
Comprehending Implementation Recipes of Framework-Provided
Concepts through Dynamic Analysis

Abbas Heydarnoori
David R. Cheriton School of Computer Science,

University of Waterloo, Canada
aheydarnoori@uwaterloo.ca

Krzysztof Czarnecki
Electrical and Computer Engineering Department,

University of Waterloo, Canada
czarnecki@acm.org

Abstract
Application developers often use example applications as
a guide to learn how to implement a framework-provided
concept. To ease applying this technique, we present a novel
framework comprehension technique called FUDA. FUDA
integrates a new dynamic slicing approach with clustering
and data mining techniques to generate the implementation
recipes of a desired concept.

Categories and Subject Descriptors D.2.7 [Software En-
gineering]: Distribution, Maintenance, and Enhancement—
reverse engineering; D.2.13 [Software Engineering]: Reusable
Software—reusable libraries.

General Terms Design, Documentation, Experimentation.

Keywords Object-Oriented Software Frameworks, Frame-
work Comprehension, FUDA, Dynamic Slicing, Clustering,
Data Mining.

1. Introduction
Object-oriented software frameworks have shown to be one
of the most important reuse technologies available today by
capturing the commonalities of an application domain into a
set of carefully designed abstract classes with well-defined
collaborations. However, the Application Programming In-
terfaces (APIs) of many modern frameworks are complex
and difficult to learn. To cope with this problem, application
developers often use existing framework applications as a
guide to understand how to implement a specific framework-
provided concept (e.g., a context menu in the Eclipse en-
vironment using the JFace framework). However, the main
challenge of this approach is that the code implementing
the desired concept often involves multiple classes, and may

Copyright is held by the author/owner(s).
OOPSLA’07, October 21–25, 2007, Montréal, Québec, Canada.
ACM 978-1-59593-865-7/07/0010.

be scattered across and tangled with code implementing
other concepts. Therefore, tools and techniques are required
to help finding the relevant instructions among potentially
many thousands lines of source code.

To address this challenge, a number of techniques have
been proposed in literature. Examples include code searchers
(e.g., [8, 5]) and static code miners (e.g., [7, 9]). These tech-
niques apply static analysis on the source code of existing
example applications and allow retrieving code fragments
or usage rules for a particular API element. Although these
techniques can be very helpful in situations where the devel-
oper at least knows the name of the API element of interest,
they are less helpful if the developer has only a high-level
idea of the concept that needs to be implemented. In the
latter case, a concept location technique based on dynamic
analysis (e.g., [2]) can be used to locate the code implement-
ing the concept of interest. However, these techniques can
only identify the appropriate calls from the application to the
framework API and vice versa (i.e., framework API interac-
tion) when the concept of interest is invoked. Unfortunately,
implementing a framework-provided concept involves not
only implementing those calls and callbacks, but also cre-
ating, connecting, and destroying the objects that are called
when that concept is invoked. Since the object creation and
set-up as well as the necessary clean-up code often happen
well before and after the desired concept is invoked, the
existing dynamic concept location techniques would miss
them.

To address the above challenges in existing techniques
for framework comprehension and concept location, we de-
veloped a novel framework comprehension technique called
FUDA (Framework API Understanding through Dynamic
Analysis) [3]. FUDA extracts the implementation recipes of
a desired framework-provided concept from dynamic traces
with the help of a dynamic slicing approach integrated with
clustering and data mining techniques. The following sec-
tion provides an overview of this approach.

819



2. The FUDA Approach Overview
In FUDA, a framework-provided concept is defined as a
functionality that is realized in the example application’s
source code by using the framework’s API. Furthermore, the
concept has to have a visible behavior that can be triggered
by the user through the graphical or programmatic interface
of the application. The basic idea of FUDA is to generate the
implementation recipes for the desired framework-provided
concept by using the information collected at runtime. For
this purpose, a number of example applications implement-
ing that concept are selected and are run according to a num-
ber of use cases invoking it. At runtime, the traces of all
the interactions between the example applications and the
framework API are recorded, and those ones that happen
when the concept of interest is invoked are marked by the
software engineer using a trace marker utility.

