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Abstract
We present RDIT, a novel dynamic technique to detect data
races in multithreaded programs with incomplete trace in-
formation, i.e., in the presence of missing events. RDIT is
both precise and maximal: it does not report any false alarms
and it detects a maximal set of true traces from the observed
incomplete trace. RDIT is underpinned by a sound Barrier-
Pair model that abstracts away the missing events by captur-
ing the invocation data of their enclosing methods. By mak-
ing the least conservative abstraction that a missing method
introduces synchronization only when it has a memory ad-
dress in scope that overlaps with other events or other miss-
ing methods, and by formulating maximal thread causal-
ity as logical constraints, RDIT guarantees to precisely de-
tect races with maximal capability. RDIT has been applied
in seven real-world large concurrent systems and has de-
tected dozens of true races with zero false alarms. Compara-
tively, existing algorithms such as Happens-Before, Causal-
Precedes, and Maximal-Causality which are known to be
precise all report many false alarms when missing synchro-
nizations.
Categories and Subject Descriptors: D.2.5 [Software En-
gineering]: Testing and Debugging - Diagnostics; Debug-
ging aids
General Terms: Algorithms, Design, Theory
Keywords: Incomplete Trace, Data Race, Maximal, Precise

1. Introduction
Data races are an important class of concurrency errors
plaguing software systems today. A data race is commonly
defined as two unordered, conflicting accesses without inter-
vening synchronization. Because the two racy accesses may
be executed in different orders, programs with data races
are often non-deterministic, making testing and debugging

them notoriously challenging. What is worse is that data
races make it extremely difficult to reason about program
correctness, because in high-level languages such as Java
and C/C++, the semantics of data races are usually subtle or
undefined. Even though a data race may look benign in the
source code, compilers and hardware may transform it into
harmful bugs [6, 12, 13].

Researchers have proposed a wide spectrum of race de-
tection techniques [8, 10, 14, 21–23, 26, 33, 34, 42, 50, 52,
54, 57]. However, eliminating races in real-world programs
remains impractical. A crucial issue is that existing tech-
niques tend to not only detect true races, but also produce
many false alarms or false positives.1

False alarms are particularly problematic for race detec-
tion tools, because races are surprisingly difficult to diagnose
and validate. To correctly determine if a reported race is a
false alarm, the developer would need to analyze all possible
orderings of computations from different threads in all feasi-
ble paths, the space of which is often enormous for realistic
programs. Even if a race looks suspicious, it may still be a
false alarm due to certain subtle synchronizations that are not
(yet) understood by the programmer. Worse, real bugs such
as deadlocks could be added while attempting to fix a spuri-
ous race [26]. Consequently, any false alarms could signifi-
cantly decrease programmer productivity and make the tool
less useful.

The reasons for the false alarms are twofold. First, the
problem of precisely detecting all races in a program in gen-
eral is undecidable [49]. To scale to large programs, existing
techniques often overly approximate races. For example, the
LockSet algorithm [54] implemented in state of the art race
detectors [47, 56] is known to be imprecise. Moreover, the
challenge is rooted not only in the algorithmic complexity,
but also from various practical issues:

• Unavailability of whole program. Real-world systems
often rely on external libraries, proprietary code, and/or
are composed from layers of frameworks and extended
by third-party plugins. These programs may even be
loaded on the fly over the network. Analyzing the whole

1 In this paper we do not distinguish between benign and harmful data races.
Any false positive race is considered as a false alarm. See Section 6 for more
discussions on benign and harmful races.
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program to find all synchronizations is difficult or impos-
sible.

• Limitation of logging facilities. Many dynamic tech-
niques require capturing a full program execution trace
through static or dynamic instrumentation. The logging
facilities may be limited to certain languages or cannot
handle certain language features, such as builtin libraries
(e.g., java.*) or code written in a lower level language
(e.g., Java Native Interface (JNI) [2]).

• Performance slowdown. Many applications or compo-
nents are performance sensitive or have resource con-
straints such that they cannot tolerate any runtime slow-
down or memory overhead incurred by tracing, otherwise
they would fail to function properly. In some scenarios,
we may even desire to exclude certain code from tracing
to improve performance. For example, when debugging
code which implements a new feature, developers may be
interested in detecting races in that specific code region
and would want to skip the others.

In all these situations, we may end up missing vital pro-
gram trace information. When only partial program infor-
mation is available or observed, all existing precise algo-
rithms (i.e., Happens-Before (HB) [40], Causally-Precedes
(CP) [57], Maximal-Causality (MC) [33]) become impre-
cise. For example, the classical HB algorithm [40] is precise,
given that all critical events in the program execution are
captured. However, this requirement can hardly be satisfied
in practice, and HB-based tools [26, 56] tend to report many
false alarms [5] on real-world programs. For example, as
quoted from ThreadSanitizer (an industrial strength race de-
tector) [4]: “blacklisted functions are not instrumented. This
can lead to false positives due to missed synchronization”.

In this paper, we present a new dynamic race detection
technique, RDIT (Race Detection from Incomplete Traces),
that is both precise and maximal even when the trace is
incomplete, i.e., certain events in the program execution are
not tracked or are missed. “Preciseness” means no false
positives. “Maximality” means that no more precise races
can be detected based on the same incomplete trace. In other
words, RDIT detects a maximal set of true races that can
happen in all possible schedules inferred from an observed
(complete or incomplete) trace.

RDIT is underpinned by a novel BarrierPair model of an
incomplete trace, which soundly abstracts the behavior of
missing events through the invocation data of their enclosing
methods. BarrierPair is safe since it conservatively2 assumes
that all runtime data at the invocation sites of a method that is
not logged will be accessed inside the method and may intro-
duce synchronization. Meanwhile, it is the least conservative
approach, in that any data non-reachable from the method’s
runtime arguments will not be accessed inside the method

2 By “conservative”, in this paper we mean that the technique makes sure
not to detect false alarms.

and hence does not introduce synchronization. Moreover, in-
spired by Maximal-Causality (MC) [33], we integrate Barri-
erPair with MC by formulating the race detection problem as
a constraint solving problem. By solving a set of quantifier-
free first-order logic formulas using an off-the-shelf SMT
solver, RDIT is able to detect races precisely with maxi-
mal capability. However, different from previous work [33],
RDIT allows arbitrary events to be missed in the trace with-
out reporting any false alarms.

RDIT is built upon an initial idea developed in our prior
work published in a short paper [51]. This paper significantly
improves [51] with substantially deeper technical depth and
extensive evaluation of BarrierPair. Moreover, the race de-
tection algorithm developed in this paper (based on Barri-
erPair and MC) is completely different from that in [51] in
order to achieve soundness and maximality for general traces
with arbitrary number of threads.

We anticipate that RDIT will be useful in several prac-
tical scenarios. First, RDIT can be applied in systems (e.g.,
multi-language programs) where it is difficult to trace certain
computations. Second, RDIT can be used in programs with
third party libraries or user extensions of which the com-
plete code is unavailable. Third, RDIT is useful in perfor-
mance sensitive applications that cannot tolerate any instru-
mentation slowdown. Users of RDIT can selectively exclude
or include code sections/modules from the instrumentation.
Fourth, RDIT can speed up the runtime for localized debug-
ging where developers are only interested in certain code re-
gions (e.g., new features) and can skip logging code that they
believe is race-free.

