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Abstract 

In this paper we propose a new form of polymor- 
phism for object-oriented languages, called corre- 
spondence polymorphism. It lies in a different di- 
mension than either parametric or subtype poly- 
morphism. In correspondence polymorphism, some 
methods are declared to correspond to other meth- 
ods, via a correspondence relation. With this re- 
lation, it is possible to reuse non-generic code in 
various type contexts-not necessarily subtyping or 
matching contexts-without having to plan ahead 
for this reuse. Correspondence polymorphism has 
advantages over other expressive object type sys- 
tems in that programmer-declared types still may 
be simple, first-order types that are easily under- 
stood. We define a simple language LCP that re- 
flects these new ideas, illustrating its behavior with 
multiple examples. We present formal type rules 
and an operational semantics for LCP, and estab- 
lish soundness of the type system with respect to 
reduction. 

1 Introduction 

Polymorphism is an important component of object- 
oriented language design. The two foundational 
forms of polymorphism that may be used to give se- 
mantics to typed objects are subtype p&morphism 
and parametn’c polymorphs’sm. The former may be 
used to model the manner in which a subclass mem- 
ber can be used where a superclass is the declared 
type. The latter allows code to be written where 
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some types may be arbitrary, and later are instan- 
tiated. 

In this paper we propose a new form of polymor- 
phism for object-oriented languages, so-called cor- 
respondence polymorphism. The novelty of this new 
mechanism is that it allows programmers to reuse 
existing code in non-subtyping/subclassing contexts 
within a statically type-safe language. For example, 
given a class mattizof square matrices, its “power(n: 
Nut):Matriz” method (successive self multiplication) 
can be implemented by extracting method “power(n: 
Nut):Intege+’ from class integer, provided that the 
multiplication methods in both classes are related 
via a correspondence redation, $%. The point is 
that matrices and integers are not related by sub- 
typing/subclassing, nor do they share a common 
supertype/superclass. 

This is the essence of correspondence polymor- 
phism: it implicitly makes non-generic code usable 
for purposes beyond the specific instance for which 
it was originally developed. It differs from a pro- 
gramming style that relies on universal polymor- 
phism, in that code need not be a-priori written 
for universal applicability. In other words, with re- 
spect to type declaration, programmers do not have 
to plan ahead for code reuse. 

In [17], the first and third authors proposed a 
form of polymorphism motivated from metaphors 
of natural language. This paper makes those high- 
level ideas concrete by defining an actual language 
embodying the concepts. We define the language, 
type rules, reduction rules, and prove soundness of 
the type rules with respect to reduction. 

The best way the concepts can be understood is 
via examples, so we immediately proceed in Section 
2 with the definition of our language, LCP (Lan- 
guage with Correspondence Polymorphism), followed 
by a series of informal examples showing how the 
language may be used. In this section we also relate 
correspondence polymorphism to other approaches 
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e ::= z ) n 1 b ) Ax : 7.e 1 e e 1 if e then e else e 
1 let 2 : T = e in e 1 e t m 1 e.y I e.y := e 
1 obj(s : 7) inst yj = ej meth VQ = ek 
j class(s : T) inst 5/j meth ?nk = ek 

e :: m 1 e :: y 1 new e 

x E Var 
n::= O]l]Z]... 
b ::= true 1 false 

Figure 1: LCP expressions 

for typing object-oriented programs, including [6, 7, 
4, 151. Section 3 then demonstrates that the con- 
cepts illustrated in the examples are well-founded 
by defining type and reduction rules, and by prov- 
ing a subject reduction property. 

2 The Language LCP 

The syntax of LCP (Language with Correspondence 
Polymorphism) is shown in Figure 1. The language 
incorporates a simple notion of object and class. 
Writable instance variables are hidden in objects. 
Objects may be created either by new-ing a class, 
or directly by a primitive obj construct in the spirit 
of the Abadi-Cardelli object calculus [l]. Method 
bodies are typically functions Xz : 7.e. Functions, 
objects, and classes all have explicitly declared types, 
but these declarations only assert the original inten- 
tion of the code, and the code may in fact be used at 
other types, via the correspondence relation. These 
concepts will be clarified by the examples below. 

LCP contains a fine-grain notion of inheritance 
drawing on a conception of classes as collections of 
pre-methods [l]: classes inherit by extracting meth- 
ods from existing classes. Syntax e :: m extracts 
method m from class e as a function from self. The 
extracted method can then be embedded in another 
class. This allows for multiple inheritance, and also 
allows for an inheriting class to only inherit some of 
the code; in the case where the code left behind was 
in fact needed, a type error will arise. The standard 
notion of inheritance is syntactic sugar that implic- 
itly extracts all methods from the superclass into 
the current class. 

Figure 2 gives the syntax of LCP types. Class 
and object types are “named” via an identifier T, 
taken from the set ObjTyId of object type identifiers. 
Inst-Meth types << T, Inst m Meth mg > 
are the bodies of object types with name T: in 
Obj mt 7, r must be an Inst-Meth type, in which 
mt may occur free. Object types are thus a com- 
bination of name and structure, much like in real 

7 ::= mt ) Bool ) Nut 1 T -+ T 

) < T, Inst yj : Tj Meth mk : Tk > ) Obj mt ?- 
1 ClaSS < T, InSt Yj : Tj Meth mk : TL I+ Tk > 

mt E TyVir 
T E ObjTyId 

Figure 2: LCP types 

programming languages such as C-t+, Java and Eif- 
fel. The type variable mt is analogous to Bruce’s 
My Type, the external type of self in objects and 
classes. We omit the keyword Inst when there are 
no instance variables, so < T, Meth mk: : Tk > 
stands for -c-K T, Inst Meth mk : ok >. 

