
OMEN: A Tool for Synthesizing Tests for Deadlock Detection ∗

Malavika Samak †

Indian Institute of Science, Bangalore

malavika@csa.iisc.ernet.in

Murali Krishna Ramanathan ‡

Indian Institute of Science, Bangalore

muralikrishna@csa.iisc.ernet.in

Abstract

Designing and implementing thread-safe multithreaded li-

braries can be a daunting task as developers of these li-

braries need to ensure that their implementations are free

from concurrency bugs, including deadlocks. Developing

multithreaded tests for this purpose is significantly challeng-

ing. In this demo, we will demonstrate our tool (OMEN)

for synthesizing deadlock-inducing multithreaded tests for

Java libraries. The input to OMEN is the library implemen-

tation under consideration and the output is a set of deadlock

revealing multithreaded tests.

1. Introduction

Thread-safe [3] libraries are beneficial as the developers of

the client programs need not consider the intricacies of the

issues pertaining to multithreading and yet accrue the bene-

fits of multithreading. However, designing such libraries can

be challenging.

synchronized foo (A a) {
synchronized (a) {}

}
a1.foo(a2)

void testFoo(A a1, A a2) {
class A {

} }

class Test {

}

Figure 1. Illustrative example.

Consider the simple example shown in Figure 1. It

presents the implementation of method foo in class A.

When a client, testFoo, invokes foo as shown in the fig-

ure, a lock on a1 is acquired followed by a lock on a2. The

∗ An extended version is published at OOPSLA 2014 [4].
† 3rd year PhD student and the lead developer of OMEN.
‡ Assistant Professor. Formerly, a member of the core analysis team at

Coverity, San Francisco, USA.

Permission to make digital or hard copies of part or all of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for third-party components of this work must be honored.

For all other uses, contact the owner/author(s).

SPLASH ’14, October 20–24, 2014, Portland, OR, USA.

Copyright is held by the owner/author(s).

ACM 978-1-4503-3208-8/14/10.

http://dx.doi.org/10.1145/2660252.2664663

implementation of A is not thread-safe because a deadlock

can occur under certain scenarios when foo is called with-

out holding appropriate lock(s). For example, if two threads

invoke testFoo(a1,a2) and testFoo(a2,a1) concur-

rently, then a deadlock may manifest in some execution.

This is because the first thread may attempt to acquire a lock

on a2 while holding a lock on a1 and the second thread may

attempt to acquire a lock on a1 while holding a lock on a2.

If testFoo is executed by a single thread, a dynamic

deadlock detector[1, 5] will not detect any deadlock in

the corresponding execution. If we synthesize method se-

quences that can be executed concurrently in a random

manner and have the deadlock detector analyze the corre-

sponding execution, it will not necessarily be helpful either.

For example, invoking a1.foo(a2) from different threads

cannot help because the threads do not acquire the locks

in opposite order. For the deadlock to manifest, it is essen-

tial that different threads invoke foo as explained in the

previous paragraph. Unfortunately, even for such a simple

example, the sophisticated machinery of deadlock detectors

fail to detect any problems, unless a suitable test case exists.

In general, deadlocks can occur if a combination of cer-

tain methods are invoked by different threads. A brute force

analysis of concurrent execution of different possible com-

bination of methods [3] is impractical. Even assuming that

the relevant combination of methods to be executed concur-

rently is provided by an oracle, the invocation context be-

comes vital to detect any issues.

2. Architecture

We address the problem of synthesizing multithreaded test

cases to enable deadlock detection in multithreaded li-

braries [4]. Our key insight is that a subset of properties

(e.g., nested lock acquisitions) that are exhibited when a

deadlock manifests in a multithreaded execution can also be

observed in a single threaded execution. Subsequently, we

use the observed properties to enable the synthesis of a dead-

lock revealing multithreaded test case. Based on this insight,

we propose a novel, directed and scalable approach for syn-

thesizing multithreaded test cases. We have implemented a

tool, named OMEN, on top of the soot [6] bytecode analysis

framework that incorporates our approach.

37



Instrumentor
Detector

Cycle

Deadlock
Detector

Tests
Deadlocking

Randoop

Logger

Cycles

Instrumented
Lock

Dependency

Concurrent
Method

Invocations

Relation

Tests

Single−threaded
Tests

Library

Deadlocks

Multithreaded

Generator Synthesizer

Execution
Traces

Library,Tests

Figure 2. Architecture of OMEN.