We have implemented RDIT for Java and evaluated it on
seven real-world large multithreaded applications including
Eclipse IDE, Apache Derby Database, and Floodlight SDN
controller. RDIT detects a total of 85 true races in these sys-
tems with zero false positives, though it detects 27 fewer true
races than MC due to its conservativeness. In contrast, exist-
ing precise algorithms (HB, CP, and MC) report hundreds
of false alarms (149, 149, and 213, respectively) when syn-
chronization methods are missing from the trace. Moreover,
RDIT improves the overall program performance signifi-
cantly when used for capturing incomplete traces in practice,
and capturing the BarrierPairs incurs only 4%-13% runtime
overhead after applying an optimization to compute reach-
able runtime data of missing methods.

Limitations. We note that the precision of RDIT relies
on two assumptions. In theory, the RDIT tool may still re-
port false positives if these two assumptions are not satis-
fied. First, direct accesses to globals in a missing method
must be annotated by users (see Section 2.2 Caveat 5). Sec-
ond, the optimization used by RDIT to compute reachable
runtime addresses of missing methods (see Section 3.2.1)
approximates heap reachability. It is sound only when all
addresses used for synchronization are reachable from the
missing methods’ runtime arguments at the time of invoca-
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Figure 1: Ad-hoc synchronization in the missing methods
results in false alarms reported by Happens-Before.

tion. If a new reachable address is introduced inside a miss-
ing method, and that new address is used in a subsequent
missing method for synchronization, it may lead to missing
synchronizations.

In summary, this work makes the following contributions:
• We present a precise and maximal dynamic race detec-

tion technique that detects a maximal set of true races
from incomplete traces without any false alarms.

• We present a novel model of an incomplete trace that ab-
stracts away the missing events by capturing the invoca-
tion data of their enclosing methods. This model forms a
foundation for capturing maximal thread causality in the
presence of missing events.

• We present an extensive evaluation of our technique on
a range of real-world concurrent systems and demon-
strate the race detection effectiveness and runtime per-
formance.

2. Overview
We start by illustrating the problem of incomplete traces
with an example. We then introduce the BarrierPair model
and discuss the key technical challenges of realizing a pre-
cise and maximal race detection technique based on this
model.

Example. Consider the trace in Figure 1. We have two
threads T1 and T2 performing a Write and a Read on a
common address X . The greyed out region in between the
two events is the region of interest where we would like to
check for any synchronization. The synchronization can ei-
ther be in the form of a Happens-Before (HB) edge induc-
ing event such as Lock/Unlock, ThreadFork/ThreadJoin, or
an ad hoc synchronization, which causes an ordering in the
program execution. In the absence of any such synchroniza-
tion, we will flag the two events as a race. Therefore, when
all computations in this region are missed, existing precise
algorithms [33, 40, 57] will all report a race between the two
accesses. However, this is a false alarm when the two miss-
ing methods in the region introduce a synchronization (any
standard or ad hoc synchronization) on a shared address Y
(assume Y is a volatile flag and the value is initialized to
0). Thread T1, after performing the Write to X , sets Y to 1,

while Thread T2 waits until Y is set before it can perform
the Read on X . The shared address Y is used as a barrier in
Thread T2 to induce a desired HB ordering.

Caveat 0: Simple Barrier. A simple approach to avoiding
false alarms in the presence of these missing events would be
to consider each missing event (or a sequence of continuous
missing events) as a barrier, and add HB edges between bar-
riers in the observed order. For now we dismiss global vari-
ables, which will be discussed in Section 2.2. This approach
would guarantee to detect no false alarm, because it strictly
serializes the missing events. However, it is also overly con-
servative in that it would miss many true data races. For in-
stance, if the two missing methods in Figure 1 are empty or
access different data, there will be a true race on the two
accesses to X , but this simple barrier approach will miss it.

Key Idea. Our technique provides the same precision guar-
antee as the simple barrier approach, however, at the minimal
cost of missing true races. Our key observation is that al-
though the computations inside the missing methods are un-
known, the invocation of those missing methods can usually
be captured. The runtime data at the invocation sites actually
provides valuable information to approximate the behavior
of the missing computations. For example, consider our ex-
ample in Figure 1 again. Both of the two missing methods
in threads T1 and T2 have accesses to the same memory ad-
dress Y . In the absence of this shared address, there is no
possibility for these two missing methods to introduce any
synchronization. More generally, if the two missing methods
have addresses A and B, respectively, in their scope, and if
A ∧ B = ∅, then we can safely conclude that no ordering
can be induced through this pair of missing methods. Mean-
while, ifA∧B 6= ∅, without knowing any other information,
the missing methods may use the overlapped addresses to
synchronize. This observation leads to our first contribution
in this work – the BarrierPair model, explained next.

2.1 The BarrierPair Model
Instead of abstracting each missing event as a barrier, we in-
troduce two events for each missing method call – (Method-
Begin, MethodEnd), and refer to this pair of events as a Bar-
rierPair. Specifically, a BarrierPair is associated with the fol-
lowing attributes:
• Tid: a thread ID denoting the thread that calls the missing

method.
• Begin: a MethodBegin event corresponding to the invoca-

tion of the missing method.
• End: a MethodEnd event corresponding to the return of

the missing method.
• D: a set of memory addresses that can be reached by the

missing method.
• Between: a (possibly empty) set of observed events

that occur in-between the MethodBegin and MethodEnd
events from the particular thread. These events can be
introduced by callback functions.
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Figure 3: Examples illustrating the caveats (explained in Section 2.2). The threads and BarrierPairs correspond to that in
Figure 2 with minor modification on the reachable addresses. To make the synchronization valid, we assume that the variables
y, z, w used in the synchronizations are declared volatile. A false alarm race on the two observed accesses to x would be
reported if any of the HB edges (denoted by the red arrows) is missed. The illustrated caveats are: (a) Overlapping BarrierPairs
can incur multiple HB edges; (b) Events in between BarrierPairs may be observed and can introduce HB edges; (c) Multiple
BarrierPairs can introduce HB edges transitively.

T2#

c#
(y,z)#

T1#

a#
(y)#
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(z)#

d#
(w)#

e#
(w,v)#

f#
(w)#
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Figure 2: A program trace consisting of four threads and six
BarrierPairs (a − f ), each denoting a missing method call
with its reachable memory addresses. For example, the Bar-
rierPair a(y) denotes that the corresponding missing method
a may access address y. Four HB edges (a→c, c→b, d→f ,
f→e) are added between those BarrierPairs with overlap-
ping reachable addresses.

The two events MethodBegin and MethodEnd are similar
to the other types of events in the trace (we will present a
formal model in Section 3) and all such events are globally
ordered. We require that for each missing method these two
events are always paired. In the occurrence of uncaught
exceptions during a missing method call, we enclose the
method by a try-catch block and re-throw the exceptions.
Other events can also occur in-between a BarrierPair and
be recorded in the trace, and multiple BarrierPairs may be
nested.

The attributes of a BarrierPair can be recorded and com-
puted at runtime without knowing the computation in the
missing methods. This information can be used to approx-
imate the synchronization behavior between missing meth-
ods. For example, if the memory addresses that can be

reached by two BarrierPairs from different threads do not
overlap, we can safely conclude that no ordering can be in-
duced through this pair of missing methods. If they do over-
lap, they may be synchronized and we should then add HB
edges to denote their ordering. Figure 2 illustrates six Bar-
rierPairs in a trace and four added HB edges between them.
With this enhancement, the same HB algorithm [26, 40] or
other precise algorithms [33, 57] can be directly applied to
detect races without any change.

Moreover, the BarrierPair model matches with the real-
world usages naturally. The user can choose to exclude cer-
tain methods, classes, or packages from tracing with com-
mand line options such as “--exclude=java.*,sun.*” to
instruct the instrumentation tool not to trace methods in these
packages. This is actually a standard step used in many exist-
ing analysis frameworks [3, 33, 39]. It reduces both the trace
size and runtime overhead, and also avoids the problem of
tracing native code used in those excluded methods. Further-
more, a BarrierPair can be used to approximate the compu-
tation inside the missing method. For example, if a missing
method is deterministic, the same invocation data recorded
in a BarrierPair will always produce the same computation
by calling this missing method.