Class types are similar to Inst-Meth types, ex- 
cept that methods are given types Q-L I+ rk for fu- 
ture extraction: ?-L is the future self and rk is the 
future method result type. The purpose of these 
types will be made clear by the examples. Note 
that in constrast with object types, class types are 
not recursive. 

Along with correspondence polymorphism, LCP 
has subtype polymorphism and what could be called 
“poor man’s parametric polymorphism” - in the 
let construct, the expression placed in z is re-type- 
checked for every context it occurs in the let body. 
This is strictly more powerful than parametric let- 
polymorphism, but requires re-type-checking for each 
occurrence of z. let is used in LCP to express code 
reuse, as the examples below will show. 

LCP expressions are evaluated and typed w .r .t . a 
fixed correspondence relation m. It is an equiva- 
lence relation on the set {T.a 1 T E ObjTyId, a E 
L}, where L is the set of instance variables and 

method labels. Intuitively, T.m rorr S.n asserts 
that method name m relative to type name T “has 
the same meaning” as method name n relative to 
type name S. In LCP this relation is assumed 
given, but in a more realistic language, it would be 
induced by program structure. One specific exam- 
ple is found in [17], where the correspondence rela- 
tion is induced by the inheritance hierarchy, and by 
an explicit construct for relating method names in 
different types. 

Every object with declared type 

Obj mt < T, Inst vj : Tj Meth m >, 

is labeled by the identifier T. This label is used 
in conjunction with the correspondence relation to 
interpret message sends at run-time: suppose that 
message send e e m is to be computed, that the 
originally intended (i.e., declared) type of e is an 
object type named S, and that e evaluates to an 
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object o labeled T. Then, assuming S.m T”rT T.n, 
the method n in o is invoked. A runtime type error 
is flagged if there is no n such that S.m $% T.n. A 
typable expression, however, cannot run into type 
errors, as guaranteed by the subject reduction prop- 
erty of LCP’s type system. 

To ensure the determinism of the runtime se- 
mantics, we impose the following condition on the 
correspondence relation %f% for every T E ObjTyId, 
a E L, and S E ObjQId there is at most one b E L 

such that T.a m S.b. 
We now present a series of examples to infor- 

mally explain the language; the operational seman- 
tics and type rules presented in Section 3 will justify 
the informal assertions made below. 

2.1 A First Example: Integers and Matrices 

Consider the object types IntTgpe and MatType 
(the type of square matrices) shown in Fig. 3(a). 

Neither has fields that are a subset of the fields 
of the other, so no inheritance relationship could 
be defined in most object-oriented languages. In 
LCP, fine-grain inheritance is still possible, as we 
will show. I&Type and M&Type are notations in 
the meta-language for two object types named In- 
teger and Matrix, respectively (a’. e., Integer and Ma- 
trix are elements of ObjTyId). Using these types, 
we define the classes intclass and matClass as in 
Fig. 3(b). Notation: we assume some standard 
built-in primitive functions, such as &Zero(n), pred(n), 
in the set B C Vur. If 

c = class(s : T) inst.. . meth. . . 

is a class expression then 

letclass z = c in e is syntactic sugar for 

let 5 : Pass = c in e 

where rclcss denotes the type of classes producing 
objects of type T. The notation rClnae is defined 
precisely in Sec. 3. 

In the class matclass, the method powerMat is 
implemented by extracting power from intclass and 
applying it to self. We say that power is eztructed 
from intclass and embedded in matclass. Now, as- 
suming Integer.mult FO’T Matrix.multMat and Inte- 
ger.power m MatrixpowerMat , the method pow- 
erMat will typecheck and function as desired. We 
illustrate this with a sample execution: 

letclass matrix = matClass 
in let o:MatType = new matrix 

in o t powerMat (5) 

The object o created by “new matrix” is labeled 
at run-time by type identifier “Matrix” since this 
is the type identifier declared in its class. Then, 
evaluation of powerMat(5) proceeds as follows: in- 
teger::power applied to o and then to 5 is evalu- 
ated. Inside method power, in turn, the self vari- 
able s has originally intended type named “Integer”. 
And, s is bound to o which is labeled “Matrix”. 
Since Integer.mult m Matrix.multMat, the mes- 
sage send s t mult inside power will dispatch as 
m&Mat. Similarly, power message sends will dis- 
patch as powerhlult. 

Thus, the code exploits the fact that the algo- 
rithm for matrix powering relates to matrix multi- 
plication in exactly the same way integer powering 
relates to integer multiplication. In LCP, such reuse 
is possible even though no subtyping or matching 
holds between IntType and MatType, and moreover, 
the multiplication methods have different names. 
The choice of method name “multMat” rather than 
“mult”, as in IntType, is artificial in this example, 
but we will give an example below that shows a case 
when name changes are useful. 

By extracting the power method and embedding 
it in matClass, we have reused a non-generic piece of 
code in a new context. Similar reuse can be made of 
free-standing functions, not just of methods. Con- 
sider the following LCP program fragment (Nota- 
tion: let f(s : T) : v = e’ in e is syntactic sugar for 
let f : 7 + (T = AZ : 7.e’ in e.): 

letclass integer = inGlass 
in letclass matrix = matClass 

in let square(i:IntType):IntType = it mult(i) 
in.. . square(new integer) . . . 

