
Epi-Aspects: Aspect-Oriented Conscientious Software

Sebastian Fleissner Elisa Baniassad
Department of Computer Science and Engineering

The Chinese University of Hong Kong
Shatin, N.T., Hong Kong

{seb, elisa}@cse.cuhk.edu.hk

Abstract
Conscientious software is a recently proposed paradigm for
developing reliable, self-sustaining software systems. Con-
scientious software systems consist of an allopoietic part,
which encapsulates application functionality, and an au-
topoietic part that is responsible for keeping the system alive
by monitoring the application and adapting it to environ-
mental changes. Practical application of the conscientious
software paradigm requires solutions to two open problems:
The design of suitable autopoietic programming languages
and the proposal of concrete architectures for combining the
autopoietic and allopoietic parts. In this paper, we tackle the
second challenge, and propose a concrete, aspect-oriented
architecture for realizing conscientious software. Here, we
introduce epi-aspects, a construct for upgrading new and ex-
isting applications into conscientious software. This paper
provides the architectural design of epi-aspects, an autopoi-
etic simulator, and a concrete framework for developing epi-
aspects in Java. The framework and the simulator are used
to conduct a case study in which we develop and test a con-
scientious Java application.

Categories and Subject Descriptors D.2.11 [Software/-
Software Engineering]: Software Architectures

General Terms Reliability

Keywords Aspect-Oriented Programming, Conscientious
Software

1. Introduction
Conscientious software is a new paradigm for develop-
ing reliable, self-sustaining software systems proposed by
Gabriel and Goldman in [9]. Unlike other approaches for
self-sustaining software, such as IBM’s autonomic comput-
ing [13, 17], conscientious software consists of two distinct

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
OOPSLA’07, October 21–25, 2007, Montréal, Québec, Canada.
Copyright c© 2007 ACM 978-1-59593-786-5/07/0010. . . $5.00

parts: An allopoietic1 part, which encapsulates application
functionality, and an autopoietic2 part, which continuously
re-creates itself and is entirely devoted to keeping the system
running smoothly.

The allopoietic part encapsulates traditional application
functionality. It is written in a general purpose program-
ming language, such as C++ or Java, and produces some
computational results or provides services to users. The au-
topoietic part monitors and adapts to environmental changes,
and observes and evaluates the health of the allopoietic part.
In case the allopoietic part fails, the autopoietic part assists
with error recovery. Error recovery and monitoring are well-
understood concepts, but its techniques are not frequently
applied in practice. One idea behind the conscientious soft-
ware paradigm and the introduction of autopoietic / allopoi-
etic parts is to encourage developers to devote equal efforts
to implementing functionality and error recovery.

To maintain the health of the application, the autopoietic
part must be able to observe and affect the operation of the
allopoietic part. In [9], Gabriel and Goldman propose the
concept of epimodules, which serve as a bridge between the
autopoietic and allopoietic parts. Epimodules are attached
to allopoietic components and monitor their behavior. When
necessary, epimodules can affect and alter allopoietic com-
ponents. For example epimodules can instruct allopoietic
components to run tests, restart, upgrade, clone, or kill them-
selves.

The ideas and visions described in Gabriel and Goldman’s
paper are on a conceptual and theoretical level. In order to
realize conscientious software, at least two open problems
have to be solved. Firstly, new autopoietic programming lan-
guages, which are designed to prevent bugs that lead to pro-
gram crashes, have to be realized to ensure that the imple-
mentation autopoietic part does not fail. Secondly, concrete,

1 “Allopoiesis is the process whereby a system produces something other
than the system itself. One example of this is an assembly line, where
the final product (such as a car) is distinct from the machines doing the
producing. This is in contrast with autopoiesis.” (From www.wikipedia.org)
2 “Autopoiesis literally means auto (self)-creation (from the Greek:
auto - for self- and poiesis - for creation or production).” (From
www.wikipedia.org)

659

Autopoietic System

Autopoietic
Instance

Epi-
Aspect

Epi-
Aspect

Autopoietic
Instance

Application (Allopoietic)

Component

Component

Epi-Weaver

Figure 1. Aspect-Oriented Conscientious Software Architecture

practical architectures for conscientious software have to be
proposed.

In this paper, we tackle the second challenge, and propose
a concrete, aspect-oriented architecture for realizing consci-
entious software. The goal of this architecture, and that of
conscientious software, is to allow the separation of the core
application functionality (the allopoietic part) from the mon-
itoring, regulation, and error recovery concerns, as provided
by the autopoietic part.

Our proposed architecture (figure 1) consists of three por-
tions: the allopoietic part (referred to as the application), the
autopoietic system, and epi-aspects, which are the glue that
binds the other two portions. Epi-aspects are able to advise
on join points in both the application and autopoietic sys-
tem, and so facilitate feedback from the application. They
extend the application with functionality required for eval-
uating its health, and for performing adjustments requested
by the autopoietic system. Such extensions include function-
ality for testing, upgrading, cloning, restarting, and killing
allopoietic components. As a result, epi-aspects can be used
to upgrade existing applications into conscientious software
in a non-invasive manner.

This paper provides the conceptual design of epi-aspects,
and proposes a concrete framework for developing epi-
aspects in Java. The framework contains an autopoietic sim-
ulator that operates according to logic rules defined in the
Prolog programming language. A Java epi-aspect advises
on a Java application and the autopoietic simulator.

In order to evaluate the potential of epi-aspects, we perform
a case study in which we use epi-aspects to upgrade an ex-
isting Java application into conscientious software. The up-
graded conscientious Java application is used to conduct var-
ious tests, such as injection of programming errors, software
upgrade failures, and data corruption.

1.1 Paper Organization

Section 2 describes the research context in which this paper
is set. Section 3 introduces an application scenario that is
used throughout the paper for illustrative purposes. This ap-
plication scenario is also used in the case study in section 6 to
evaluate the potential of epi-aspects. The conceptual design
of epi-aspects and the architecture of aspect-oriented con-
scientious software are described in section 4, and a frame-
work for developing epi-aspects in Java is introduced in sec-
tion 5. Section 7 compares the epi-aspects architecture with
closely related work. Section 8 discusses open problems of
epi-aspects, and the paper is concluded in section 9.

2. Research Context
There are several areas of research dedicated to investigat-
ing mechanisms for allowing software systems to be self-
sustaining. Among them are autopoietic software systems,
autonomic computing, reflective and adaptive middleware,
monitoring-oriented computing, and recovery-oriented com-
puting.

660

Autopoietic software systems were first proposed in the
1970s [21]. They have been widely considered a compu-
tational model and applied in the field of artificial intelli-
gence [22, 15]. During the 1980s the concept received less
attention and was rediscovered in the late 1990s [16]. Since
autopoiesis is widely considered a computational concept,
most research focuses on algorithms and simulations of sim-
ple autopoietic systems.