2.2 Technical Challenges
The BarrierPair model paves the foundation for precise race
detection from incomplete traces. However, there are several
tough challenges we must tackle to develop a race detection
technique that is both precise and maximal:

1. How to add HB edges that are both sufficent to guarantee
precision and minimal to guarantee maximality?

2. How to compute (and compute efficiently) the full set of
reachable memory addresses for each BarrierPair?

3. How to perform race detection that can maximize the
detection power given an incomplete trace?
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The first two challenges are fundamental to the sound-
ness of our technique; we describe next a few caveats to il-
lustrate these challenges. We then present our race detection
technique in detail in Section 3. We note that these caveats
are not exhaustive. However, our race detection technique is
both precise and maximal, powered by the maximal causal-
ity model and the BarrierPair model.

Caveat 1: Overlapping BarrierPairs. Intuitively, we can
enforce orderings between BarrierPairs with overlapping
reachable addresses by adding a HB edge from one Bar-
rierPair to another in the observed order in the trace. For
example, in Figure 2, we add the HB edge a→c from the
MethodEnd of a to MethodBegin of c, because a and c have
an overlapping reachable address, y, and a occured before c.
However, this naive method does not work when two Bar-
rierPairs overlap in time. For instance, the BarrierPair d in
Figure 2 overlaps with a. Suppose d also accesses address
y, we cannot simply add a single HB edge from a to d or
from d to a, but multiple HB edges may be needed. The
reason is that the overlapping region may incur multiple
HB edges between events in the missing methods. Con-
sider an example in Figure 3(a). Three HB edges must be
added between the MethodBegin and MethodEnd events of
the two BarrierPairs, because of the ad hoc synchroniza-
tions incurred by the missing events on y. For instance, the
HB edge d.begin→a.end must be added, because the Meth-
odEnd event of BarrierPair a cannot happen until y is set to
0 by Thread T3, which is after the MethodBegin of Barrier-
Pair d. Otherwise, a false alarm would be reported between
the Read to x in Thread T1 and Write to x in Thread T3.

Caveat 2: Observed Events in-between BarrierPairs. Al-
though computations inside missing methods are opaque,
events from a missing method call may still be observed,
for example, through callback functions. When events ap-
pear between the MethodBegin and MethodEnd events of a
BarrierPair, their orderings with other BarrierPairs must be
correctly enforced. Consider a trace in Figure 3(b) (slightly
modified from Figure 3(a)). The Read and Write events to x
in the two missing methods are both observed in the trace.
We would report a race between them if we consider the
same HB edges as that in Figure 3(a). However, this is a
false alarm because the Write cannot happen until x is set
to 1 by Thread T1, which is after the Read. Therefore, we
must add HB edges between these observed events and the
BarrierPair events.

Caveat 3: Orderings Between BarrierPairs and Ordinary
Events. A BarrierPair can introduce HB orderings not only
with other BarrierPairs and events in-between them, but
also with those ordinary events outside missing methods.
Consider again Figure 3(b). Suppose the method d in Thread
T3 is not missing, the events at “while y!=1” are ordinary
events. We must add a HB edge from the event Read(x) in
Thread T1 to these ordinary events. Otherwise, similar to

Caveat 2, a false alarm would be reported between Read(x)
and Write(x).

Caveat 4: Transitive Orderings Over Multiple BarrierPairs.
HB orderings are transitive. Two BarrierPairs without any
common reachable address does not mean that they cannot
be ordered, because they may be ordered transitively through
other events or BarrierPairs. False alarms might be reported
if we only consider BarrierPairs pairwisely. For example,
consider the three BarrierPairs c, e, and f shown in Fig-
ure 3(c), and suppose f can also access address y. Because
y is also accessed by c, a HB edge c→f from BarrierPair c
to f must be added. And also because f→e, we have c→e.
That is, the BarrierPair c must happen before e, though they
do not have any common reachable address. Hence, the two
accesses to x by threads T2 and T3 are ordered by HB edges
and are not a race.

Caveat 5: Global Variables. In the BarrierPair model, we
have made the assumption that the addresses used to perform
synchronizations are local in scope, i.e., they are passed in
as runtime parameters at the missing method’s invocation
site. For addresses that are global in scope, such as public
static variables in Java, their contribution to synchroniza-
tion is ignored. However, if such global variables are directly
accessed3 in missing methods, false alarms may be intro-
duced.

One way to address this issue is to use the simple barrier
approach which, as explained earlier in Caveat 0, is overly
conservative such that it would miss many true races. In-
stead, we propose a language extension that allows the users
of RDIT to annotate direct global variable accesses at the
call sites of missing methods. Specifically, we provide a cus-
tom Java annotation @Global(X) that users can insert before
invocations of missing methods to specify that the global
variable X (which is either an object reference or a volatile
primitive) may be directly accessed in a missing method. For
example, static synchronizations to a class C are defined as
@Global(C.class). At runtime, X is added to the set of
reachable memory addresses of the BarrierPair. This method
guarantees soundness, though reducing automation.

Nevertheless, we note that directly accessing global vari-
ables in external methods is rarely seen in real-world pro-
duction systems. In our studied real-world systems, the only
such cases are those to immutable global variables through
singleton, which do not introduce any synchronization at all.
In other words, to use RDIT annotations are almost never
needed in practice.

3. The RDIT Technique
We first present in Section 3.1 a formal model of maximal
thread causality with missing events, following the approach

3 Note that in the BarrierPair model global variables are allowed to be
accessed in missing methods, and as long as their accesses are visible (e.g.,
through callbacks), no false alarm will be introduced.
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introduced in MC [33] (there without missing events). A
key advancement of this new model is that it incorporates
the notion of BarrierPair to guarantee both soundness and
maximality from incomplete traces. We then present our
RDIT algorithm in Section 3.2, including how to compute
the reachable memory addresses of BarrierPairs and how to
encode the new model with constraints. Our constraint en-
coding shares the same spirit with prior work [33] to guaran-
tee soundness and maximality. Differently, we must consider
the additional constraints introduced by the BarrierPairs.

3.1 Maximal Causality Model with Missing Events
Consider an arbitrary multithreaded program P . It can be
abstracted as a set of finite traces that it can produce when
completely or partially executed, called P-feasible traces.
A trace is a sequence of events, which are operations per-
formed by threads on concurrent objects. The following
common event types are often considered in previous race
detection work [26, 33, 57]:
• Read(t,x,v)/Write(t,x,v): read/write x with value v;
• Lock(t,l)/Unlock(t,l): acquire/release a lock l;
• ThreadBegin(t): the first event of thread t;
• ThreadEnd(t): the last event of thread t;
• ThreadFork(t,t′): fork a new thread t′;
• ThreadJoin(t,t′): block until thread t′ terminates;

Note that the event value is also a part of the definition.
For example, if the value returned by a read is changed, it
becomes a different read event, such that a conditional after
the event may produce a different trace.

In this work, in addition to the usual events above, we
include two new events:
• MethodBegin(t,m,D): invoking a method m that is miss-

ing with a set of reachable addresses D.
• MethodEnd(t,m): returning from a missing method m.

Similar to Lock and Unlock events, MethodBegin and
MethodEnd events can appear anywhere in the trace and can
be nested, but they are alway paired for the same thread
t and method m. Each pair of MethodBegin and Method-
End events forms a BarrierPair, which indicates that certain
events in between these two events from the same thread are
missed in the trace, and those events can perform arbitrary
operations on any objects in D.