. . . square(new matrix) . . . 

Here, the function “square”, written with inte- 
gers in mind, is used to square both integers and 
matrices. The typing rule for let allows for different 
typings of “square” after the in, so the code above 
will typecheck. In addition, the rule for let veri- 
fies that “square” has its declared type IntZ$pe -+ 
IntType, regardless of what appears after the in (that 
is, this would be required even if there were no 
application of ‘%quare” to integers after the in). 
Thus, functions can be typechecked at types dif- 
ferent than their declarations, but declared typings 
must be verified to hold. Similarly, although the 
method “power” is embeddable in mutClass, we are 
sure that integer::power has type IntType + Nat + 
IntType since it is part of a class whose declared 
type is IntType, in which power is declared to have 
type Nat -+ Intnpe. Therefore, programming in 
LCP has two levels of sophistication: a novice user 
can write programs that look like code in any other 
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IntQpe e Obj mt << Integer, Meth mult: mt+ mt, power: iVat+ mt, isPrime: Boo2 >> 

MatType e Obj mt << Matrix, Meth multMat: mt+ mt, powerMat: Nat+ mt, isSingular: Bool > 

(a) The types IntType and MatType 

intCZass fi class (s:IntType) m&h mult =. . . , 
power = Xn:iVat. if isZero then s 

else s t mult(s t power(pred(n)), 
isPrime =. . . 

matcdass e letclass integer = intClass 
in class (s:MatType) meth multMat =. . . , 

powerMat = integer::power(s), 
issingular =. . . 

(b) The classes intClass and matClass 

Figure 3: The integer-matrix example 

annotated language, where everything behaves ac- 
cording to declaration. A more sophisticated user 
can reuse code at other types, with the safety of 
such usage verified by the type checker. 

2.2 Example: Points and ColorPoints 

As a benchmark to compare with other object typ- 
ing papers, we haul out the classic Point-CoLorPoint 
example [6], shown in Fig. 4. We implicitly assume 
in this and the following examples that like-named 
methods correspond. 

This example illustrates that in addition to code 
reuse in non-subtyping/matching contexts, LCP can 
also typecheck safe inheritance with binary methods 
(that is, inheritance in matching contexts). The 
method “usesEqual” (some random method which 
uses the “equal” method) is inheritable into class 
cPointClass because it can be retyped as CPointType 
+ CPointType. This form of inheritance is im- 
possible in Java and C++. It is possible in lan- 
guages supporting My Type and matching-based in- 
heritance, e.g. Bruce’s PolyTOIL [7]. 

The example also shows how superclass methods 
may be referenced during method override in LCP 
(which in some languages is accomplished with a 
keyword super): the “equal” method of cPoint- 
Class calls the superclass equal method via syn- 
tax”point::equal(s)“. This code in Fig. 4, and the 
following safe message sends 

l aPoint+ equal(anotherPoint) 

l aColorPointt equal(anotherColorPoint) 

0 aPoint& equal(aColorPoint) 

all typecheck, whereas the unsafe case aColorPointt 
equal(aPoint), which produces a run-time error, does 
not. Note especially the third safe case aPoint+ 
equal(aColorPoint) which LCP will typecheck, but 
PolyTOIL and other matching-based languages will 
fail on (they will type the other safe cases). Precise 
declared typings can typecheck this particular mes- 
sage send as well; see Section 4.4 of [6]. 

It should be pointed out, however, that the lan- 
guages mentioned above pursue a modular type- 
checking strategy, in which a method is typechecked 
once and for all for safe inheritability. LCP, in con- 
trast, re-typechecks methods in every new context. 
This is a weakness of LCP relative to all the exam- 
ples presented here. We discuss this issue in Sec. 
4. 

2.3 Example: Circies and ColorCircles 

The code in Fig. 5 demonstrates that in addition to 
binary methods, LCP can also handle covariant re- 
definition of method parameters and instance vari- 
ables. The example is reproduced from [5] with 
minor modifications. It uses the PointType and 
CPointType types of the previous example. 

The inheritance of CCe’rcleClass from circleClass 
is impossible in languages with subtype-based sub- 
classing like C+-t and Java, as well as in languages 
with match-based subclassing like TOOPLE [4] and 
PolyTOIL [7]. In PolyTOIL, however, a parametric 
structure which uses match-bounded polymorphism 
can be programmed instead [5]. The code does type 
check in Eiffel. Consider now the following code (we 
informally use sugar for a 2-argument function here, 
which is implemented in LCP via currying): 
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PointType b Obj mt << Point, Inst xVal: Nat 
Meth equal: mt+ Bool, usesEqual: mt+ mt, x: Nat > 

CPointType k Obj mt < ColorPoint, Inst xVal: Nat, colorVal: Nat 
Meth equal: mt+ Boo& usesEqual: mt+ mt, x: Nat, color: Nat >> 

pointClass 2 class (s:PointType) inst xVal = 0 
meth equal = Xp:PointType.(if ptx == stx then true else false), 

usesEqual = Xp:Pointl$pe.( . . . st equal(p) . . . ), 
x = s.xval 

cPointClass fi letclass point = pointCIass 
in class (s:CPointType) inst xVal = point::xVal, ColorVal = 0 

meth equal = Xp:CPointType.(point::equal(s)(p) && 
ptcolor == w-color), 

usesEqual = point::usesEqual(s), 
x = point::x(s), 
color = s.colorVal 

Figure 4: The point-colorPoint example 

CircleType 2 Obj mt < Circle, Inst center: PointType, radius: Nat 
Meth getcenter: PointType, setCenter: PointType+ mt $> 