Gabriel and Goldman describe the paradigm of conscien-
tious software in [9], expanding on the concepts of autopoi-
etic software systems. According to their description, con-
scientious software consists of an allopoietic part, which en-
capsulates application functionality, and an autopoietic part,
which is responsible for keeping the system alive. Fleiss-
ner and Baniassad propose a concrete autopoietic-allopoietic
software architecture, which is based on the biological con-
cept of commensalistic symbiosis, in [8].

In a related effort, IBM devised the notion of autonomic
computing [13, 17]. It refers to concepts and technolo-
gies that enable software to become more self-managing.
To achieve this goal, autonomic computing proposes four
principles, which are self-configuration, self-healing, self-
optimization, and self-protection. According to [13], self-
configuration refers to software components and systems
that automatically follow a set of high-level configuration
policies. In case of policy changes, the entire system ad-
justs itself automatically. Self-optimization is a process in
which components continually seek opportunities to im-
prove their own performance. The self-healing process al-
lows the system to automatically detect and repair software
and hardware problems and the self-protection mechanism
defends the system against malicious attacks and failures.
The self-protection mechanism uses an early warning sys-
tem that allows anticipation and prevention of system fail-
ures. Researchers are exploring aspect-oriented approaches
for realizing autonomic computing. For example, Engel et
al. propose the usage of dynamic operating system aspects
for realizing autonomic software in [7], and Greenwood et
al. describe how to use dynamic aspects for implementing
an autonomic system in [12].

Recent research in the field of reflective and adaptive mid-
dleware [2, 20, 14, 6] shares some goals with autonomic
computing and conscientious software. As described in
[11], openness and dynamic self-adaptation are fundamental
properties of reflective middleware, and therefore, reflec-
tive middleware is suited to support autonomic computing
and self-sustaining systems. For instance, the approach by
Rasche et al. [19] proposes the usage of dynamic aspect
weaving for reconfiguration. The Rainbow framework pro-
posed by Garlan et al. in [10] is a concrete adaptive middle-
ware architecture that uses monitoring and constraint evalu-
ation for adaptation.

Monitoring-oriented programming, as described by Chen et
al. in [3, 4, 5], is a practical programming paradigm that uses
monitoring as the fundamental principle for implementing
reliable software. The formal specification of an application
is used as the basis for generating a set of monitors that are
integrated into the software. During runtime, these monitors
observe the runtime behavior of the application and trigger
user-defined routines, when a specification is validated or
violated.

Recovery oriented computing (ROC), explored by Patterson
et al. in [18], suggests planning to incorporate or recover
from a certain class of errors, rather than trying to prevent
them from arising The major aim of recovery oriented com-
puting is to minimize the mean time to repair in case a sys-
tem failure occurs. In order to enable fast recovery after a
failure, ROC employs the following six techniques: Recov-
ery experiments, diagnosis, partitioning, reversible systems,
defense in depth, and redundancy.

3. Application Scenario

Order and Inventory Management Service

Orders

HSQLDB
Engine

Database

Inventory

XML-RPC

Client Application

XML-RPC Protocol

OIM
Service

Figure 2. Application Scenario

Throughout this paper and in the case study, we consider
a concrete Java application to illustrate the various features
of aspect oriented conscientious software and epi-aspects.
This application is a order and inventory management (OIM)
system for a wholesale company that specializes in modern
and antique books. As shown in figure 2, this system consists
of a HSQLDB database engine, an application server, and
client applications that access this server through the XML-
RPC protocol. The application server contains two major
components called Orders and Inventory, which implement

661

business rules related to managing orders and the company’s
inventory.

The staff of the company frequently request new features,
and the system is continuously updated by a small team of
developers. Also, since certain antique books do not have
the same properties as modern books, such as ISBN num-
bers, occasional changes to the database are necessary. As a
result, changes to the application server, database, and user
interface of the client applications are common, and the sys-
tem as a whole is constantly evolving. However, since the
system is essential for the operation of the company, long
down-times due to programming errors or maintenance op-
erations are unacceptable.

The order and inventory management system is developed
and improved with the focus on features that are explicitly
requested by staff of the wholesale company, and mecha-
nisms for self-maintenance and error recovery either receive
a low priority or are omitted completely. As a result, the sys-
tem is bound to become more fragile over time, and a com-
plete failure is possible.

4. Proposed Architecture
The proposed aspect-oriented conscientious software archi-
tecture (illustrated in figure 1) consists of three portions:

• An application (the allopoietic system), which imple-
ments some desired functionality, such as the inventory
management application described in section 3.

• An autopoietic system, responsible for keeping the sys-
tem alive.

• Epi-aspects, which act as a bridge between the other two
portions by extending the application with functional-
ity related to self-sustainment, such as test routines and
maintenance function.

The following sections provide a detailed description of
the aspect-oriented conscientious software architecture. Sec-
tion 4.1 covers the allopoietic application, section 4.2 illus-
trates the features and behavior of the autopoietic system,
and section 4.3 describes the anatomy of epi-aspects.

4.1 Allopoietic Application

This portion of the conscientious architecture is a traditional
application, such as the OIM system described in section 3.
No alteration of this application is necessary since all con-
scientious functionality is encapsulated in the other two por-
tions of the system. In this paper we assume object-oriented
or component-based applications and we use the term appli-
cation entity to refer to an instance of an object or compo-
nent.

4.2 Autopoietic system

The autopoietic system is a network of instances that con-
stantly observes itself, its environment, and the state of the

application, which is exposed by epi-aspects. In case of any
problems, such as errors in the application, the autopoi-
etic system makes queries, and recommendations to cor-
rect the problem. The autopoietic system does not employ
artificial intelligence: Software developers explicitly imple-
ment the conditions for triggering autopoietic recommenda-
tions and queries. Queries are used by the autopoietic sys-
tem to monitor the health of the application. Recommen-
dations are made either routinely, or based on the result of
a query. Both recommendations and queries can be defined
and customized by the developer of the autopoietic system.
Our architecture provides a core set of each, as listed in ta-
ble 1(recommendations) and table 2 (queries).

Start,
Stop,
Create,
Destroy,
Clone

These suggestions are directed at application
entities.

Update Recommends to update the application soft-
ware. This can be directed at the whole appli-
cation or application entities.

Revert After a software update, the autopoietic sys-
tem an advise the application to revert to
the previous version. This recommendation is
used if a problematic software update is ap-
plied.

Test Recommends to test an application entity.

Custom This recommendation allows the autopoietic
system to advise the application to perform a
custom task.

Table 1. Autopoietic Recommendations

In order to facilitate epi-aspects, which implement advice
for recommendations and queries, the autopoietic system in-
cludes an internal run-time weaver for epi-aspects, called the
epi-weaver. The epi-weaver depends on the programming
language used to implement the epi-aspects, because not all
programming languages provide compatible approaches for
invoking methods or routines. In order to support a specific
programming language, a customized weaver has to be de-
veloped and integrated with the autopoietic system.

4.3 Epi-Aspects

The purpose of epi-aspects is to make the application visible
to and controllable by the autopoietic system. In particular,
epi-aspects are responsible for encapsulating self-sustaining
concerns and any functionality required for smooth interac-
tion between the autopoietic system and application.

