TM [1, 26, 30] and database [7] researchers. Open-
nesting in a pessimistic setting is desirable because there is
no need to write compensating actions, or to worry about
complicated roll-back semantics.

Type systems with annotations describing locking rules
have been used to prevent data races [15], in particular for
Java [10]. Boyapati’s ownership type-system [10] allows the
expression and checking of sophisticated locking schemes.
Our system could be extended with similar ownership or re-
gion types as an alternate way to arrive at a finer-grained
shelter hierarchy. We leave these extensions for future work.
Also for Java, Hindman and Grossman [20] translate pro-
grams with atomic statements to ones which acquire locks
just before they are needed. Deadlock is avoided at runtime
through rollback.

8. Conclusion
We have implemented a system in which atomic statements
in C programs are implemented with shelters. We avoid
the current problems associated with optimistic implementa-
tions of atomic statements by using a pessimistic approach,
and unlike previous pessimistic approaches, our design al-
lows us to avoid whole-program analysis, and provides for
open-nesting. A wide range of benchmarks shows that our
techniques perform well.

In the future, we plan to investigate the use of lightweight
shape specifications that may allow our analysis to make use
of a finer-grained shelter hierarchy to further improve us-
ability and performance. Further, recording the differences
between the timestamps obtained by threads, may provide
an efficient method for deterministically replaying threaded
programs. Additionally, we have not yet thoroughly investi-
gated the fairness properties of our design. Fairness and live-
ness issues did not arise in any of our benchmark programs,
but in the future we wish to obtain more rigorous guarantees.
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A. Proofs
Here, we prove Theorem 2 from Section 4. Additionally
we argue that releasing shelters early, before the end of
an atomic statement, or downgrading a shelter from one
higher in the hierarchy to one lower in the hierarchy may
have unexpected semantics. This implies that though it is an
attractive seeming optimization, it must be weighed against
the desired semantics for atomic statements.

Theorem. Partial Atomicity. In a trace

(t1, s1), . . . , (tn, sn)

that evaluates to M,R,H, a, let Mi,Ri,Hi, ai be the state of
M,H,R, a before the ith step of the trace. If

si = register(s1, . . . , sm)

and s j = pop is the end of this atomic statement then, for all
variables v such that ¬regfor(Hi, ti, v)∧regfor(Hi+1, ti, v) (the
atomic statement gave access to v) the effects of the writes by
thread ti to v between si and s j are visible to exactly those
atomic statements of other threads that started after si and
ended after s j.
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Proof: In the proof, we say “the atomic statement at i”
to stand for “the atomic statement started by the statement
si = register(. . .)”,

Let (ai, s) ∈ Hi+1(t) − Hi(t) be such that vσ ≤ s. Consider
the following cases for the atomic statement at k in threads
t , ti that can access v:

1. k < i and ¬regfor(Hk, t, v) ∧ regfor(Hk+1, t, v) (the atomic
statement gave access to v). Then ∃(ak, s′) ∈ Hk+1(t) −
Hk(t).vσ ≤ s′, and, obviously, ak < ai ∧ interferes(s′, vσ).
Thus thread ti cannot modify v until the atomic statement
started at sk terminates.

2. k > i, and the atomic statement ended at statement sl with
l < j, and ¬regfor(Hk, t, v)∧ regfor(Hk+1, t, v) (the atomic
statement gave access to v). Then this atomic statement
never accessed v, as ∀k < d ≤ l.¬access(Hd, tk, v).

3. k > i, and the atomic statement ended at statement sl with
l > j, and ¬regfor(Hk, t, v)∧ regfor(Hk+1, t, v) (the atomic
statement gave access to v). Then ∀(a, s′) ∈ Hk+1(t) −
Hk(t).a = ak ∧ (vσ ≤ s′ ⇒
inter f eres(s′, vσ). As ak > ai, the atomic statement can
only access v after the atomic statement at si terminates,
so sees the effects of that atomic statement’s writes.

4. regfor(Hk, t, v) (an enclosing atomic statement gave ac-
cess to v): consider the (unique) enclosing atomic state-
ment at l that gave access to v:

¬regfor(Hl, t, v) ∧ regfor(Hl+1, t, v)

If l < i, then the atomic statement at i cannot access v
until the atomic statement started at l ends, which must
necessarily be after the atomic statement at k ends. There-
fore the effects of the writes by the atomic statement at i
are not visible to the atomic statement started at k, as re-
quired.
If l > i, the same arguments as above can be applied to
show that either the atomic statement at k does not access
v, or it terminates after the atomic statement at k.