CCircleQpe e Obj mt < ColorCircle, Inst center: CPointType, radius: Nat, colorVal: Nat 
Meth getcenter: CPointQpe, setcenter: CPointType+ mt, color: Nat >> 

circle Class e class (s:CircleQjpe) inst center = new pointclass, radius = 1 
meth getcenter = s.center, 

setcenter = Xc:PointType.(s.center := c) 

cCircleClass e letclass circle = circleClass 
in class (s:CCircleType) inst center = new cPointCZass, radius = circle::radius, colorVal = 0 

meth getcenter = circle::getCenter(s), 
setcenter = circle::setCenter(s), 
color = s.colorVal 

Figure 5: The circle-colorCircle example 
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let setCircleCenter(c:CircleType, 
p: Point Type) : Circle Type 
= ct setCenter 

. in. . . setCircleCenter(aCircle,aPoint) . . . 
. . . setCircleCenter(aColorCircle,aColorPoint) . . . 
. . . setCircleCenter(aCircle,aColorPoint) . . . 
. . . setCircleCenter(aColorCircle,aPoint) . . . 

The first call typechecks in any reasonable sys- 
tem, and the last two fail because they can lead to 
a runtime type error. The interesting call is the sec- 
ond one, which typechecks in LCP because the func- 
tion ‘%etCircleCenter” can be re-typechecked with 
argument types CCircleType and CPoint Type. The 
body of “SetCircleCenter” will not type check in 
Eiffel because the message send ct setCenter is 
a polymorphic catcall [15]. It would typecheck in 
earlier versions of Eiffel which defined a so-called 
system level validity check [14], which was never in 
fact implemented in a compiler. In PolyTOIL, the 
function can typecheck after reprogramming with 
appropriate match-bounded parametrization. 

Covariant retyping of subclass method parame- 
ters can also be supported via virtual types as origi- 
nated in Beta [13], and later proposed for Java [IS], 
but both without static typechecking. A recent pro- 
posal [8] shows that similar functionality can be ob- 
tained and statically typechecked by using a natu- 
ral generalization of matching to mutually recursive 
types. The circle-colorCircle inheritance could be 
programmed and typechecked there, and “setcircle- 
Center” could be programmed with match-bounded 
parameterization to make it callable with argument 
types CCircle Type, CPoint Type. This proposal, how- 
ever, requires the programmer to introduce a new 
level of a abstraction - type grozlps - defining several 
types at once by mutual recursion. This is some- 
what complicated, and also, does not always cor- 
respond to intuition. For example, PointType and 
CircleType are not by intuition mutually recursive: 
it is just the latter which depends the former. 

2.4 Example: Functions and Integers 

This last example demonstrates how it may be use- 
ful for GOTT to relate methods with different names 
and meanings in order to achieve reuse. Consider 
the following object type NatFuncType of functions 
from Nat to Nat: 

NatFunc Type 5 
Obj mt < NatFunc, Meth apply: Nat+ Nat, 

compose: mt-3 mt, 
power: Nat+ mt> 

The method “apply” returns the result of ap- 
plying self to the argument, “compose” returns the 
composition of self and the argument, and “power” 
repeatedly composes self with itself. 

Recall the Integer-Matrix example of Fig. 3, and 
suppose we define the correspondence Integer.mult 
m NatFu nc.compose. Then a class natFuncClass, 
producing objects of type NatFnncType, can imple- 
ment “power” by extracting it from antClass and 
applying it to self. 

This example shows that in LCP, an algorithm 
can be reused even when the underyling concepts 
are quite different: integer multiplication is noth- 
ing like function composition. An important prop- 
erty here is that even though the correspondence 
is between methods of completely different names 
and meanings, the extracted method implements a 
method with the same name (“power”). Thus, there 
is reasonable chance that programmers will consider 
this reuse potential. Reusing a concept (“power” 
in this example) from one domain (integers) to an- 
other (matrices) by mapping different lower-level 
concepts is in the essence of metaphors, which un- 
derly the concept of correspondence polymorphism 
PI. 

2.5 The Role of Declared Types in LCP 

An essential characteristic of correspondence poly- 
morphism is that code can typecheck at types dif- 
ferent than declared via a correspondence relation. 
However, declared types retain their documentary 
and client-contract roles as programmer-declared in- 
terfaces since they are always verified to hold. Typ- 
ing of the same code at different types is accom- 
plished in LCP via use of let: 

let integer:IntTypeC’aa’ = intclass 
in . . . integer::power(s) . . . integer::isPrime(s) . . . 

The two occurrences of “integer” in the body can 
have components re-type-checked at different types, 
for instance the “power” method being used in- 
side the matrix class (and, being re-type-checked to 
work on matrices), and the “isprime” method being 
similarly extracted, but for use in some third class. 
Regardless of what appears after the in, the type 
rules verify that intclass has type IntTypeC’ass, as 
declared for it after the let. 