662

Reveal This query indicates that the autopoietic sys-
tem requires information about specific appli-
cation entities or the application as a whole.
For example, in order to evaluate the health
of a component, autopoietic instances have to
be able to examine its internal state.

Speed This query indicates that an autopoietic sys-
tem wishes to obtain information about the
current speed (performance) of a certain ap-
plication entity.

Custom Allows specification of custom queries. The
purpose of custom queries is to provide a flex-
ible mechanism for extending the autopoietic
system.

Table 2. Autopoietic Queries

Since epi-aspects crosscut the autopoietic system and ap-
plication, they support two types of advice: The first type
advises on recommendations and queries of the autopoietic
system, and performs required tasks, such as testing and
other maintenance. The second type advises on join points in
the application and is responsible for keeping the autopoietic
system updated on the application’s status and performance.

Each epi-aspect contains:

1. An epi-queue, which is used to dispatch information from
epi-aspects to the autopoietic system.

2. Application advice, which are responsible for providing
feedback on the application’s health to the autopoietic
system. This feedback is passed to the autopoietic system
through the epi-queue.

3. A mechanism for defining advice on autopoietic recom-
mendations and queries. Such query advice and recom-
mendation advice perform maintenance or update opera-
tions according to suggestions by the autopoietic system,
or to provide information to satisfy an autopoietic query.

As epi-aspects implement advice for both application and
autopoietic system, they have to be woven twice by different
weavers: One weaver is responsible for weaving application
advice during compilation or at run time. The other weaver
is the epi-weaver of the autopoietic system. For example,
let’s consider an epi-aspect denoted as DatabaseEpiAspect,
which is part of an upgrade to turn the OIM service intro-
duced in section 3 into conscientious software. The applica-
tion advice of this epi-aspect are woven into the code of the
database engine during compile-time, and the recommenda-
tion and query advice are woven into the autopoietic system
during run-time.

Sender,
Receiver

Both autopoietic instances and application
entity can acts as sender and receiver.

Type Indicates the type of the epi-message. Can
be one of the following:
• Parameter: Epi-message is passed to an

autopoietic recommendation or query
advice as parameter.

• Answer: Epi-message is an answer to an
autopoietic query.

• Feedback: Epi-message contains feed-
back regarding the allopoietic applica-
tion.

• Error: Epi-message reports an error that
occurred in the allopoietic application.

• Epi-Error: Epi-message reports an error
that occurred in an epi-aspect.

Contents Contains the contents of the message. The
format of this message could be anything
from strongly typed data over XML to nat-
ural language. The only requirement is that
both autopoietic instances and epi-aspects
are able to interpret this format.

Table 3. Epi-Message Attributes

4.3.1 Epi-Messages and Epi-Queue

The autopoietic system and epi-aspects communicate by
exchanging epi-messages, which consist of the attributes
shown in table 3. The autopoietic system can pass epi-
messages as parameters to recommendation and query ad-
vice implemented by epi-aspects.

Each epi-aspect has access to an epi-queue, which can be
used to dispatch information to the autopoietic system. Be-
fore an epi-aspect is woven into the autopoietic system,
it merely contains a stub for the epi-queue that does not
contain any functionality. When the epi-weaver processes
an epi-aspect, it does not only weave recommendation and
query advice, but also injects a concrete implementation of
the epi-queue. This approach ensures that epi-aspects do not
depend on the concrete realization of the autopoietic system.

4.3.2 Application advice

Application advice are defined on joint points in the allopoi-
etic application. Their purpose is to observe one or more
specific application entities and to expose their state to the
autopoietic environment. Depending on the join point it ad-
vises on, the implementation of an application advice gathers
and optionally forwards information to the autopoietic sys-

663

Error Advice for errors or exceptions gather as
much information on the error as possi-
ble, including the source of and reason
for the error, and then dispatch this infor-
mation to the autopoietic system via the
information queue. For example, in the
OIM service, error application advice can
be defined for exceptions thrown by the
database engine and XML-RPC service.

Creation Advice for creation join points are re-
sponsible for informing the autopoietic
system which application entities, such as
objects, components, and modules, exist.
The autopoietic system uses this informa-
tion to decide which entities should be
monitored.

Performance Performance advice are invoked before
and after certain methods or procedures in
the application. Their purpose is to mea-
sure the execution time of methods and
report it to the autopoietic system. This al-
lows the autopoietic system to keep track
of the application’s performance and de-
tect possible timeouts.

Table 4. Application Advice

tem. Information is dispatched to the autopoietic system via
the epi-queue.

Existing aspect-oriented programming languages, such as
AspectJ, provide sufficient pointcut primitives to describe
most of the application join points required by epi-aspects.
As a result, epi-aspects can be realized as an extension of
existing aspect-oriented programming languages.

The following application-level joinpoints are required by
the epi-aspect architecture:

• Create: Creation of a new application entity, such as the
construction of an object.

• Destroy: Destruction of an application entity, such as a
component or object.

• Error: Unexpected errors or exceptions.
• Invocation/Execution: Invocation and execution of meth-

ods.
• Event: Events, in an event handling system.
• Set: Setting of a variable or property value.

Table 4 provides the details of how a selection of the appli-
cation advice might be used.

4.3.3 Query and Recommendation Advice

Query and recommendation advice implement maintenance
and information retrieval operations proposed by the au-
topoietic system. They are woven into the autopoietic system
by the epi-weaver at runtime.

Developers of the OIM system might implement recommen-
dation advice to implement a unit test to verify the proper
operation of the XML-RPC component, or to apply updates
to the OIM system. They may implement a query advice to
implement an evaluator that obtains the current speed of the
XML-RPC requests per minute. That implementation would
advise on the Speed suggestion, and would help the autopoi-
etic system to keep track of the size of the workload on the
XML-RPC component.

Query and recommendation advice consist of two portions:

• Header, which contains the attributes name and receiver-
pattern. The name attribute is the name of a predefined
(see tables 1 and 2) or custom recommendation or query.
The receiver-pattern attribute contains a regular expres-
sion for matching the target application entity.

• Implementation, which contains the allopoietic code for
implementing the requested action. It uses epi-messages
as input and output parameters as a means for communi-
cation between the autopoietic system and epi-aspect.

5. Epi-Aspects Java Framework
This section specifies a framework for developing aspect-
oriented conscientious software in Java. This framework,
which is called Epi-AJ, provides an autopoietic simulator
and constructs for implementing epi-aspects in the Java pro-
gramming language. The autopoietic simulator includes a
weaver for epi-aspects, and contains a logic engine imple-
mented in the Prolog programming language, which imple-
ments the behavior of the autopoietic system described in
section 4.2.