The sets of P-feasible traces must obey two basic consis-
tency axioms: prefix closedness and local determinism. The
former says that the prefixes of a P-feasible trace are also
P-feasible. The latter says that each thread has deterministic
behavior, that is, only the previous events of a thread (and
not other events of other threads) determine the next event
of the thread, although if that event is a read then it is al-
lowed to get its value from the latest write. For any consis-
tent trace τ , these two axioms allow us to associate it with a
maximal causal model, MCM(τ), which comprises precisely
those traces that can be generated by any program that can
generate τ . Specifically, from τ , we can infer a sound and

Algorithm 1 The RDIT Algorithm

1: τ : input trace;
2: Oe: order variable for event e.
3: BP = ComputeBarrierPairs(τ );
4: Φmcm = ConstructMCMFormula(τ , BP);
5: for all conflicting events (a, b) in τ do
6: if Φmcm ∧ (Oa = Ob) is satisfiable then
7: report race (a, b).
8: end if
9: end for

maximal set of traces MCM(τ) by checking the two axioms,
such that (1) any program that can generate τ can also gen-
erate all traces in MCM(τ), and (2) for any trace τ ′ not in
MCM(τ) there exists a program generating τ which cannot
generate τ ′. Note that MCM(τ) here is different from that in
prior work [33], because τ is incomplete and contains Barri-
erPairs that abstract missing events.

3.2 Data Race Detection Algorithm
To perform precise and maximal race detection, intuitively,
we can generate MCM(τ) and detect races in every trace in
the set. However, generating MCM(τ) is challenging. Ex-
haustively enumerating all reorderings of τ and checking
against the two axioms is impractical. Moreover, the se-
mantics of BarrierPairs must be correctly modeled to ensure
soundness (recall the caveats in Section 2.2). In RDIT, fol-
lowing [33], we encode MCM(τ) as a series of quantifier-
free first-order logic formulas, Φmcm, such that any solution
to Φmcm represents a trace in MCM(τ). By modeling races as
additional constraints, we formulate the race detection prob-
lem as a constraint solving problem.

Specifically, given an input trace τ , the goal of RDIT is to
find a trace τ ′ in MCM(τ) with two conflicting events (i.e.,
Read/Write events, accessing the same memory address, at
least one is a Write) a and b from different threads, such that
a and b are next to each other in τ ′. Algorithm 1 outlines
our race detection algorithm. A key step is to introduce
an order variable O for each event e in τ , denoting the
order of e in τ ′, and use these order variables to encode
Φmcm. We first compute the set of all BarrierPairs from τ .
This step is mostly straightforward except that we need to
efficiently compute the set of reachable memory addresses
for each BarrierPair (explained shortly). We then construct
the formula Φmcm from τ and the BarrierPairs. Finally, for
each pair of conflicting events (a, b) from different threads,
we invoke an SMT solver to solve Φmcm conjuncted with the
race constraint Oa = Ob. If the solver returns a solution, it
means that there exists a trace in MCM(τ) in which the two
events a and b are unordered, and hence (a, b) is a true race.

3.2.1 Computing Reachable Memory Addresses
The set of reachable memory addresses of a BarrierPair is
the union of all reachable addresses from runtime parame-
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ters passed at the invocation of the corresponding missing
method. For Java programs, the reachable addresses of an
object can be represented by a tree whose nodes are objects
and edges denote field references (back edges are removed).
The object tree can be generated using the Java reflection
mechanism. To compute a complete set, for each MethodBe-
gin event, we would need to track every method parameter
object and iterate through its declared fields and inheritance
stack to compute the object tree. However, this may incur a
large runtime overhead and produce huge logs when calls to
missing methods are frequent and the object tree is large. We
will present the performance results in Section 5.3.

An Optimization. We develop an efficient method that
does not compute the complete set of reachable addresses
for every object upon every missing method call, but only
once for each object for all missing method calls. This op-
timization is unsound in theory, but works well in practice.
The key observation is that the object tree is static most of
the time. It is only changed when write operations to field
references (i.e., o1.f = o2) are performed. Before such a
write operation, the object tree of o1 needs to be computed
only once and can be reused, and upon an update operation,
only the subtree from o1.f needs to be updated. Moreover,
any such operation is either recorded in the trace or missed
because it is from a missing method. If the former, we can
recover o2 by analyzing the trace. For the latter, we may
ignore the update because o2 might be already included in
the set of reachable addresses, D, of the missing method.
The only condition is that if o2 is not in D, it should not be
used for synchronization. In fact, this condition is never vio-
lated in our study of real-world applications (see Section 5).
Therefore, in this optimization, for each object at runtime,
we compute and log its object tree only once, and we re-
cover the updates made by object field Write events in the
trace analysis phase, which is offline.

3.2.2 Constraint Encoding of MCM(τ)

Algorithm 2 shows our constraint encoding algorithm for
MCM(τ). Φmcm is constructed with three kinds of operators,
“<” (less than), “∧” (conjunction), and “∨” (disjunction),
over the order variables O, and “<” is transitive. Φmcm is a
conjunction of the following five types of constraints:

1. BarrierPair Constraints (Lines 7-20). This type of
constraints capture the HB edges between the miss-
ing events themselves and between the missing events
and the observed events. For each pair of BarrierPairs,
if their reachable addresses overlap, we linearize all
of their associated events (including both MethodBe-
gin/MethodEnd events and the Between events associ-
ated with the BarrierPair), and construct constraints to
enforce HB orderings between them. The rationale is
that a missing event may exist anywhere in a Barrier-
Pair and may introduce synchronization with any other
event (either observed or not) accessing the overlapped

Algorithm 2 ConstructMCMFormula(τ , BP)

1: τ : input trace;
2: BP: all BarrierPairs in τ .
3: T ← GetAllThreads(τ );
4: L← GetAllLocks(τ );
5: Φmcm = true; // initialized to true
6: // 1. Construct BarrierPair Constraints
7: for bp1, bp2 ∈ BP do
8: if bp1.D ∧ bp2.D 6= ∅ then
9: S ← UnionEvents(bp1, bp2);

10: Φmcm ∧= GetLinearizationConstraints(S);
11: end if
12: end for
13: for bp ∈ BP do
14: for x ∈ bp.D do
15: for e ∈ GetAllReadWritesOnAddress(τ ,x) do
16: S ← UnionEvents(bp, e);
17: Φmcm ∧= GetLinearizationConstraints(S);
18: end for
19: end for
20: end for
21: // 2. Construct Program Order Constraints
22: for t ∈ T do
23: τt = GetThreadEvents(τ , t); // events by Thread t
24: for i = 1:|τt| − 1 do
25: // Ot,i: order variable of the ith event in τt
26: Φmcm ∧= Ot,i < Ot,i+1;
27: end for
28: end for
29: // 3. Construct Fork Join Constraints
30: for e ∈ GetThreadForkJoinEvents(τ ) do
31: if e =ThreadFork(t, t′) then
32: Φmcm ∧=Oe < Ot′,begin;
33: else if e =ThreadJoin(t, t′) then
34: Φmcm ∧=Ot′,end < Oe;
35: end if
36: end for
37: // 4. Construct Locking Constraints
38: for l ∈ L do
39: // pairs of lock/unlock events on l
40: LPl = GetLockPairs(τ , l);
41: for (ea, eb), (ec, ed) ∈ LPl do
42: Φmcm ∧= (Oeb < Oec ∨Oed < Oea );
43: end for
44: end for
45: // 5. Construct Read Consistency Constraints
46: for e =Read(t, x, v) ∈ τ do
47: W x ← GetAllWritesOnAddress(τ ,x);
48: W x

v ← GetAllWritesOnAddressValue(τ ,x,v);
49: Φmcm ∧=

∨
w∈Wx

v

(Ow<Oe

∧
w 6=w′∈Wx

(Ow′<Ow ∨Oe<Ow′ ));

50: end for
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Algorithm 3 GetLinearizationConstraints(S)

1: S: an input set of events;
2: φ = true;
3: Z = LinearizeByGlobalId(S);
4: for i = 1:|Z| − 1 do
5: φ ∧= OZ[i] < OZ[i+1];
6: end for
7: return φ

addresses. Specifically, the function UnionEvents first
unions all these events into a set S. Then the function
GetLinearizationConstraints (Algorithm 3) linearizes
the events in S into an ordered list Z by their order (i.e.,
GlobalId) in the input trace, and returns a formula in
terms of “OZ[i] < OZ[i+1]” conjuncted over all events
Z[i]. Similarly, for each BarrierPair and any ordinary
Read/Write event accessing an overlapped address4, we
construct constraints to enforce their HB orderings.