Not less importantly, when retyping code, de- 
clared types provide the programmer’s originally in- 
tended types, which are used in conjunction with 
the correspondence relation to dispatch methods. 
Thus, LCP can be viewed as a hybrid of an explicitly- 
and implicitly-typed language: the user type decla- 
rations are honored, but in retypings, these declara- 
tions are ignored as type assumptions, and instead 
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take on meaning as original intentions. For exam- 
ple, in the typing of “integer::power(s)” above, the 
body of the power method is re-type-checked for self 
s a matrix, and, the send of “mult” to s in the body 
of power requires the intended typing IntType of s, 
so that mult maps to multMat via the correspon- 
dence relation. 

In summary, declared types have a dual role: 

l They are verified interfaces, and 

l They are used to dispatch methods via the cor- 
respondence relation 

2.6 Correspondence polymorphism related to other 
forms 

Correspondence polymorphism significantly differs 
from polymorphism in standard object-oriented lan- 
guages, but there are nonetheless some relation- 
ships, which we discuss now. 

The nature of object polymorphism in different 
languages may be partly modeled by different forms 
of m, The modeling is partial in the sense that 
correspondence polymorphism will still allow more 
programs to typecheck; we will clarify what the 
gap is. The object polymorphism allowed in C++ 
and Java (ignoring casting and templates) is one 
where subclass objects may be used where a super- 
class object is declared. The method names used in 
the superclass must be identical to the correspond- 
ing method names in the subclass. This may be 
modeled in LCP by a correspondence relation with 
T.m m S.n whenever T is a subclass of S and 
m = n, that is, subclass methods correspond to the 
same method in their superclass. 

This analogy is not precise in that LCP will still 
allow more programs to typecheck: suppose a C++ 
class A defining a method mA is inherited by B, 
which only adds a method mB. Suppose we write 
a global C++ function void f(B al?) whose im- 
plementation uses mA, but not ms. Then f( anA) 
would not typecheck in C-t+, but would in LCP 
since f is re-typable at type A + void. Thus, LCP 
can compensate for lack of typing precision on the 
part of the programmer by retyping. 

PolyTOIL [7] has a richer type system, but the 
types that programmers must declare can be quite 
complex: bounded matching is a form of higher- 
order bounded polymorphic type [6]. LCP declared 
types, in contrast, are of a complexity similar to 
Java and C-f--t types. The difference in expres- 
sivity between LCP and PolyTOIL is not great. 
It is mainly one of programming style: PolyTOIL 
achieves code reuse through genetic type declara- 
tions whereas LCP reuses by interpreting code with 

specific declared types in new contexts, ignoring the 
type declarations. PolyTOIL has the advantage 
over LCP of being easier to typecheck modularly - 
avoiding the need for re-type-checking method bod- 
ies - and of types that provide more precise code 
documentation. 

Finally, if w is only reflexive (T.m m T.m 
only), LCP will have no subtype polymorphism, 
something roughly corresponding to C or Pascal. 

3 Semantics of LCP 

In this section we give the semantics of LCP by 
presenting type rules, operational semantics, and 
the proof of subject reduction. In the body of the 
paper we present only the type rules and state the 
Theorems, and relegate the operational semantics 
rules and proofs to Appendicies. 
Notation: If 

T =<< T, In& yj : 7 Meth mk : Tk > 

is an Inst-Meth type then -rMeth denotes 

< T, Meth mk : Tk >> 

and (Obj mt 7) “W stands for the class type 

Class < T, Inst m Meth 
mk : (Obj mt ‘f) * ‘&[Obj mt ~~~~~/rnt] > 

3.1 Subtyping 

The subtyping rules of LCP are standard except 
for incorporation of m in object and class sub- 
typing. Figure 6 presents the subtyping rules. The 
system does not contain transitivity or reflexivity 
rules since they are derivable; see the Lemma be- 
low. The (Sub Object) rule is a simple form of ob- 
ject subtyping, in contrast with the more expressive 
[3, lo] which equate recursive types with their un- 
folding. The rule here is closer to the simple rules of 
[4]. In the (Sub InstMeth) rule, subtyping between 
objects can be seen to depend on the correspon- 
dence relation: given two Inst-Meth types 

the longer G is a subtype of the shorter r when 

T.yj Q”rl: S.xj, T.mk G”rf S.nk, and (recursively) 
aj, 7j, and pk <: pk. Thus, this rule is 
a combination of name-based subtyping and struc- 
tural subtyping of record types. Note that with 
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(Sub Env) 

(Sub Nat) 

(Sub Bool) 

C,o<:rtu<:r 

C t Nat <: Nat 

C t Booi <: Boo1 

(Sub Func) 
ctTl <:72 Ctul<:o2 
CF7-72-G-61 <:q 402 

(Sub InstMeth) (where T =< T, Inst yj : ~~~~~~~~~~~ Meth mk : pb kE{l--n’) > 

(Sub Obj) (T, u as above) 

C,Obj mt crMetn <: Obj mt @“eth t a[Obj mt crMeth/mt] <: 7[Obj mt TMeth/mt] 
Cl-Objmta<:Objmt r 

(Sub Class) (where T = Class < T, Inst gj : rj _ ‘E’l”‘n’ Meth rnk : pi I+ pk &{l...n’} >> 

u = CUSS < S, In& Xj : ~~~~~~~~~~~~~ M&h nk : pi t-+ pk kE{l...n’+m’l >) 

(T.yj W S.xj C I- aj <: Tj C t- Tj <: aj) jW4 

(T.mk B S.nk c I- pk <: pk) Wl-n’? 
cl-u<:7 

(T.yj W 51.xj C I- 0.j <: 7.j C I- 7j <: aj) je{‘...*) 

(T.mk !i%.S.nk c t ,dk -t /& <: ,& + &) kE’l-n’l 
ctu<<:r 

Figure 6: Subtyping rules for LCP 
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the trivial correspondence relation T.m m S.n iff 
T = S and m = n, we obtain trivial subtyping 
t 7 <: u iff 7 = 0. 