The Epi-AJ framework is designed as a supplement to
Aspect-J. Since version 5, AspectJ has supported the usage
of Java annotations for defining aspects and advice. Epi-AJ
provides a set of Java annotations, which allow the definition
of autopoietic recommendation and query advice. As a re-
sult, an epi-aspect can be implemented using a combination
of AspectJ annotations and Epi-AJ annotations. The usage
of annotations is convenient in a sense that it is not necessary
to use tools like the AspectBench compiler [1] to extend the
grammar of the AspectJ pointcut language with new pointcut
primitives for epi-aspects. Listing 1 illustrates the definition
of an epi-aspect using the combination of Aspect-J and Epi-
AJ.

The Epi-AJ framework is divided into three Java packages:

1. The package conscientious.epiaj(shown in figure 3) con-
tains the base classes and interfaces of the framework.

664

1 @Aspect p u b l i c c l a s s XMLRPCEpiAspect ex tends EpiAspec t

2 {

3 @After (” t h i s (s) && e x e c u t i o n (XMLRPCService . new (. .)) ”)

4 p u b l i c vo id n e w I n s t a n c e (XMLRPCService s) { /∗ . . . ∗ / }

5

6 @AfterThrowing (” t a r g e t (s) && e x e c u t i o n (∗ XMLRPCService . run (. .)) ”)

7 p u b l i c vo id r e p o r t E x c e p t i o n (XMLRPCService s) { /∗ . . . ∗ / }

8

9 @RecommendationAdvice (recommendat ion =” s t a r t ” , r e c i p i e n t P a t t e r n =” .∗ ”)

10 p u b l i c EpiMessage star tXMLRPCServer (EpiMessage message){ /∗ . . . ∗ / }

11

12 @CloneRA (” org . apache . s e r v e r .∗ ”)

13 p u b l i c EpiMessage cloneXMLRPCServer (EpiMessage message){ /∗ . . . ∗ / }

14

15 @QueryAdvice (que ry =” speed ” , r e c i p i e n t P a t t e r n =” org . apache . s e r v e r .∗ ”)

16 p u b l i c EpiMessage ge tCur ren tXMLServerSpeed (EpiMessage message){ /∗ . . . ∗ / }

17

18 @RevealQA (” .∗ ”)

19 p u b l i c EpiMessage r e v e a l O b j e c t s (EpiMessage message){ /∗ . . . ∗ / }

20

21 /∗ . . . ∗ /

22 }

Listing 1. Epi-Aspect Example Code (Epi-AJ Framework)

2. The package conscientious.epiaj.annotations contains
annotations for declaring autopoietic recommendation
and query advice in epi-aspects.

3. The package conscientious.simulator contains the Java
part of the autopoietic simulator, such as the implemen-
tations of the epi-weaver and epi-queue.

5.1 Base Classes and Interfaces

As illustrated in figure 3, The Epi-AJ framework provides
the following set of base classes and interfaces for realiz-
ing epi-aspects, epi-messages, and epi-queues: EpiAspect,
EpiQueue, and EpiMessage.

As described in section 4.3.1, epi-aspects and the autopoi-
etic system communicate by exchanging epi-messages. Each
epi-aspect has access to an epi-queue that allows them to dis-
patch epi-messages to the autopoietic system.

The abstract class EpiAspect is the base class for epi-
aspect implementations, EpiQueue defines the interface of
epi-queue implementations, and the class Epi-Message is
the implementation of the epi-message illustrated in table 3.

The EpiAspect class contains an instance variable whose
type is the EpiQueue interface. When an the implementa-
tion of an epi-aspect is woven, the autopoietic system (or
autopoietic simulator) assigns a concrete epi-queue imple-
mentation to this instance variable. After that, the epi-aspect
implementation can start dispatching epi-messages to the au-
topoietic system.

The Epi-Message class contains four instance variables,
which are equivalent to the epi-message attributes Sender,
Receiver, Type, and Contents described in table 3.

5.2 Advice and Annotations

The Epi-AJ framework provides the following set of Java
annotations for declaring recommendation and query advice:

• @RecommendationAdvice(name, receiverPattern)
• @QueryAdvice(name, receiverPattern)
• @RevealQA(receiverPattern)
• @SpeedQA(receiverPattern)
• @TestRA(receiverPattern)

665

conscientious.epiaj

#m_epiQueue: EpiQueue

<<abstract>>
EpiAspect

+append(message: EpiMessage)

<<interface>>
EpiQueue

+m_receiver: String
+m_sender: String
+m_type: int
+m_contents: Object

EpiMessage

Figure 3. Epi-AJ Base Classes

• @UpdateRA
• @RevertRA(receiverPattern)
• @CloneRA(receiverPattern)
• @CreateRA / @DestroyRA(receiverPattern)
• @StartRA / @StopRA(receiverPattern)

All annotations have a receiverPattern attribute that can
be used to specify a regular expression for matching the
class/epi-aspect at which the autopoietic recommendation
or query is directed. The @RecommendationAdvice and
@QueryAdvice annotations are generic annotations that can
be used to declare advice on any autopoietic recommen-
dation and query, including custom recommendations and
queries. The remaining annotations are provided for conve-
nience and can be used to specify advice on the pre-defined
autopoietic recommendations and queries described in tables
1 and 2.

As shown in listing 1, the implementation part of the rec-
ommendation and query advice is a Java method that re-
ceives an EpiMessage object as parameter and returns an-
other EpiMessage object to the autopoietic system. The
EpiMessage parameter is set up by the autopoietic system to
specify details regarding the recommendation or query, and
the EpiMessage return value contains feedback or other in-
formation for the autopoietic system.

5.3 Autopoietic Simulator

The Epi-AJ framework provides an autopoietic simulator
that can be used for developing and testing epi-aspects. This
simulator consists of a runtime, an epi-weaver written in
Java, and uses the Prolog programming language to imple-
ment the rules of the autopoietic system. Prolog is not an au-

topoietic programming language that is specifically designed
to prevent bugs that can lead to program crashes. However,
as the design of an autopoietic programming language is not
within the scope of this paper, Prolog is a suitable substitute
for simulation purposes, because it is declarative and it is not
easy to write a Prolog program that crashes.

The autopoietic simulator can be invoked from a Java
program by creating and configuring an instance of the
Simulator class shown in figure 4. Internally, the Simulator
class uses the SWI Prolog engine to simulate the behavior of
the autopoietic system. Interaction between the Simulator
instance and the SWI Prolog engine is accomplished through
the JPL (Java Interface to Prolog) API, which is part of the
SWI Prolog distribution.

conscientious.epiaj.simulator

EpiQueueImp <<interface>>
EpiQueue

<<realize>>

Weaver

WovenAdvice

WovenEpiAspect

Simulator

AdviceRepository

<<abstract>>
EpiAspect

SWI Prolog

Figure 4. Epi-AJ Autopoietic Simulator

When a new instance of the Simulator class is created, the
calling application provides a list of epi-aspects. During its
initialization, the Simulator instance performs the follow-
ing tasks:

1. The SWI Prolog engine is initialized and the Prolog pro-
gram(s) mimicking the autopoietic systems are loaded.

2. An instance of the AdviceRepository shown in figure 4
is created.

3. An instance of the Weaver class is created and the list of
epi-aspects is passed to it.

666

4. The Weaver instance weaves the epi-aspects into the
AdviceRepository instance. Moreover, it injects an in-
stance of the EpiQueueImp class, which implements the
simulators epi-queue into each woven epi-aspect.