Corollary 1. Atomicity. In the trace of a program that does
not use open-nested transactions, the effects of an atomic
statement are visible to exactly those atomic statements that
started after it.
Proof: In the absence of nested atomic statements, the con-
dition ¬regfor(Hi, ti, v) ∧ regfor(Hi+1, ti, v) holds for all vari-
ables v accessed in the atomic statement at i.

All atomic statements at j with j > i that access any vari-
able v accessed by the atomic statement at i will necessarily
end after the atomic statement at i ends, so will all see the
effects of the writes of the atomic statement at i. Conversely,
all statements that start at j with j < i will not see the effects
of the atomic statement at i.

Finally, atomic statements that start at j with j > i and
end before si end cannot access any variable accessed by the
atomic statement at i or, by induction, depend on any atomic
statement that accesses such a variable, so the effects of the

atomic statement at i can be viewed as “visible” to the atomic
at j.

The requirement that the effects of an atomic statement
not be visible to atomic statements that end before it is nec-
essary to prevent surprising behaviors where the effects of an
incomplete atomic statement become visible to inner atomic
statements of other threads. Consider a slightly modified
trace language where pop is replaced by refine(σ1, . . . , σm)
which allows a thread to release shelters at any time or re-
place a coarser shelter by a finer one. The semantics for
refine allow a thread to refine any shelters it is registered
for:

∃(a, σ) ∈ H(t).ai = a ∧ σi ≤ σ

R,H |= (t, refine((a1, σ1), . . . , (am, σm))

H′ = H[t → {(a1, σ1), . . . , (am, σm)}]

M,R,H, a : (t, refine((a1, σ1), . . . , (am, σm))→ M,R,H′, a

In this modified trace language, a variant of Theorem 2
where the “and ended . . . ” clause is removed can easily
be proved. However, the following trace has the surprising
behavior that thread 2’s atomic statement must complete
after thread 1’s atomic statement (it accesses state shared
with thread 1’s atomic statement and started after it), but the
effects of thread 2’s atomic statement are visible to thread 1’s
inner atomic statement before thread 2’s atomic statement
completes:

(1, reserve(aσ, bσ)), (1, register(aσ)), (1, reserve(bσ)),
(2, reserve(aσ, cσ)), (2, register(aσ, cσ)),
(2, reserve()), (2, c = c + 1), (2, refine(aσ)),
(3, reserve(bσ, cσ), (3, register(bσ, cσ)), (3, reserve()),
(3, b = b + c)), (3, refine()),
(1, register(bσ)), (1, reserve()), (1, b = b + a), (1, refine()),
(2, a = 7), (2, refine())

The write in thread 2 to c affects the write in thread 3 to b,
and therefore the write in thread 1’s inner atomic statement
to b. While one could argue that this behavior is acceptable
(thread 1’s inner atomic statement does occur after thread
2’s atomic statement), we believe it would be very counter-
intuitive for programmers and should hence be forbidden.

In essence, allowing early shelter release exposes an
atomic statement’s effects “too early”. It is however worth
noting that in the absence of nested atomic statements, early
shelter release or refinement is sound (i.e. preserves atomic-
ity).

We attempted to prove that shelters could be understood
as providing a mutual exclusion property similar to locks:

Definition 2. A trace is lock equivalent if after every step,

∀t , t′.∀(a, σ) ∈ H(t), (a′, σ′) ∈ H(t′).¬interferes(σ,σ′)

i.e. two threads are never simultaneously registered for in-
terfering shelters.
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Conjecture 1. Lock equivalence. For every trace T which
evaluates to M,R,H, a there exists a lock equivalent trace T ′

which evaluates to M,R,H, a (in the same context). Further-
more, for every thread t, ops(t,T ) = ops(t,T ′), where ops (t,
T) is the subsequence of statements in trace T executed by
thread t.

However, this conjecture is invalid, as the following vari-
ation on the example above shows:

(1, reserve(aσ, bσ)), (1, register(aσ)), (1, reserve(bσ)),
(1, a = 10),
(2, reserve(aσ, cσ)), (2, register(aσ)), (2, register(cσ)),
(2, reserve()), (2, c = c + 1), (2, pop),
(3, reserve(bσ, cσ), (3, register(bσ, cσ)), (3, reserve()),
(3, b = b + c)), (3, pop),
(1, register(bσ)), (1, reserve()), (1, b = b + a),
(1, pop), (1, pop),
(2, a = a + 1), (2, pop)

Here thread 2’s inner atomic statement must happen af-
ter the start of thread 1’s outer atomic statement starts and
before the start of thread 1’s inner atomic statement. It is
thus not possible to reorganize this trace so that thread 1
and thread 2 are not simultaneously registered for interfer-
ing shelters. This trace also contradicts a weaker form of
conjecture 1 which only requires non-interference at assign-
ment statements (the trace element (1, b = b + a) cannot be
made to satisfy this weaker conjecture).
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