Lemma 3.1: The following properties of subtyp- 
ing hold: 

1. 

2. 

3. 

4. 

5. 

6. 

It is reflexive on closed types: k r <: r for any 
closed T. 

It is transitive on closed types: I- D <: T, t- 
T <: p implies l- u <: p (for any r,u,p). 

Let r be an Inst-Meth type with no free vari- 
ables other than mt. Then I- Obj mt T <: 
Obj mt 7TMeth. 

Let T = Obj mt << T, Inst yj : ~~j’{~“‘“) 

Meth mk : pk kc{l...n’} >>, r~ = Obj mt << 

S, Inst zi : oi iE{l-.m} Meth nl : lL1 &{l...?d} >> 

be object types, and suppose I- g <: 7, T.yj m 

S.xi, and T.mk m S.nl. Then I- ai <: rj, 
I- rj <: oi, and I- al[Obj mt aMeth/mt] <: 
Tk[Obj mt TMeth/mt]. 

Let T = Class < T, Inst yj : T~“‘~“‘“’ 

Meth mk : pi H pk kE(l...n’) >>, 

(T = Class < S, Inst xi : c~~‘~{““~) Methnl : 

Pi - l-4 ‘E@...m’I >> be class types, and sup- 

pose l- g <: r, T.yi $% S.xi, and T.mk m 
S-n,. Then l- pi <: rj, I- rj <: CT~, and l- $I -+ 
pl <: P: -+ Pk. 

Let 7 and g be InstMeth types. 
Then Obj mt (T <: Obj mt r if and only if 
(Obj mt g)Class <: (Obj mt r)Clasa. 

In what follows we write cr <: T for I- g <: 7. 

3.2 Originally Intended Types 

Both the operational semantics and the typing rules 
for LCP rely on the notion of originally intended 
type. In this section we present rules for deriving 
intended types. Informally, the intended type of a 
given occurrence of an expression e is the type of the 
value to which the programmer intended e to eval- 
uate when he or she originally wrote it. For LCP, 
the intended types are precisely the programmer- 
declared types annotating a program. 

Figure 7 presents a system to extract intended 
typings from LCP programs. We write I b e : 7 to 
express that from expression e, intended type r is 
derived under the type assignment I. This system 
should not be confused with a standard type sys- 
tem; it only extracts the declared type information 
from terms and asserts no relationship between the 
declarations and the program execution. 

The system is very simple and deterministic, so 
it immediately implies a (linear) inference aIgorithm. 

Lemma 3.2: The intended type extraction rules of 
Figure 7 have a decidable type inference property. 

Intended typing, when it exists, is unique. This 
guarantees that the semantics is deterministic. 

Lemma 3.3: If I b r and I t- r’ then r = r’. 
The notion of originally intended type in LCP is 

weaker than the ideal notion. Recall the Integer- 
Matrix example of Section 2.1 and the auxiliary 
function square (which is not a method of MatType 
or Int Type) : 

square fi Ji0:IntType.o c mult(0) 

and consider the message send “square(aMatrix)t 
issingular”. This perfectly sensible expression will 
not type check in LCP: square has intended type 
IntType + Intfipe, so “square(aMatrix)” has in- 
tended type IntType, and IntType does not have a 
method “isSingular”, and nothing corresponds to 
Integer.isSingular. Thus, typechecking fails. Note 
that this problem would not arise if square were 
a method inside IntType, where it really belongs: 
then it could be inherited into matClass with type 
mt + mt. 

Stronger intended type derivation rules could po- 
tentially infer that square(aMatrix) has intended 
type Mat Type, because the programmer was us- 
ing square at a non-declared type, and expected 
square(aMatrix) to return a matrix. A topic of fu- 
ture work is to improve on the intended typing rules 
to incorporate such a context-sensitive notion of in- 
tention. There is in fact a way of circumventing this 
problem by breaking the above computation into 
two steps using local variables: declare a variable x 
of type MatType, assign x:= square(aMatrix), then 
write xt issingular. This has the same semantics 
as the above, but will work since x has intended 
type MatType. 

3.3 Typing Rules 

Figure 8 presents the typing rules for LCP. Judge- 
ments are sequents of the form I, A !- e : 7. I 
and A are both environments mapping variables to 
types. Environment I gives the declared types of 
variables, and is used to determine the originally 
intended types of expressions. I is used only in 
conjunction with the correspondence relation. En- 
vironment A gives the actual types of variables, and 
corresponds to the “normal” kind of type environ- 
ment found in typing rules. 