2. Program Order Constraints (Lines 22-28). This type
of constraints ensure sequential consistency, such that
events from the same thread cannot be reordered. Specif-
ically, we construct a constraint Oe1 < Oe2 whenever e1
and e2 are events by the same thread and e1 occurs be-
fore e2. Note that because HB is transitive, it is sufficient
to conjunct such constraints between consecutive events
from the same thread. This type of constraints can also
be weakened to reflect relaxed memory models such as
TSO and PSO [36]. Nevertheless, we focus on sequential
consistency in this work.

3. Fork Join Constraints (Lines 30-36). The semantics
of ThreadFork and ThreadJoin events requires that a
ThreadBegin event can happen only after the thread is
forked by ThreadFork from another thread, and that a
ThreadJoin event can happen only after the ThreadEnd
event of the joined thread. We hence construct a con-
straint Oe1 < Oe2 when e1 is an event of the form
ThreadFork(t, t′) and e2 of the form ThreadBegin(t′),
or when e1 is an event of the form ThreadEnd(t) and e2
of the form ThreadJoin(t′, t).

4. Locking Constraints (Lines 38-44). The locking seman-
tics requires that any two code regions protected by the
same lock are mutually exclusive. We first extract all
pairs of Lock/Unlock events for each lock l, following
the program order locking semantics: Unlock is paired
with the most recent Lock on the same lock by the same
thread. Then for each two such pairs, (ea,eb), (ec,ed), we
construct the constraint (Oeb < Oec ∨ Oed < Oea ) and
conjunct them.

5. Read Consistency Constraints (Lines 46-50). This type
of constraints ensures that the two basic axioms (recall

4 At the programming language level, these addresses should be volatile for
Java and C/C++ in order to introduce synchronization.

Section 3.1) are satisfied by requiring that every event in
the inferred trace τ ′ is feasible. Due to prefix closedness,
τ ′ does not necessarily contain all the events in τ but
may contain a subset of them. Due to local determinism,
an event is feasible if every read it depends on gets the
same value as that in τ . Each read, however, may read
a value written by any write on the same address, as
long as all the other constraints are satisfied. We hence
construct a constraint (shown in Algorithm 2) for each
Read(t, x, v) event such that it is allowed to read the
value v on x written by any Write event w, subject to the
condition that w writes to x with v, and there is no other
intervening Write to x with a different value. The size
of read consistency constraints is cubic in the number of
Read/Write events, and may dominate the size of Φmcm.

Soundness and Maximality. It is important to note that
the constructed formula Φmcm is both sound and maximal
(assuming sequential consistency). That is, Φmcm encodes
precisely all the feasible traces in MCM(τ), and each so-
lution of the order variables to Φmcm corresponds to a valid
reordering of events in τ . The proof can be derived from the
soundness and maximality proof of MC [33]. The key dif-
ference here is that the BarrierPair constraints should pre-
cisely capture all the necessary happens-before orderings
that the missing events may incur. This can be proved by the
same reasoning as we construct the BarrierPair constraints:
a missing event may exist anywhere in a BarrierPair and
it may introduce a happens-before ordering with any other
event (either observed or not) accessing an overlapped ad-
dress.

The complexity of MCM(τ) may be exponential in the
trace size, as the number of unique solutions to Φmcm can be
exponential. In RDIT, however, we do not need to directly
solve Φmcm to produce all the traces in MCM(τ). Instead, it
suffices to find one trace that satisfies the race condition.

4. A Case Study
In this section, we present a case study of race detection in a
popular multithreaded benchmark – Account (Figure 4). We
show that all existing precise algorithms [26, 33, 57] report
several false alarms in this benchmark due to missing events
in the native library. We illustrate how RDIT detects the only
true race while suppressing all false alarms.

False Alarms in the Account Benchmark. This bench-
mark has been used frequently in previous race detection
studies [26, 33, 38, 55, 57]. In this program, a number of
bank accounts are simulated by concurrent threads to han-
dle deposits. The sum of deposited amounts by all threads
is tracked dynamically. At the end of the execution, the sum
is compared with the total balance of all accounts. If they
are not equal, it indicates a concurrency error. Figure 4(a)
shows code snippets of the main thread (T0) and two ac-
count threads (T1 and T2). The loop at lines 10-14 in T0
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(a) code (b) trace (c) constraints

Write(t0,y,0)
Write(t0,x1,0)
Write(t0,x2,0)
ThreadFork(t0,t1)
ThreadFork(t0,t2)
ThreadBegin(t1)
Read(t1,x1,0)
Write(t1,x1,100)
Read(t1,y,0)
Write(t1,y,100)
ThreadEnd(t1)
ThreadBegin(t2)
Read(t2,x2,0)
Write(t2,x2,200)
Read(t2,y,100)
Write(t2,y,300)
ThreadEnd(t2)
MethodBegin(t0,m1,{t1})
MethodEnd(t0,m1)
MethodBegin(t0,m1,{t2})
MethodEnd(t0,m1)
Read(t0,x1,100)
Read(t0,x2,200)
Read(t0,y,300)

1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23
24.

O11<O18 �O17<O20
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O9=O16�O10<O15

O10=O15�O9<O16

O10=O16�O9<O16
�O10<O15

O8=O22

O14=O23�O8<O22

O10=O24�O8<O22�
O14<O23�O9<O16

O16=O24�O8<O22�
O14<O23�O10<O15

(e9, e16)

(e10, e15)
(e10, e16)

(e14, e23)

(e10, e24)

(e16, e24)

(e8, e22)

BarrierPair 
constraints:

Program Order 
constraints:

Fork Join 
constraints:

T1

T0

9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.

int r1= 100; 
accounts[0].Balance += r1; 
BankTotal += r1; 

3. 
4. 
5. 

T2
int r2= 200; 
accounts[1].Balance += r2; 
BankTotal += r2; 

6.
7.
8.

initially BankTotal=accounts[i].Balance=0

1.
2.

threads[0].start(); // start T1  
threads[1].start(); // start T2  
 
 
 
 
 
 
 
 
// wait for all threads to die. 
for(int i = 0; i<2; i++) 

 ���if(threads[i].isAlive()){ 
 i = 0;     
 Thread.sleep(); 

 ��} 
// sum up all balances 
TotalBalance = accounts[0].Balance; 

 TotalBalance += accounts[�].Balance; 
// check balance 
if(BankTotal != TotalBalance) 

 ����ERROR; 

!
!
!