The collected dynamic traces are then sliced with respect
to the marked interactions by applying a novel dynamic slic-
ing approach introduced in [3]. The purpose of this step is to
find and mark other interactions that might be relevant to the
implementation of the desired concept and happen either be-
fore or after invoking it. This dynamic slicing approach oper-
ates on framework API interaction traces rather than on com-
plete instruction traces as in the case of traditional dynamic
slicing [1]. For this purpose, we introduce a new type of data
dependence graph called AIDG (Framework API Interaction
Dependence Graph). An AIDG is a directed graph that rep-
resents the potential runtime data dependencies among the
events in the framework API interaction trace with respect
to their order of execution.

After slicing the framework API interaction traces and
marking the concept relevant interactions, they are analyzed
in a batch-like manner to generate the concept implementa-
tion recipes. For this purpose, since it is typically possible to
implement the same concept by using different framework-
provided abstractions, the framework API interaction traces
are clustered by a hierarchical agglomerative clustering al-
gorithm [6] based on their constituent marked interactions.
The aim of this phase is to explicitly let the user know dif-
ferent ways that her concept of interest can be implemented.

Following clustering the dynamic traces, mining frequent
closed itemsets [10] data mining technique is applied on each
cluster of dynamic traces separately to determine the concept
implementation recipes. Frequent closed itemsets are the set
of commands that are frequently used together in example
applications to implement the concept of interest. Each con-
cept implementation recipe specifies what framework API
classes should be instantiated by the application, what meth-
ods should be implemented on the application’s side, and
what framework API methods should be called by the appli-
cation.

3. Empirical Evaluation
To perform empirical evaluation, FUDA is prototyped in
Java (SDK 5.0) as two separate but related Eclipse plug-
ins [4]: Trace Collector Plug-in (TCP) to record and mark
framework API interaction traces, and Framework Compre-
hension Plug-in (FCP) that applies the FUDA technique on
the dynamic traces collected by the TCP.

We used the prototype implementations of FUDA to gen-
erate the implementation recipes for the following sample
concepts: (1) a context menu in an Eclipse view, (2) an
Eclipse view that supports tree viewers, (3) an Eclipse view
that supports table viewers, and (4) drawing a figure in a
GEF editor. The generated implementation recipes are then
analyzed both quantitatively and qualitatively by comparing
them against their corresponding framework API documen-
tation. The quantitative analysis shows that it is possible to
generate the implementation recipes for a concept of interest
with a high precision and recall by applying the FUDA tech-
nique on only a few example applications. The qualitative
analysis confirms that the generated implementation recipes
are comparable to those found in the framework API docu-
mentation.

References
[1] H. Agrawal and J. R. Horgan. Dynamic program slicing.

In PLDI, pages 246–256, New York, NY, USA, 1990. ACM
Press.

[2] T. Eisenbarth, R. Koschke, and D. Simon. Locating features
in source code. IEEE TSE, 29(3):210–224, 2003.

[3] A. Heydarnoori and K. Czarnecki. Comprehending object-
oriented software frameworks API through dynamic analysis.
Technical Report CS-2007-18, University of Waterloo,
Waterloo, ON, Canada, 2007.

[4] A. Heydarnoori and K. Czarnecki. Mining implementation
recipes of framework-provided concepts in dynamic frame-
work API interaction traces. In OOPSLA Companion, 2007.

[5] R. Holmes and G. C. Murphy. Using structural context to
recommend source code examples. In ICSE, pages 117–125.
ACM Press, 2005.

[6] A. K. Jain, M. N. Murty, and P. J. Flynn. Data clustering: A
review. ACM Computing Survey, 31(3):264–323, 1999.

[7] A. Michail. Data mining library reuse patterns using
generalized association rules. In ICSE, pages 167–176. ACM
Press, 2000.

[8] N. Sahavechaphan and K. Claypool. XSnippet: Mining for
sample code. In OOPSLA, pages 413–430. ACM Press, 2006.

[9] T. Xie and J. Pei. MAPO: Mining API usages from open
source repositories. In MSR, pages 54–57. ACM Press, 2006.

[10] M. J. Zaki. Mining non-redundant association rules. Data
Mining Knowledge Discovery, 9(3):223–248, 2004.

820