5. The Simulator instance issues the autopoietic recom-
mendation Start, which is dispatched to all woven epi-
aspects.

Once the autopoietic simulator is running, the woven epi-
aspects can dispatch epi-messages to it via the EpiQueueImp
instance. Whenever an epi-message is received, the Prolog
program(s) are invoked and the result can be an autopoietic
recommendations or query. Autopoietic recommendations
and queries are dispatched to relevant advice of the woven
epi-aspects.

6. Case Study
This section describes a case study that was conducted to
evaluate the potential of aspect-oriented conscientious soft-
ware. The first part of this study, which is described in sec-
tion 6.1, illustrates how to apply epi-aspects and the Epi-
AJ framework to turn the order and inventory management
(OIM) system introduced in section 3 into conscientious
software. The second part in section 6.2 describes experi-
ments and studies that were conducted to test and evaluate
the conscientious version of the OIM system.

Figure 5 shows a more detailed view of the OIM system’s
design, and highlights the main Java classes of the OIM
system: XmlRpcService, OrderManager, OimService ,
InventoryManager, DbConnectionPool, UserAccounts
and DbConnection.

XmlRpcService

Apache
XML-RPC

HSQLDB
Driver & Engine

OimService

OrderManager

InventoryManager

UserAccounts

DbConnectionPool

DbConnection

Figure 5. OIM System Classes

The XmlRpcService class uses Apache’s XML-RPC distri-
bution to initialize a HTTP server that accepts XML-RPC

requests. This server uses reflection to map incoming XML-
RPC requests to an instance of the OimService class. Ad-
ditionally, it converts return values provided by methods of
the OimService instance into XML-RPC responses.

Even though Apache’s XML-RPC distribution is mature and
stable, these classes can generate critical exceptions in case
of invalid requests and network problems.

The business logic of the OIM system is implemented by the
OrderManager, InventoryManager, and UserAccounts
classes.

The OIM system uses the HSQLDB database engine. The
database is accessed via the classes DbConnectionPool
and DbConnection. The class DbConnectionPool main-
tains a pool of re-usable DbConnection instances, which
provide access to the database via the JDBC driver supplied
with the HSQLDB distribution.

The class UserAccounts implements user management and
authentication.

6.1 Implementation Overview

The purpose of the first part of this case study is to use
epi-aspects and the Epi-AJ framework to upgrade the OIM
system into conscientious software. The aim of this upgrade
is to make the OIM system observable and controllable by
an autopoietic system.

The following sections describe the implementation of four
epi-aspects, which add necessary conscientious extensions
to the OIM system: software maintenance, XML-RPC mon-
itoring, Database monitoring, and OIM system monitoring.
This upgrade is non-invasive, since it is unnecessary to mod-
ify the existing source of the OIM system, the HSQLDB en-
gine, and Apache’s XML-RPC distribution.

6.1.1 Software Maintenance Epi-Aspect

The software maintenance epi-aspect (figure 6(a)) imple-
ments functionality for updating and reverting the compo-
nents of the OIM system. It provides advice for the autopoi-
etic Update and Revert recommendations. When the soft-
ware maintenance epi-aspect is initialized, it creates a mini-
mal HTTP service, which developers can use to submit soft-
ware updates via a web-browser.

Whenever the software maintenance epi-aspect receives an
update through the HTTP service, it does not immediately
install the update, but stores it for later use, and dispatches an
epi-message to notify the autopoietic system that an update
is available. If the autopoietic system approves of the update,
it first issues recommendations to affected components to
prepare for an imminent update, and then issue the Update
recommendation, which causes the software maintenance
epi-aspect to install the update.

If the autopoietic system notices that certain components ex-
perience problems after an update, such as uneven perfor-

667

<<epi-aspect>>
SoftwareMaintenance

HttpUpdateService

Autopoietic
System

<<advises>>

Update

Revert

(a) Software Maintenance Epi-Aspect

<<epi-aspect>>
OimEpiAspect

Autopoietic
System

Start

Stop

OIM Service

Create

Clone

Destroy

Test

OrderManager

OimService

InventoryManager

UserAccounts

<<advises>>

(b) OIM Epi-Aspect

<<epi-aspect>>
DatabaseEpiAspect

Autopoietic
System

Start

Stop

OIM Service

DbConnection
Pool

HSQLDB

jdbcConnection
Create

Clone

Destroy

Test

DbConnection

SQLRecorder

jdbcStatement

?
Speed

<<advises>>

(c) Database Epi-Aspect

<<epi-aspect>>
XmlRpcEpiAspect

Autopoietic
System

Start

Stop

OIM Service

XmlRpcService

Apache XML-RPC

WebServer

XmlRpcServer Create

Clone

Destroy

Test

?
Speed

<<advises>>

(d) XML-RPC Epi-Aspect

Figure 6. Case Study Epi-Aspect Design

668

mance, it can issue a Revert recommendation that indicates
that the problematic component should be reverted to a pre-
vious version. The software maintenance epi-aspect imple-
ments an advice on the Revert recommendation that checks
if a previous version of the affected component exists. If a
previous version is available, the advice disables the current
version, and re-installs the previous version.

6.1.2 XML-RPC Epi-Aspect

The OIM system is accessed by clients via the XML-RPC
protocol. The service providing this access is implemented
by the XmlRpcService class, which utilizes Apache’s
XML-RPC distribution. It is imperative for the OIM system
that the XML-RPC service does not fail. The XML-RPC
epi-aspect (figure 6(d)) is responsible for implementing er-
ror recovery, testing and application monitoring concerns.
It also implements an observer feature to evaluate and store
the current speed of the XML-RPC service. The speed is
defined as the time required to execute a dummy XML-RPC
request.

6.1.3 Database Epi-Aspect

The database epi-aspect (figure 6(c)) encapsulates function-
ality that allows the autopoietic system to observe and in-
terfere with the operation of the HSQLDB database engine.
In addition, the database epi-aspect implements database
backup and recovery features. The backup feature period-
ically backs up the database files and allows restoring the
database to a previous version. It is useful for preventing
problems related to data corruption. The database epi-aspect
records all SQL commands that are issued to the HSQLDB
engine from within the OIM system. This recorded history
can be used for undoing changes to the database and its
schema.

6.1.4 OIM Epi-Aspect

The OIM epi-aspect (figure 6(b)) is responsible for ex-
posing the health of the main classes of the OIM system,
namely UserAccounts, OIMService, OrderManager, and
InventoryManager to the autopoietic system. Addition-
ally, the OIM epi-aspect extends these main classes with
functionality to comply recommendations issued by the au-
topoietic system.

