
MetaEdit+:

Integrated modeling and metamodeling environment

for domain-specific languages
Juha-Pekka Tolvanen

MetaCase

Ylistonmaentie 31

FI-40500 Jyvaskyla, Finland

+358 14 4451400

jpt@metacase.com

Abstract
Domain-Specific Modeling (DSM) raises the level of abstraction

beyond programming by specifying the solution directly using

domain concepts. In many cases, the final products can be

generated from these high-level specifications. This automation is

possible because both the language and generators need fit the

requirements of only one company and domain.

This demonstration illustrates DSM by showing real world cases

from various fields of software development. These cases describe

how DSM, giving first class support for modeling, can prevent

incorrect or unwanted designs at the early stages of development,

and how full code can be generated from the modeler’s point of

view. Second part of the demonstration will show in an interactive

manner both the design side and the use side of DSM languages

and generators. Using MetaEdit+ tool for metamodeling, we

define a DSM for a given domain and apply it to generate full

code from high-level models.

Categories and Subject Descriptors D 2.2 [Design Tools and

Techniques]: Computer-aided software engineering (CASE)

D 2.6 [Programming Environments]: Graphical environments

D 3.2 [Language Classifications]: Design languages, specialized

application languages, very high-level languages

General Terms Design, Languages

Keywords metamodel; domain-specific modeling; code generators

1. Introduction
Domain-Specific Modeling raises the level of abstraction and

hides today's programming languages, in the same way that

today's programming languages hide assembler [5, 6]. Symbols

and language constructs in a domain-specific model map to things

in the domain - the world in which the application is to run.

Rather than having concepts and symbols that map one-to-one

with the constructs of a programming language, each symbol can

be worth of several lines of code. This offers a whole level of

abstraction higher than with current modeling languages, such as

UML. The properties that characterize the symbol can further

elaborate different mappings to code, or the connections the

symbol has to other symbols offer further mappings etc. The

developer can therefore solve the problem only once by visually

modeling the solution using only familiar domain concepts. The

final products can be automatically generated from these high-

level specifications with domain-specific code generators, aided

where necessary by existing component code [2, 3, 4].

As the name suggests, Domain-Specific Modeling is only possible

because of narrowing down the design space, often to a single

range of products for a single company [1, 2]. One expert defines

a domain-specific language containing the domain concepts and

rules, and specifies the mapping from that to code in a domain-

specific code generator. An experienced developer can state

exactly what code is wanted from models in a given domain.

Normal developers then make models with the modeling language

and code is automatically generated. As an expert has specified

the code generators, they produce products faster and with better

quality than could be done by normal developers by hand [3]. The

generated result will be free of most kinds of careless mistakes,

syntax and logic errors.

Generally speaking, defining a language and generator is

considered a difficult task: this is certainly true once building a

language for everyone. The task eases considerably if you make it

only for one problem domain in one company. This task becomes

even easier if you can use a tool that that support both DSM

development and use.

2. MetaEdit+ for DSM
MetaEdit+ is an integrated environment that allows building

modeling tools and generators fitting to specific application

domains, without having to write a single line of code. In

MetaEdit+, one expert defines a domain-specific language as a

metamodel containing the domain concepts and rules, and

specifies the mapping from that to code in a domain-specific code

generator. For this DSM implementation, MetaEdit+ provides a

metamodeling language and tool suite for defining the method

concepts, their properties, associated rules, symbols, checking

reports, and generators. The method definition is stored as a

metamodel in the MetaEdit+ repository allowing future

modifications, which reflect automatically to models and

generators.

MetaEdit+ follows the given language definition and

automatically provides full modeling tool functionality:

diagramming editors, browsers, generators, multi-

user/project/platform support, etc. A whole team can immediately

start to edit designs as graphical diagrams, matrices or tables,

switching between views according to user needs.
Copyright is held by the author/owner(s).

OOPSLA’06 October 22–26, 2006, Portland, Oregon, USA.

ACM 1-59593-491-X/06/0010.

690

3. Examples of DSM
Every domain is different, and so every DSM example is different.

This demonstration shows real world cases of DSM from various

fields of software development: enterprise application

development into mobile phones, financial product definition into

B2B J2EE web site and voice menu development into 8-bit

microcontroller. These samples cover a wide range of code

generation target languages, scripting languages, object-oriented

languages and assembler. These cases illustrate how DSM, giving

first class support for modeling, can prevent incorrect or

unwanted designs at early stages of the development, how

underlying platform complexity is hidden, and how full code can

be generated from the modeler’s point of view.

4. Creating DSM
Second part of the demonstration will show in an interactive

manner both the design side and the use side of DSM languages

and generators. On the DSM use side, we implement the

OOPSLA conference registration application into a mobile phone.

This is done by modeling in MetaEdit+ tool (Figure 1).

The design model is directly based on domain concepts, such as

Note, Pop-up, SMS, Form, and Query. These are specific to

mobile phone services and its user-interface widgets. As can be

seen from the design model, all the implementation concepts are

hidden. Developers can focus on finding the solution using the

domain concepts. As the descriptions capture all the required

static and behavioral aspects of the application, it is possible to

generate the application fully from the models. In this case the

generated code uses the services provided by the smartphone

framework. After design, there is no need to map the solution to

implementation concepts in code or in UML models visualizing

the code. Nor there is need to change the generated code.

In the demonstration we shift next to the DSM creation side:

Using MetaEdit+ tool for metamodeling, we extend the modeling

language as well as the generator. Language extensions deal with

adding domain constraints (Figure 2), rules and new concepts.

Once the DSM is extended, this allows us to revert to modeling in

order to finalize our sample conference registration application.

In addition to language and editor creation, the demonstration will

show advanced features of DSM use. These include automatic

update of models when the domain-specific language changes, a

debugger for code generators integrated to the metamodel,

generated code with live links back to the models, and the open

architecture for integrating tools via XML or SOAP API to the

metamodel and models.

5. Conclusion
Domain-specific modeling provides significant increases in

productivity, especially for product families. Providing tool

support for such a modeling method has previously required at

least a man-year of work. A metaCASE tool such as MetaEdit+

reduces the time needed down to the order of days or weeks.

Industrial experiences [3, 4] show productivity gains of 3-10

times, and comparable decreases in the time needed for new users

to become productive.

6. REFERENCES

[1] Fayad, M.E., Johnson, R. (Eds.), Domain-Specific

Application Frameworks, Wiley 1999.

[2] Greenfield, J., Short, K., Cook, S., Kent, S., Software

Factories: Assembling Applications with Patterns, Models,

Frameworks, and Tools, Wiley, 2004.

[3] Kieburtz, R. et al., A Software Engineering Experiment in

Software Component Generation, in Proceedings of 18th

International Conference on Software Engineering, Berlin,

IEEE Computer Society Press, March, 1996.

[4] MetaCase, Benefits of MetaCASE: Nokia Mobile Phones

Case Study, http://www.metacase.com/papers/

[5] Pohjonen, R., and Kelly, S., “Domain-Specific Modeling,”

Dr. Dobbs Journal, August 2002.

[6] Tolvanen, J-P., Sprinkle, J., Rossi, M., (eds.), Proceedings of

5th OOPSLA workshop on Domain-Specific Modeling

(DSM'05), University of Jyväskylä 2005.

Figure 1. Sample model and generated application running

Figure 2. Adding constraint.

691