Real race: (5, 8)

False alarms:
(4, 16), (7, 17), (5, 19),(8, 19) 

Figure 4: The Account benchmark. Existing precise dynamic algorithms (e.g., Happens-Before) all report four false alarms due
to missing events caused by the native method call Thread.isAlive() at line 11. By incorporating BarrierPair events (e18-e21)
into the trace and formulating maximal causality constraints, RDIT reports no false alarm and detects the only true race (5,8).

is important to note here. It behaves as a join for T1 and
T2, though it contains no Thread.join() statement. Specif-
ically, Line 11 calls Thread.isAlive() to check if T1 and
T2 have terminated or not. If not, the loop variable i will
be set to 0 at line 12 and the loop will iterate again after
Thread.sleep() at line 13. However, because Thread.isAlive()
is a native method implemented through JNI, it is difficult to
trace the computations inside the method. As a result, exist-
ing dynamic race detectors [28, 33, 56] all report false alarms
at lines (4,16), (7,17), (5,19), (8,19) due to missing
events in this method, even though the race detection algo-
rithms [26, 33, 57] they use are precise. In fact, the only true
race in this benchmark is between lines (5,8) (because T1
and T2 can execute concurrently and there is no lock pro-
tecting these two statements), and this race may cause the
error at line 20 to occur.

How RDIT Detects the Only True Race. Suppose we ob-
serve an execution of the program following an order de-
noted by the line numbers. The corresponding trace is shown
in Figure 4(b). To avoid clutter, we omit read-only events
to accounts[i], and we refer to accounts[i].Balance as xi,
BankTotal as y, and the missing method Thread.isAlive()
as m1. To instantiate our event model presented in Sec-
tion 3.1, variable initialization events, e1:Write(t0,y,0) and
e2,3:Write(t0,xi,0) (i=1, 2), and thread begin/end events
e6,12:ThreadBegin(ti)/e11,17:ThreadEnd(ti) are also included
in the trace. For lines 4-5 and 6-7, each line corresponds to
two events (a Read and a Write).

The trace has two BarrierPairs (both triggered at line 11):
(e18:MethodBegin(t0,m1,{t1}), e19:MethodEnd(t0,m1)), and
(e20:MethodBegin(t0,m1,{t2}), e21:MethodEnd(t0,m1)).

From the trace, the constraints formulated by RDIT are
shown in Figure 4(c). Let Oi refer to the order variable
of ei. The BarrierPair constraints are written as O11 <
O18 ∧ O17 < O20, because the two BarrierPairs have
overlapping reachable addresses, t1 and t2, with the two
ThreadEnd events e11 and e17, respectively. The Program
Order constraints and Fork Join constraints are similarly
constructed following Algorithm 2. The Locking constraints
are empty because the trace contains no lock. The Read Con-
sistency constraints are encoded together with the race con-
straint for each conflicting event pair from different threads
to simplify our presentation (by avoiding redundant formu-
las). For instance, for the event pair e9:Read(t1,y,0) and
e16:Write(t2,y,300), the constraints are written as O9 =
O16 ∧ O10 < O15, because e16 depends on the read
e15:Read(t2,y,100), which must happen after the write
e10:Write(t1,y,100) that sets y to 100. Similarly, for (e10,
e24:Read(t0,y,300)), the constraints are written as O10 =
O24 ∧ O8 < O22 ∧ O14 < O23 ∧ O9 < O16, be-
cause e24 depends on two reads, e22:Write(t0,x1,100) and
e23:Write(t1,x2,200), which must happen after the two
writes, e8:Write(t1,x1,100) and e14:Write(t2,x2,200), re-
spectively, to get the valid value.

Conjoining all these constraints, we invoke an SMT
solver (Z3 [19] in our implementation) to compute a so-
lution. Because all unknown variables in the constraints are
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integers, and for the race constraintOa = Ob we can replace
Oa by Ob, the constraints can be efficiently solved by Inte-
ger Difference Logic (IDL). For (e10,e15), the solver returns
a solution, so lines (5,8) are a true race. However, for all the
other four conflicting event pairs at lines (4,16), (7,17),
(5,19), (8,19), the solver reports that no solution exists.
Therefore, all of them are false alarms.

We note that another way to avoid the false alarms in
this example is to properly model the happens-before ef-
fects of the Thread.isAlive() method at the language level.
However, this would require nontrivial manual effort (e.g.,
Thread.isAlive() does not incur the usual happens-before but
can be executed anytime regardless of the thread’s termina-
tion) and hence may not scale to large programs. In contrast,
our technique is automatic and does not require such manual
modeling of happens-before effects.

5. Evaluation
We have implemented the RDIT algorithm in RVPredict [33],
a recent race detector for multithreaded Java programs based
on ASM [1] and Z3 [19]. RVPredict allows us to perform a
direct comparison between RDIT and three existing precise
algorithms – Happens-Before (HB) [40], Causally-Precedes
(CP) [57], Maximal-Causality (MC) [33]), all of which have
been implemented in RVPredict. In addition, we have im-
plemented the simple barrier (SB) approach described in
Section 2 and compared it with the other approaches. RDIT
aims to be useful for dynamic race detection in real-world
programs where missing events are common due to instru-
mentation challenges and performance considerations.

In this section, we focus on answering two questions:
(1) Race detection effectiveness. How effective is RDIT

in preventing false alarms and in detecting true races in real-
world programs? While guaranteeing no false alarm, would
RDIT also seriously limit the race detection ability?

(2) Runtime performance. How much performance im-
provement (or slowdown) overall does RDIT introduce for
handling missing methods? What is the runtime overhead
for capturing BarrierPair events?

5.1 Evaluation Methodology
We compare RDIT with HB, CP, MC and SB on seven real-
world large multithreaded applications, including Eclipse,
Apache Derby, Jigsaw, Sunflow, Xalan, and Floodlight.
Most of these applications are collected from previous stud-
ies [33]. Table 1 summarizes these benchmarks and metrics
of the corresponding traces. To perform a fair comparison,
for each benchmark, we collect one trace and run differ-
ent techniques on the same trace. Because all these traces
are long (e.g., most containing millions of events), we use
the same windowing strategy developed in RVPredict [33]
(i.e., cutting the traces into smaller chunks, each with 10K
events by default), so that all techniques can finish within
a reasonable time (one hour). For each trace, we compare

App LoC Thrd Evnt RW Sync BP

ftpserver 32K 12 48K 34K 3K 5K
floodlight 68K 9 58K 33K 3K 11K
jigsaw 101K 12 3.4M 3M 3K 205K
sunflow 109K 9 15.6M 11M 0.6K 2.3M
xalan 180K 9 15M 13M 62K 2M
derby 302K 3 2.2M 1.8M 64K 196K
eclipse 560K 10 16.6M 8.2M 1.4M 3.5M

Table 1: Benchmarks and traces. The total size of all bench-
marks is over 1.3MLOC. Thrd: the number of threads; Evnt:
events; RW: reads/writes; Sync: synchronizations; and BP:
BarrierPairs in the trace. The BarrierPairs are set to all
method calls that contain synchronizations.

the total number of reported races and false alarms by each
technique. For computing the reachable memory addresses
of missing methods, we also compare the results with and
without using the optimization in Section 3.2.1.

One challenge in our evaluation is how to determine if
a reported race is a false alarm. For evaluation purpose, we
first collect a set of true races (i.e., ground truth) for each
benchmark by running MC on a full trace (except exclud-
ing certain JDK libraries in java.*,javax.*,com.*,sun.*,
due to instrumentation limitations). In case the excluded
JDK libraries introduce synchronization that leads to false
alarms reported by MC, we also cross validate these races by
running RDIT (with those excluded libraries set to missing
methods). We ensure that the same set of races are reported
by both MC and RDIT.