6.2 Experiments and Studies

One experiment and one study were conducted to evaluate
the potential of the conscientious OIM system. The experi-
ment evaluates ability of the conscientious OIM to recover
from buggy updates, and the study illustrates the process
of extending the conscientious OIM system with a finer-
grained monitoring and recovery mechanism.

6.2.1 Software Update Experiment

In the software update experiment, working and buggy up-
dates are applied to the original and conscientious OIM sys-

tems, and the behavior of the systems during and after the
update is observed, compared, and evaluated.

The experiment consists of two phases and each phase con-
sists two parts:

In the first part, the experiment is conducted with the original
OIM system, which does not make use of any epi-aspects.
In the second part, the experiment is repeated using the
conscientious version of the OIM system and the autopoietic
simulator. Then the results of both parts are compared and
evaluated.

The experiment uses the original OIM system, the consci-
entious OIM system, the autopoietic simulator, and an addi-
tional simulator that mimics the behavior of a client appli-
cation that accesses the OIM system. This client application
simulator can be configured to generate a specific number
of requests per minute, allowing adjustment of the workload
that the OIM system has to handle. The client application
simulator uses a log file to record requests results and ex-
ceptions that occur when accessing the OIM system.

Phase 1: Install Working Update

A working update of the XmlRpcService class is installed,
and the necessary steps and time required for updating the
original and conscientious OIM systems are compared. This
phase is initialized by performing the following steps:

1. Start the original OIM system.

2. Start the conscientious OIM system and autopoietic sim-
ulator.

3. Start two instances of the client simulator and configure
them to issue one request per second to the original and
conscientious OIM systems. These instances are denoted
as client simulator 1, which issues requests to the original
OIM server, and client simulator 2, which issues requests
to the conscientious OIM server.

After phase one has been initialized, the following steps are
executed in sequence:

1. Manually overwrite the Java class file of the
XmlRpcService class in the original OIM system with
the new version.

2. Shutdown and restart the original OIM system.

3. Use the HTTP update service of the software mainte-
nance epi-aspect to submit the source code of the updated
XmlRpcService class to the conscientious version of the
OIM system.

The results of the first phase are shown in table 5. While
the update is successful for both the original and consci-
entious OIM, the original OIM system has to be restarted
which makes the system unavailable for approximately 17
seconds. This short period causes a number of XML-RPC
requests issued by the client simulator 1 to fail. The con-

669

scientious OIM system, however, experiences no downtime,
because the software update epi-aspect applies and initial-
izes the updated version of the XmlRpcService class in the
background and then immediate replaces the old instance
with the new one. This result indicates that the conscien-
tious OIM version is more suitable for being updated during
production use.

Original OIM Update successful. Approx 17 sec-
onds downtime, because the entire
OIM system is restarted.

Client Simulator 1 Log file indicates 19 failed re-
quests.

Conscientious OIM Update successful. No downtime.

Client Simulator 2 Log file indicates no failed re-
quests.

Table 5. Software Update Experiment Phase 1 Results

Phase 2: Install Buggy Update

In the second phase a buggy update of the XmlRpcService
class is installed. The bug in this update is a latent bug that
causes critical failure after the XmlRpcService instance has
been running for approximately one hour. This phase uses
the same steps as the first phase, except that the updated ver-
sion of the XmlRpcService class contains a latent critical
bug that starts causing failures after approximately one hour.
After the updates are applied to both OIM systems, their be-
havior is observed for three hours.

Table 6 shows the observation log of the second phase. As
the observation log indicates, the XML-RPC service of the
original OIM system fails after approximately 61 minutes.
The conscientious OIM system restarts the XML-RPC ser-
vice after it causes an initial exception in the 61st minute
of the experiment. The restart prevents further exceptions
for approximately one hour. When exceptions start occur-
ring again in the 125th minute of the experiment, the con-
scientious OIM system reverts the XML-RPC service to its
previous version and continues running smoothly until the
end of the experiment.

6.2.2 Fine-Grained Monitoring Study

The purpose of this study is to illustrate the software de-
sign and development process of aspect-oriented conscien-
tious software by extending the conscientious OIM system
with a finer-grained error monitoring and recovery mecha-
nism. This extension involves extending the OIM epi-aspect
as well as writing new rules for the autopoietic simulator.
Here, we describe the design and implementation, and the

Experiment
Time (Min)

Event

61:23 First exception in the XmlRpcService in-
stance the original OIM system.

61:27 First exception in the XmlRpcService in-
stance the conscientious OIM system.

61:27 The autopoietic simulator recommends to
restart the XmlRpcService instance of the
conscientious OIM system, which is done
by the XML-RPC service epi-aspect.

61:29 The XmlRpcService instance of the origi-
nal OIM system terminates. Original OIM
system not accessible.

125:14 Exception in the XmlRpcService instance
the conscientious OIM system. Autopoi-
etic simulator recommends reverting the
XmlRpcService to a previous version,
which is done by the software mainte-
nance epi-aspect.

180:00 Conscientious OIM system is still running
properly.

Table 6. Software Update Experiment Phase 2 Log

approach for testing the extended conscientious OIM sys-
tem.

The finer-grained error monitoring and recovery mecha-
nism maintains a history of exceptions for the each of the
classes UserAccounts, OIMService, OrderManager, and
InventoryManager. The functionality for the exception
history is implemented by a component that is added to the
OIM epi-aspect. Whenever an exception occurs in one of the
OIM main classes, this component makes an entry into a log
file associated with the class that threw the exception. Apart
from creating the entries, the component counts the number
of exceptions in pre-defined intervals. The number of excep-
tions per interval is recorded and submitted the numbers of
exceptions for the five most recent intervals are submitted to
the autopoietic system via the epi-queue.

The autopoietic simulator requires additional rules for pro-
cessing the epi-messages containing the exception counts of
the five previous intervals:

1. If the number of exceptions for the current interval is
greater than zero, issue a Test suggestion. The corre-

670

sponding advice in the OIM epi-aspect verifies the re-
sponsiveness of the OIM system classes. If the test fails,
the default rules of the autopoietic simulator trigger a
Restart suggestion.

2. If the number of exceptions between the four previous
and current interval have increased more than a pre-
defined threshold, issue a Restart suggestion.

To test the proper operation of the implementation of the
fine-grained monitoring feature, updated versions of the
classes OIMService and OrderManager, which randomly
throw non-critical and critical exceptions, are added to the
conscientious OIM system. Non-critical exceptions do not
affect the proper operation of instances of these two classes,
and critical exceptions lead to a crash of the OIM system.
The test is run according to the following protocol:

1. The updated OIM epi-aspect, autopoietic rules, new ver-
sions of OIMService are OrderManager are deployed
in the conscientious OIM system.

2. The component in the OIM epi-aspect is configured to
use intervals of three minutes.

3. The autopoietic simulator is configured to use 10 excep-
tions as the threshold value for triggering Restart sugges-
tion.

4. One instance of the client simulator is started with the
same configuration used in the software update experi-
ment described in section 6.2.1.