The rule (mC!losure), used only to type closures 
in subject-reduction, uses the notation A i- M, de- 
fined as follows. 
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Let T = < T, Inst m Meth rnk : rk >> 7Meth = < T, Meth mk : Tk >3 in all the rules 

(iVar) 

(iBoo1) 

(iAbs) 

(iCond) 

(iLet) 

Wsd 

(iRead) 

(iwrite) 

(iObj) 

@ass) 

(iNew) 

(iMExt) 

(iIExt ) 

I(x) = u 
II-x:a 

II-b: Boo1 

IU{x:o}be:a’ 

ItuXx:ff.e:a+o’ 

(iNurn) 

@W 

IIves: 
I l-- if el then e2 else e3 : CT 

IU{x:o}be’:a’ 
Ituleta::(z=eine’:d 

Ike: Objmt <T, Instyj:rjMethmk:rk>> 
Iketmk:7k[Objmt -ET, Methm> /mt] 

Ike: Objmt <T, Inst~Methmk:rr,>> 
It- e.yj : 7.j 

Ii-e: Obj mt < T, Inst ?/j : 7j Meth mk : Tk > 
It- el.yj := e2 : Obj mt < T, Inst ?lj:7i Meth mk. > 

Ib obj(s : Obj mt r) inst Yj = ej meth mk = ek : Obj mt T 

Ik class(s : Obj mt T) inst Yj = ej meth rnk = ek : p 

where p = Class << T, Inst yj : Tj Meth mk : (Obj mt T) Cs Tk[Obj mt TMeth/mt] > 

~be:t%ss <T, Instyj:TjMethmk:r~H7~>> 
IbneWe: Objmt <<T, Methmk:Tk>> 

1 b e : Class << T, Inst Yj : rj Meth mk : ri t) Tk > 
Ike::mk:I$+Tk 

I /- e : Class < T, Inst 3lj Meth ?nk : T; I+ rk > 
Ibe::yj:Tj 

Figure 7: The intended type extraction rules for LCP 
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Definition 3.4: A type assignment A is adequate 

for an environment 1M, written A I- M, if A and 
M list exactly the same variables, and M(z) = v 
implies A(z) = 7 for some Q- such that F- v : 7. 

One unusual feature of LCP is the nature of type 
declarations. Code may be typechecked and used 
at a type other than the type it was declared at. 
This is apparent in the rules. By the (mVar) rule, 
variables are taken to have the type listed in A, not 

in I. The (mAbs) rule in effect ignores the declared 
type of the argument for its conclusion, but inserts 
it into I when typechecking the body. I is only used 
in conjunction with c”IT in rules (mMsg), (mRead), 
(mwrite), (mMext) and (mIExt). 

It may appear that the types a programmer places 
in a program could be very far from the truth, but 
this is not the case: the (mObj) and (mClass) rules 
force objects to typecheck at the declared type of 
their self variable, and the (mLet) rule requires the 
expression e’ to have the type it was declared to 
have. Still, the key difference of correspondence 
polymorphism is the fact that programs can be given 
types other than their declared type, much as in an 
implicitly typed language (a language where pro- 
grams are not decorated with any type informa- 
tion). So, LCP is a hybrid of an explicitly- and 
implicitly-typed language. 

The (mMsg), (mRead), and (mwrite) ruIes use 
the correspondence relation to determine method 
and instance variable lookup. In (mMsg), for in- 
stance, the message send e t rnk on an expression e 
of originally intended type T may currently be type- 
checking against an actual object named S. If that 
type has a method nl, and T.mk !?? S.nl, then the 
message send typechecks thanks to the correspon- 
dence. Similarly, the rules (mMExt) and (MIExt) 
use the correspondence relation to determine which 
method is extracted. 

In (mObj), a type Obj mt ?-’ can be proved 
for an object by typing its components according 
to r’, assuming self has intended type as declared 
(Obj mt T) and actual type Obj mt 7’. Thus, 
the declared types of instance variables and meth- 
ods can be ignored, much like the argument type in 
(mAbs). Note, however, that the conclusion type r’ 
and the declared type r must have the same identi- 
fier T and the same instance variables and methods. 
The two premises in the second line of (mObj) force 
the object to typecheck at its declared type, even if 
this is not the actual consequence of the judgment. 

The (mclass)’ rule spotlights the dual role of 
classes, as object factories and as collections of ex- 
tractable pre-methods. Each method mk in a class 
is typed as mk : ri I+ Tk, where 7-L is an arbitrary 
self, for use on extraction as a function from self. 

This is again analogous to (mAbs), where the pa- 
rameter can be arbitrary. As in (mObj), the two 
premises in the second line force the class to type- 
check at its declared type. 

The (mNew) rule proves new e has the type 
Obj mt rMeth after verifying that e has a class type 
in which the type of self is Obj mt T in all meth- 
ods. The premise of (mNew) could also be written 
as I, A I- e : (Obj mt T) Class. Note that the type of 
objects created via new hides their instance vari- 
ables, whereas the type of objects created directly 
via obj exposes them (see (mobj)). 

The rule (mExt) just turns pi I+ ok into a func- 
tion type T; + 7k. Instance variables behave simi- 
larly, except that they are extracted as is - not as 
functions from self. 

The (mLet) rule copies the argument e’ into the 
body, so the body will be re-type-checked at each 
occurrence. This is “poor mans let polymorphism”, 
it requires code be retype-checked instead of infer- 
ring a most general type once for e’. We plan on 
improving on this in future work. The third premise 
of this rules forces e’ to typecheck at its declared 
type. 

The system also contains a standard subsump- 
tion rule (mSub) which allows for subtype polymor- 
phism. 