We then further exclude events in each trace to simulate
missing events. Finally, the races reported by each technique
on the remaining trace are compared with the ground truth
and those not in the ground truth are classified as false
alarms.

We simulate missing events in two different ways. First,
we randomly exclude certain classes and packages from the
trace to simulate the random condition of missing events,
and we consider all method calls to the excluded classes
as BarrierPairs. Second, we exclude methods that con-
tain synchronization events (e.g., ThreadFork/ThreadJoin,
Lock/Unlock and Read/Write to volatile variables) and con-
sider calls to them as BarrierPairs. The second way sim-
ulates an extreme situation where all synchronizations are
missed in the trace. We use this scenario to obtain a set
of false alarms (by the other competing techniques) and to
show that RDIT is able to eliminate all the false alarms. Nev-
ertheless, it is a valid situation that may happen in practice.

We evaluate the runtime performance of RDIT with the
Xalan benchmark. We choose Xalan because it is CPU in-
tensitive. We measure the execution time and memory con-
sumption of the generated trace by RDIT and compare the
performance data between several different configurations:
before and after excluding certain methods from common
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#MissingClass Detected Races (#Total/#False Positive)
HB CP MC RDIT SB

0 2(0) 2(0) 9(0) 9(0) 9(0)
20 32(30) 34(30) 48(39) 8(0) 2(0)
30 55(51) 58(52) 69(60) 5(0) 2(0)
40 61(57) 66(62) 83(74) 4(0) 1(0)

Table 2: Results on Eclipse by randomly excluding classes.

JDK libraries and Xalan packages, with and without captur-
ing BarrierPairs, and with and without using the reachable
address optimization.

All experiments were conducted on an 8-processor 32-
core 3.6GHz Intel i7 Linux with 8GB memory and JDK 1.8
8GB heap space. All data were averaged over three runs.

5.2 Race Detection Results
Table 2 reports the results by randomly excluding the exe-
cuted classes in Eclipse (the other benchmarks have similar
results), and Table 3 summarizes the results of race detec-
tion by excluding synchronization methods. For all the seven
benchmarks, RDIT detects a total of 85 races, all of which
are true races. Note that all reported races have a unique
signature (i.e., static program locations, not dynamic race
pairs). Comparatively, SB only detects 23 races (though all
of them are true races), and the other three techniques (HB,
CP, and MC) report 149, 149, and 213 false alarms, respec-
tively, after excluding the methods containing synchroniza-
tions. In Table 3, HB and CP report the same set of races
for all benchmarks. The reason is that the two algorithms
become equivalent when Lock/Unlock synchronizations are
excluded. For the true races, HB and CP detect a total of 58,
and MC detects 112. Surprisingly, even with missing meth-
ods, RDIT detects 27 more true races than HB and CP, due to
the power of the maximal causality model. For MC, although
it detects 27 (112 vs 85) more true races than RDIT, it also
reports an excessive number (213) of false alarms. More-
over, the results are consistent with and without using the
reachable address computing optimization described in Sec-
tion 3.2.1, because the optimization condition always holds
in these benchmarks. We next discuss the results of several
interesting benchmarks.

Eclipse. This benchmark contains JDT tests for the Eclipse
IDE (collected from Dacapo [11]). There are 9 true races de-
tected on the full trace with ten threads and 16.6M events.
When no class is excluded, both HB and CP report 2 races,
and MC, SB, RDIT all report 9 races, with no false alarm.
However, when 20 random classes (may not necessarily con-
tain synchronization methods) are excluded, HB reports 32
races, but 30 of them are false alarms; CP is able to detect 4
true races, but also reports 30 false alarms; MC still reports 9
true races, but 39 false alarms. Nevertheless, RDIT reports 8
races, all of which are true races. In contrast, SB detects only
2 races and misses 7, because in SB missing events are all

serialized, no matter they may introduce synchronizations or
not. RDIT misses only one race due to the fact that the Bar-
rierPair model approximates the synchronization behavior
of missing methods, which adds additional happens-before
edges. As more classes are excluded, HB, CP and MC all re-
port more false alarms, but RDIT still reports no false alarm,
albeit fewer true races. When 40 classes are excluded, the
three other techniques report 57, 62 and 74 false alarms, re-
spectively, whereas RDIT only reports 4 of the 9 true races
and SB reports only one of them. RDIT misses 5 true races
in total due to its conservative analysis.

When all synchronization methods are excluded, all the
three previous precise techniques (HB, CP, and MC) report
a large number of false alarms (68, 68, and 81, respectively),
whereas RDIT and SB consistently report 4 and 1 true races
only, respectively. The reason for the large number of false
alarms is that most conflicting events in Eclipse are properly
protected by synchronizations. When synchronizations are
excluded, HB, CP and MC will all report false alarms.

Floodlight. This benchmark is an open source software-
defined networking (SDN) controller. The trace corresponds
to an execution of Floodlight starting up until it is ready
to accept network requests. It contains 9 threads and 58K
events. There are five true races identified by MC and RDIT
when no synchronization is excluded. After excluding all
synchronizations, HB and CP report 16 races but none of
them is true, and MC reports 24 races but 19 of them are
false alarms. In contrast, RDIT reports 4 races all of which
are true races, and SB only reports one of them. RDIT misses
one true race because the two race events are both inside a
BarrierPair method.

Jigsaw. This benchmark is a web server application that
has been studied frequently in previous work [31, 33, 57].
There are 8 true races detected on the full trace containing
12 threads and 3.4M events. RDIT only detects two true
races because all the other six races are inside the missing
methods (excluded in our experiment because they contain
synchronization events), whereas SB does not detect any
race due to the serialization of missing events.

Xalan. This benchmark transforms XML documents into
HTML using multiple threads. It contains a large number
of true races (56 detected on the full trace). Interestingly,
RDIT is able to detect almost all (52) of the true races – a lot
more than that detected by SB (5) and by HB and CP (22),
though HB and CP report only two false alarms. MC, on the
other hand, detects all the true races but also reports one false
alarm. The number of false alarms is small because, unlike
that in Eclipse, the majority of race events do not occur in
synchronized methods.

5.3 Runtime Performance
Table 4 reports the runtime performance results. Overall, the
runtime overhead of RDIT for capturing BarrierPairs in the
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Application #True Races #False Positives RDIT #Missed Races
HB CP MC RDIT SB HB CP MC RDIT SB Total Exclusion Conservativeness

ftpserver 20 20 24 15 12 17 17 32 0 0 9 2 7
floodlight 0 0 5 4 2 16 16 19 0 0 1 1 0
jigsaw 5 5 8 2 0 36 36 47 0 0 6 6 0
sunflow 1 1 1 1 0 5 5 5 0 0 0 0 0
xalan 20 20 56 52 5 2 2 1 0 0 4 0 4
derby 8 8 9 7 3 5 5 28 0 0 2 0 2
eclipse 4 4 9 4 1 68 68 81 0 0 5 0 5
Total: 58 58 112 85 23 149 149 213 0 0 27 9 18

Table 3: Results after excluding all methods that contain synchronization events. For each benchmark, the same incomplete
trace is used in all the five techniques: Happens-Before (HB), Causal-Precedes (CP), Maximal-Causality (MC), Simple-Barrier
(SB), and RDIT. Columns 2-11 report the number of true races and false positives reported by each technique on the incomplete
traces. Columns 12-14 report the total number of missed true races by RDIT, those due to code exclusion, and those due to the
analysis conservativeness, respectively. RDIT detects a total of 85 true races with no false positives, SB detects only 23, while
the other three techniques report hundreds of false positives. Compared to MC, RDIT misses 27 races, 18 of them due to the
analysis conservativeness.