5. Let the experiment run for 120 minutes.

This test can only fail if there is an implementation error
in the OIM epi-aspect. After the test is run successfully,
the development of the fine-grained monitoring feature is
completed.

7. Comparison With Related Work
The goals of self-sustainment and self-adaptation are not
limited to conscientious software. As described in section 2,
autonomic computing, monitoring oriented programming,
and reflective and adaptive middleware attempt to tackle the
same issue using various approaches. This section compares
epi-aspects with concrete architectures proposed within
these fields.

7.1 Reflective and Adaptive Middleware

The Rainbow [10] and Adapta [20] frameworks are concrete
adaptive and reflective middleware architectures.

The Rainbow framework by Garlan et al. consists of an ar-
chitecture layer, a system layer, and a translation infrastruc-
ture. The system layer contains application functionality and
so-called effectors and probes. Effectors are components that
carry out system modifications and probes observe the ap-
plication. The information collected by probes can be pub-
lished and queried by the architecture layer. In the archi-

tecture layer information from the probes is aggregated and
used to maintain an architectural model, which is periodi-
cally evaluated by a constraint evaluator. If a constraint vio-
lation occurs, an adaptation engine carries out corresponding
actions via effectors. The translation infrastructure is respon-
sible for transmitting information between the two layers.

The epi-aspects architecture and Rainbow framework both
separate application functionality from an observation and
adaptation mechanism. In the epi-aspects architecture, the
observation and adaptation mechanism is the autopoietic
system and in the Rainbow framework, this mechanism is
the constraint evaluator in the architecture layer. A signifi-
cant difference of both architectures is that an epi-aspect en-
capsulates the functionality of probes, effectors, and trans-
lation infrastructure, which are separate components in the
Rainbow framework.

Adapta by Sallem et al. is a CORBA-based reflective mid-
dleware for developing adaptive, component-based applica-
tions. Like the Rainbow framework, and the epi-aspects ar-
chitecture, it aims at separating application code from the
code responsible for adaptation. Adapta has a runtime envi-
ronment providing monitoring and trigger functionality. This
environment can be configured by a XML-based reconfig-
uration language denoted as AdaptaML. This language al-
lows developers to configure monitoring components, to de-
fine local and distributed events, and to specify reconfigura-
tion actions that are applied to the application in response to
events.

Adapta and the Rainbow framework focus primarily on
adaptation, which is just one feature of the epi-aspects ar-
chitecture. In comparison, the strength of the epi-aspects ar-
chitecture is finer-grained error recovery, as epi-aspects can
advise on exceptions and directly access the internal state of
instances within the application.

7.2 Monitoring-Oriented Programming (MOP)

As described in [5], monitoring-oriented programming is
a programming paradigm build upon runtime verification
techniques that aims supporting reliable software via mon-
itoring and error recovery. The formal specification of an
application is used as the basis for generating a set of moni-
tors that are integrated into the software. Chen et al. propose
a concrete development Java development tool denoted as
Java-MOP in [4], which provides user interfaces for editing
and processing specifications for generating monitors.

Java-MOP is not directly comparable with the epi-aspects
architecture, because it is essentially a compiler for monitor
specifications. The epi-aspects architecture on the other hand
is a runtime and development environment for conscientious
software based on aspect-oriented programming. Chen et al.
also propose an aspect-oriented approach for MOP in [5], in
which the formal specifications are encapsulated in abstract
aspects. Like Java-MOP this aspect-oriented MOP tool is not

671

dynamic, since the formal specifications are translated into
monitors before runtime.

Like the epi-aspects framework, monitoring-oriented pro-
gramming can be used to implement fine-grained error
detection and recovery, and mechanisms for adapting the
system. However, depending on the implementation MOP
application are not necessarily dynamic and adaptive in a
sense that a running system can be adjusted. It is possible to
consider conscientious software and hence the epi-aspects
framework as an extension of the MOP paradigm.

8. Discussion
This section discusses open issues and limitations of au-
topoietic conscientious software architecture, the proposed
architecture, and the Epi-AJ framework that are not ad-
dressed in the other parts of the paper.

8.1 Limitations of Epi-Aspects

The proposed architecture encourages a clear separation be-
tween application functionality and an autopoietic system
for monitoring, regulation, and error recovery. This archi-
tectural separation is a shift in software engineering prac-
tice, which focuses on application functionality and often ne-
glects well-known error recovery and adaptation techniques.
Since the autopoietic system is not an artificial intelligence,
but implemented by developers who have designed rules for
keeping an application running as smoothly as possible, cer-
tain unpredictable conditions can still cause the application
to perform unwanted actions. Critical failures that crash the
system can be handled by the autopoietic system. However,
it is not possible to prevent an application from doing some-
thing it is not supposed to do. As such, the epi-aspects archi-
tecture is prone to human failure.

A practical issue of epi-aspects not addressed in the previ-
ous sections is the problem of potential buggy epi-aspects.
Since epi-aspects can contain a significant amount of code,
the introduction of latent bugs is possible. As a result, epi-
aspects have to provide a mechanism that reliably performs
self-updates. One possible approach is the usage of a “meta”
epi-aspect that monitors the epi-aspects for internal prob-
lems.

Another issue is the update of epi-aspects. In the case study,
we only implement a dedicated epi-aspect that provides a
mechanism for updating the classes of the OIM system, but
not the epi-aspects. The most straightforward approach for
dealing with the issue is to implement a dedicated epi-aspect
that provides functionality for reliably updating other epi-
aspects and itself.

8.2 Realizing An Autopoietic system

The autopoietic simulator of the Epi-AJ framework is meant
for development and test purposes. In order to use epi-
aspects in real world applications, the development of a full

autopoietic system is necessary. Apart from the lack of au-
topoietic programming languages as envisioned by Gabriel
and Goldman in [9], the following issues have to be ad-
dressed.

The first question is how to implement and deploy an au-
topoietic system. One option is to implement is as a program
that runs directly on the computer’s hardware and provides a
virtual machine for running an operating system, similar to
VMWare or Colinux. The advantage of this approach is that
the autopoietic system does not depend on other software,
which might be buggy. Furthermore, components, drivers,
and applications of the operating system can be realized as
aspect oriented conscientious software that is woven into the
autopoietic system on startup.

Another similar option is running the autopoietic system on
top of an existing, stable operating system kernel, which
provides hardware abstraction, basic services, and includes
drivers.

A third option is to implement the autopoietic system as an
application running on an operating system or inside a vir-
tual machine. Advantages are that this approach has lower
implementation complexity. The major disadvantage is that
the autopoietic system depends on an operating system or
virtual machine and therefore is only as stable as the under-
lying software.

Another technical issue that has to be resolved are the exact
mechanisms for invoking recommendation and query advice
woven into the autopoietic system, and for transporting mes-
sages from epi-aspects to the autopoietic system via an epi-
queue. If autopoietic system and application run in the same
process, which is the approach used by the autopoietic sim-
ulator, this issue is trivial. However, running the autopoietic
system and application in the same process defeats the pur-
pose of conscientious software, because a critical failure in
the application might terminate the process and thus the au-
topoietic system.