The overall architecture of our tool, OMEN [4], for syn-

thesizing multithreaded test cases to enable deadlock de-

tection is given in Figure 2. There are four major com-

ponents in our design: Logger, Cycle Detector,

Synthesizer and Generator. The input to OMEN is

the library under consideration. If the seed testsuite (man-

ually developed single threaded tests) is not given as in-

put, we generate the seed testsuite using Randoop [2]. The

Instrumentor instruments the library and the tests. The

Logger executes the instrumented tests and stores the ex-

ecution traces. It also constructs a lock dependency relation

across the execution of all test cases in the testsuite and in-

puts it to the Cycle Detector. The Cycle Detector

detects the presence of cyclic chains in the dependency rela-

tion. A cycle suggests the possibility of a deadlock when the

corresponding test cases are executed concurrently. How-

ever, executing the identified test cases concurrently is not

enough as the threads need to acquire locks on shared ob-

jects in a conflicting order. The Synthesizer processes

the detected cycles and the execution traces to synthesize

possible sets of concurrent method invocations. These in-

vocations when made by different threads may manifest a

deadlock. For each set of invocations, the Generator con-

structs a multithreaded test case by spawning threads and

performing each invocation in the set from a different thread.

These tests are executed and analyzed by iGoodLock [1]

which reports the detected deadlocks along with the corre-

sponding multithreaded tests.

3. Evaluation

We analyze multithreaded Java libraries to evaluate OMEN.

All the experiments are conducted on an Ubuntu-12.04

desktop running on a 3.5 Ghz Intel Core i7 processor with

16GB RAM. We are able to detect a number of unknown

(and known) deadlocks by applying OMEN on many mul-

tithreaded Java libraries. We use the automatically gen-

erated tests from Randoop [2] as the seed testsuite and

are able to generate 26 multithreaded tests from a total of

3500 sequential tests. Table 1 presents the benchmarks along

with information on the number of tests synthesized for each
Class name Tests DL TP

DynamicBin1D 6 36 21

CharArrayWriter 1 1 1

ClosableByteArrayOutputStream 1 1 1

ClosableCharArrayWriter 1 1 1

HashTable 15 20 19

Stack 1 1 1

ByteArrayOutputStream 1 1 1

Total 26 61 45

Table 1. Experimental results. DL: Deadlocks, TP: True

Positives.

benchmark. Analyzing the execution traces of the synthe-

sized tests detects 61 deadlocks across all libraries, includ-

ing 45 true positives. In comparison, ConTeGe [3] randomly

invokes methods concurrently and generates approximately

27K multithreaded tests and is unable to detect any dead-

lock. The difference in the numbers shows the contrast be-

tween randomized and directed approaches. More interest-

ingly, we also detected the possibility of deadlocks in classes

in colt, a library for high performance scientific comput-

ing, that are documented as thread safe. The overall analysis

time of OMEN is negligible. For example, the analysis time

for a trace with one million elements (DynamicBin1D) is

seven minutes approximately.

4. Related Work

In ConTeGe [3], the authors describe a design for randomly

generating method invocations that can be executed concur-

rently. Subsequently, if a concurrent execution results in an

exception and none of the corresponding linearized execu-

tions fail, then a thread safety violation is reported. As we

discuss in Section 3, their approach invokes methods ran-

domly and the search space can be significant. Many dy-

namic analysis approaches [1, 5, 7] are designed for detect-

ing deadlocks. All these approaches are fundamentally de-

pendent on the quality of the analyzed executions to effi-

ciently detect deadlocks. This is dependent on the quality of

the tests. Our approach for automatically synthesizing mul-

tithreaded test cases complements these techniques.

References
[1] P. Joshi, C.-S. Park, K. Sen, and M. Naik. A randomized dynamic program

analysis technique for detecting real deadlocks. PLDI ’09.

[2] C. Pacheco and M. D. Ernst. Randoop: Feedback-directed random testing for java.

OOPSLA ’07.

[3] M. Pradel and T. R. Gross. Fully automatic and precise detection of thread safety

violations. PLDI ’12.

[4] M. Samak and M. K. Ramanathan. Multithreaded test synthesis for deadlock

detection. OOPSLA ’14.

[5] M. Samak and M. K. Ramanathan. Trace driven dynamic deadlock detection and

reproduction. PPoPP ’14.

[6] R. Vallee-Rai, E. Gagnon, L. Hendren, P. Lam, P. Pominville, and V. Sundaresan.

Optimizing java bytecode using the soot framework: Is it feasible? CC ’00.

[7] C. Yan, W. Shangru, and W. K. Chan. Conlock: A constraint-based approach to

dynamic checking on deadlocks in multithreaded programs. ICSE ’14.

38