Excluded Log Size Time
No-BP BP BP+Opt No-BP BP BP+Opt

¶ 1.3G 3.2G(+1.9G) 1.4G(+0.1G) 16.5s 44.2s(+168%) 18.6s(+13%)
¶+· 1.3G 3.1G(+1.8G) 1.4G(+0.1G) 15.8s 39s(+147%) 16.6s(+5%)
¶+·+¸ 1.1G 2.5G(+1.4G) 1.2G(+0.1G) 13.6s 31.8s(+134%) 15.3s(+12%)
¶+·+¹ 652M 1.3G(+0.7G) 711M(+60M) 6.4s 11.3s(+77%) 6.7s(+4%)
¶+·+¸+¹ 548M 990M(+0.4G) 598M(+50M) 4.8s 8.6s(+79%) 5.2s(+8%)
¶+·+¸+¹+º 489M 823M(+0.3G) 537M(+50M) 4.3s 7.1s(+65%) 4.5s(+7%)
¶ common JDK libraries (java.*,javax.*,com.*,sun.*); · org.dacapo.harness.*

¸ org.apache.xpath.*; ¹ org.apache.xml.*; º org.apache.xalan.*.

Table 4: Runtime performance of RDIT on Xalan when missing methods in certain packages, with and without capturing
BarrierPairs, and with and without using the reachable address optimization. The native execution of Xalan takes 0.36s.

Xalan benchmark ranges from 4%-13% with the reachable
address optimization (recall Section 3.2.1) and 65%-168%
without. The space overhead for trace storage (mostly for
storing the reachable addresses computed from the object
tree) ranges between 0.3-1.9GB without the optimization,
but is less than 100MB with the optimization. With the opti-
mization, the runtime overhead for capturing BarrierPairs is
almost negligible compared to that of tracing all the other
events (e.g., Read/Write). For instance, the native execu-
tion of Xalan without any logging takes only 0.36s, while
the tracing execution excluding only the common JDK li-
braries takes 16.5s, more than 45X overhead. Moreover, be-
cause capturing BarrierPairs completely avoids the need to
log events inside the missing methods, the overall perfor-
mance improvement of RDIT is significant. For example,
when excluding the packages org.dacapo.harness and
org.apache.xml, the execution time is reduced from 18.6s
to 6.7s with the optimization and from 44.2s to 11.3s with-
out, and the trace size reduced from 1.4GB to 711MB with
the optimization and from 3.2GB to 1.3GB without. When
further excluding the package org.apache.xpath, the ex-

ecution time is reduced to 4.8s, and trace size reduced to
598M, with the optimization.

Our performance results strongly support the applica-
tion of RDIT in practice where logging certain methods
or libraries is expensive, or the developer is only inter-
ested in certain specific code regions. For instance in Xalan,
logging org.apache.xml is expensive but the developer
may only be interested in detecting races in the package
org.apache.xalan. The developer can then instruct RDIT
to log only events in org.apache.xalan and model all
method calls to org.apache.xml as BarrierPairs.

6. Related Work
Researchers have proposed a large number of race detection
techniques, both static [47, 58] and dynamic [10, 22, 26], tar-
geting different types of software [21, 23, 52, 60], memory
models [16, 17, 27], application domains [8, 44], and at var-
ious stages of software development [24, 43]. Our technique
is distinguished in that it addresses the practical problem
of missing events. The BarrierPair model bridges the gap
between existing precise race detection algorithms and the
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practical challenges in capturing a full execution trace, en-
abling dynamic race detectors to precisely detect races from
incomplete traces with maximal detection capability.

Runtime Pruning False Alarms. Researchers have pro-
posed several runtime validation techniques [9, 34, 55] to
improve the accuracy of race detection. These techniques
take a set of potential races as input and execute the pro-
gram again attempting to simulate the schedules necessary
to induce the race. If the conditions to reproduce the race are
not met, the race is considered false and not reported. While
these techniques can prune false alarms, they require multi-
ple runs of the program, and may suffer from livelocks and
hence miss true races.

Low-level Race Detection. LARD [60] considers the prob-
lem for low-level race detection that the JVM can emit extra
events that may introduce false HB edges not present at the
language level, and it proposes a method to remove those
false HB edges by excluding the JVM events. This prob-
lem is opposite to the missing event problem addressed by
RDIT in the sense that, the missing events may cause true
HB edges to be missed, and RDIT adds those true HB edge
back by approximating the missing events.

Sampling-based Race Detection. To improve runtime per-
formance, several online sampling techniques [14, 42, 61]
have been proposed to scale dynamic race detection to long
running programs. LiteRace [42], Pacer [14], and Race-
Track [61] all use sampling to reduce the tracing overhead
and may achieve negligible runtime slowdown, at the cost
of reduced race detection ratio. However, when certain code
is not instrumented, their algorithms may not be precise and
do not guarantee the absence of false alarms.

Systematic State-space Exploration. Complementary to
predictive race detection, which is based on a single trace,
researchers have proposed several techniques [15, 29–31, 45,
46] to explore the program’s state-space by re-executing the
program multiple times following different schedules. The
schedules are systematically explored with context bound-
ing [45], probabilistic priorities [15, 46], redundancy reduc-
tion [29–31], etc. These techniques can be combined with
RDIT to detect more races from multiple traces instead of a
single trace.

Deterministic Execution. In contrast to detecting races un-
der random schedules, deterministic execution techniques
pioneered by DMP [20], DThreads [41], and Parrot [18] aim
to make the execution deterministic by default, such that data
races either manifest themselves, or do not, on every ex-
ecution. However, deterministic execution techniques may
also suffer from the problem of missing events. The tech-
niques may fail to enforce deterministic execution when cer-
tain events that introduce non-determinism are missed or not
instrumented.

Symbolic Constraint Analysis. Numerous symbolic anal-
yses [25, 31–33, 35, 59] based on logical constraint solv-
ing have been proposed to detect and diagnose concurrency
bugs, including a few race detection techniques [33, 53].
Nevertheless, none of the previous analyses considered the
practical problem of missing events.

Race Detection for Relaxed Memory Models. Races in
systems with weak consistency models can be more diffi-
cult to understand. Several approaches [16, 17, 27] have been
proposed to detect races under relaxed memory models, such
as TSO, PSO, and Java memory models. In this work we
have focused on sequential consistency only. Nevertheless,
the BarrierPair model can be extended to relaxed memory
models by re-formulating the thread causality constraints,
such as what is done in [36] for verifying concurrent pro-
grams under TSO and PSO.

Harmful and Benign Races. Not all true races may be
considered harmful by developers. A few techniques [24, 37,
48] have been proposed to automatically classify benign and
harmful races from true races through replay [48], symbolic
analysis [37], or heuristics [24]. RDIT does not distinguish
benign and harmful races. However, we note that races that
look benign may still be harmful or become harmful, due to
subtleties in memory models [6], compiler transformations,
or hardware optimizations [12, 13].

7. Conclusion
We have presented a new technique, RDIT, that enhances the
existing body of dynamic race detection by allowing events
to be missed in the trace through missing methods. Powered
by a sound BarrierPair model and a constraint encoding of
maximal thread causality, RDIT is both precise and maximal
for the sequential consistent memory model, that it does
not report any false alarms and it detects a maximal set
of true races from the observed incomplete trace. We have
shown empirically that RDIT detects dozens of true races
in a variety of real-world large multithreaded applications
with zero false alarms, whereas existing precise algorithms
report many false alarms due to missing events. We believe
that RDIT will be valuable for the development of precise
dynamic race detection tools in practice.
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