9. Conclusion
This paper proposes a concrete aspect-oriented architecture
for realizing conscientious software as envisioned by Gabriel
and Goldman in [9]. Apart from proposing and describing
the conceptual architecture, which introduces epi-aspects as
a construct for combining an autopoietic system and appli-
cations into working conscientious software, we design and
implement Epi-AJ, a framework for implementing and test-
ing aspect-oriented conscientious applications. Furthermore,
we conduct an experimental case study to evaluate the po-
tential of the proposed architecture and Epi-AJ framework.
The results of the case study show that in comparison with a
plain Java application, an aspect-oriented conscientious ap-
plication adapts better to changes and problems that we in-
troduced in our controlled test environment.

672

The research presented in this paper is only the first step to-
wards creating a solid aspect-oriented architecture for con-
scientious software that is suitable to be used in real-world
applications. We expect further research to focus on two ar-
eas: One area is the design of an autopoietic programming
language that can be used to implement the autopoietic sys-
tem of the aspect-oriented conscientious software architec-
ture. The second area is experimental and comparative re-
search that continues to validates and compare the proposed
architecture to other techniques for creating self-sustaining
software, such as autonomic computing, reflective and adap-
tive middleware, and monitoring oriented programming.

Acknowledgments
We would like to thank our shepherd Doug Lea who pro-
vided guidance and helpful feedback on improving this pa-
per. We would also like to thank Ron Goldman, and the
anonymous reviewers for their comments and direction.

References
[1] P. Avgustinov, A. S. Christensen, L. Hendren, S. Kuzins,

J. Lhotk, O. Lhotk, O. de Moor, D. Sereni, G. Sittampalam,
and J. Tibble. abc : An extensible aspectj compiler.
Transactions on AOSD, (1):293–334, 2006.

[2] G. S. Blair, G. Coulson, and P. Grace. Research directions in
reflective middleware: the lancaster experience. In ARM ’04:
Proceedings of the 3rd workshop on Adaptive and reflective
middleware, pages 262–267, New York, NY, USA, 2004.
ACM Press.

[3] F. Chen and G. Roşu. Towards monitoring-oriented program-
ming: A paradigm combining specification and implementa-
tion. In Workshop on Runtime Verification (RV’03), volume
89(2) of ENTCS, pages 108 – 127, 2003.

[4] F. Chen and G. Roşu. Java-mop: A monitoring oriented
programming environment for java. In Proceedings of the
Eleventh International Conference on Tools and Algorithms
for the construction and analysis of systems (TACAS’05),
volume 3440 of LNCS, pages 546–550. Springer-Verlag,
2005.

[5] F. Chen and G. Roşu. Mop: Reliable software development
using abstract aspects. Technical Report UIUCDCS-R-2006-
2776, Department of Computer Science, University of Illinois
at Urbana-Champaign, 2006.

[6] F. Eliassen, E. Gjørven, V. S. W. Eide, and J. A. Michaelsen.
Evolving self-adaptive services using planning-based re-
flective middleware. In ARM ’06: Proceedings of the 5th
workshop on Adaptive and reflective middleware (ARM ’06),
page 1, New York, NY, USA, 2006. ACM Press.

[7] M. Engel and B. Freisleben. Supporting autonomic com-
puting functionality via dynamic operating system kernel
aspects. In AOSD ’05: Proceedings of the 4th international
conference on Aspect-oriented software development, pages
51–62, New York, NY, USA, 2005. ACM Press.

[8] S. Fleissner and E. Baniassad. A commensalistic software
system. In OOPSLA ’06: Companion to the 21st annual

ACM SIGPLAN conference on Object-oriented programming,
systems, languages, and applications. ACM Press, 2006.

[9] R. P. Gabriel, R. Goldman, and K. A. McIntyre. Consci-
entious software. In OOPSLA ’06: Proceedings of the 21st
annual ACM SIGPLAN conference on Object-oriented pro-
gramming, systems, languages, and applications, New York,
NY, USA, 2006. ACM Press.

[10] D. Garlan, S.-W. Cheng, A.-C. Huang, B. Schmerl, and
P. Steenkiste. Rainbow: Architecture-based self-adaptation
with reusable infrastructure. Computer, 37(10):46–54, 2004.

[11] P. Grace, G. Coulson, G. S. Blair, and B. Porter. A distributed
architecture meta-model for self-managed middleware. In
ARM ’06: Proceedings of the 5th workshop on Adaptive and
reflective middleware (ARM ’06), page 3, New York, NY,
USA, 2006. ACM Press.

[12] P. Greenwood and L. Blair. Using dynamic aop to implement
an autonomic system. In Proceedings of the 2004 Dynamic
Aspects Workshop (DAW04), Lancaster, pages 76–88.
RICAS, March 2006.

[13] J. O. Kephart and D. M. Chess. The vision of autonomic
computing. Computer, 36(1):41–50, January 2003.

[14] R. Maia, R. Cerqueira, and F. Kon. A middleware for
experimentation on dynamic adaptation. In ARM ’05:
Proceedings of the 4th workshop on Reflective and adaptive
middleware systems, New York, NY, USA, 2005. ACM Press.

[15] B. McMullin. Computational autopoiesis: The original
algorithm. Working Paper 97-01-001, Santa Fe Institute,
Santa Fe, NM 87501, USA, 1997.

[16] B. McMullin and F. J. Varela. Rediscovering computational
autopoiesis. In Fourth European Conference on Artificial Life
(ECAL’97), pages 38–47, 1997.

[17] R. Murch. Autonomic Computing. IBM Press, March 2004.

[18] D. Patterson, A. Brown, P. Broadwell, G. Candea, M. Chen,
J. Cutler, P. Enriquez, A. Fox, E. Kiciman, M. Merzbacher,
D. Oppenheimer, N. Sastry, W. Tetzlaff, J. Traupman, and
N. Treuhaft. Recovery oriented computing (roc): Motivation,
definition, techniques,. Technical report, Berkeley, CA, USA,
2002.

[19] A. Rasche, W. Schult, and A. Polze. Self-adaptive multi-
threaded applications: a case for dynamic aspect weaving. In
ARM ’05: Proceedings of the 4th workshop on Reflective and
adaptive middleware systems, New York, NY, USA, 2005.
ACM Press.

[20] M. A. S. Sallem and F. J. da Silva e Silva. Adapta:
a framework for dynamic reconfiguration of distributed
applications. In ARM ’06: Proceedings of the 5th workshop
on Adaptive and reflective middleware (ARM ’06), page 10,
New York, NY, USA, 2006. ACM Press.

[21] F. J. Varela, H. R. Maturana, and R. Uribe. Autopoiesis:
The organization of living systems, its characterization and a
model. BioSystems, 5:187–196, 1974.

[22] M. Zeleny. Self-organization of living systems: A formal
model of autopoiesis. International Journal of General
Systems, 4:13–28, 1977.

673