Typing the integer-matrix example. Consider 
again the types IntTypeand M&Type and the classes 
intClass and matClass of Fig. 3. We sketch how 
to prove k matClass : MatTypeC’aSS. Since the 
class matclass is defined as let integer:IntT~peCzaSS 
= intClass in.. . , we should first establish the de- 
clared typing t- d&Class : IntTypeCiaS8 by (mLet), 
then verify that I- intclass : IntTypeC’a*S, and fi- 
nally prove that the let body, with the code for 
class intclass substituted for the identifier “inte- 
ger”, has type MatTypeC1aSB. The first requirement 
is straightforward, and the second follows immedi- 
ately from (iclass), so we concentrate on the third. 
We need to show that 

class (s:MatType) 
meth multMat =. . . , 

powerMat = intCZass::power(s), 
issingular =. . . 

has type Mat Type Ciass. For this we need to type- 
check the methods assuming s has type MatType in 
both I and A. This is enough here since MatTypec’ass 
is also the intended type of the class expression, so 
the premises for intended typing in (mclass) are the 
same as those for actual typing. We concentrate on 
proving (s : MatType}, (s : MatType} l- intclass :: 
pwer(s) : Nat + MatType. By (mApp), this will 
be obtained if we show that l- intClass :: power : 
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Let 7 = (< T, InSt m Meth mk : Tk >> @eth = << T, Meth mk : Tk > in all the rules 

(mVar) 
A(x) = u 
I,Al-~:a 

(mBoo1) 
I,Atb: Bool 

(mNum) 
I,Atn:iVat 

(mSub) 
I,A k e : u u <: u’ 
I, A I- e : u’ 

(mclosure) 
I’,A’l-e:u A’l-M’ 
I, A k (e, I’, M’) : u 

(mAbs) 
IU(a::p},AU{a::u}ke:u’ 

bb4 
I,At-el :u+u’ I,Al-e2:u 

I, A l- Xz : p.e : u + u’ I, A I- el e2 : u’ 

(mCond) 
I,Al-el:Bool I,Atez:u I,Al-e3:u 
I, A I- if el then e2 else e3 : u 

(mLet) I f- e’ : u’ I, A I- e[e’/s] : u I, A I- e’ : u’ 
I,Al-leta::u’=e’ine:u 

I b e : Obj mt < T, In& yj : Tj Meth mk : 7k >> 

(mMsg) I, A !- e : Obj mt << S, Inst xi : oi Meth nl : ul > T.mk i% S.nl 
I,At-etmk:u[[Objmt <S, Methnl::> /mt] 

It-e: Objmt <T, Inst$/j:TjMethmk:Tr,> 

(mRead) I, A t- e : Obj mt < S, Inst xi : ui Meth nl : al >> T.yj QOPT S.X~ 
I, A t- e.yj : ui 

I b e : Obj mt << T, Inst Yj : rj Meth mk : Tk >> 

@Write) I,A l- e : Obj mt < S, Inst xi : aa Meth nl : al >> T.yj COfr S.X~ I,A k e2 : ui 
I, A k el.pj := e2 : Obj mt << S, In& xi : ui Meth nl : al > 

I,Akej I U {s : Obj mt 71, AU {s : Obj mt T’} I- ek : TL[Obj mt TrMeth/mt] 
(mob3 &A!-- I U {s : Obj mt T}, AU {s : Obj mt T} !- e]c : Th[Obj mt TMeth/mt] 

I,A k obj(s : Obj mt T) inst Yj = ej meth mk = ek : Obj mt 7’ 

where 7 =< T, Inst fi Meth n > 

I,Akej I U {s : Obj mt T}, AU {s : T:} i- ek : T; 

(mclass) I, A t- ej I U {s : Obj mt T}, AU {s : Obj mt 7) k ek : Tk[Obj mt TMeth/mt] 
I,A !- class(s : Obj mt 7) inst Yj = ej meth mk = ek : p 

where p = Class << T, Inst fi Meth mk : 7: I+ 7; > 

(mNew) 1,Ake:Class <T, Inst yj. 7 Meth mk : Obj mt T I+ Tk[Obj mt TMeth/mt] >> 
1,Aknewe: ObjmtTMeth 

1, A b e : Class < T, Inst Yj : Tj Meth mk : TA t) rk >> 

(mMExt) I, A I- e : Class << S, Inst 5i Meth nl : ui c) cq >> T.?nk QO’T S.nl 
I, A k e :: mk : U; + al 

1,AtYe:Class <<T, InStpj:Tj Methmk:T~eTr,>> 

(mIExt) I,Al-e:Class <S, Instxi:u;Methnl:u~tiul> T.9.j CT S.X~ 

I,A I- e :: yj : Us 

Figure 8: The typing rules for LCP 
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MatType + Nat + MatType. By (mMExt), this 
holds if we prove a class type for intClass, with 
power:MatQpe I+ (Nut+MatType) inside. By the 
(mClass) rule, this requires showing that 

A(n:Nat). if &Zero(n) 
then s 
else s t mult(s e power(pred(n)) 

has type Nat+MatType with assumptions s:IntType 
in 1, and s: Mat Type in A (the (mclass) rule also 
requires other judgments to be proved, but they are 
all standard and straight forward, so we concentrate 
of this one). This in turn invokes (mAbs), which 
needs to typecheck the body with assumption n:Nat 
in both I and A. In the body, the message send 
s t mult types its MatTpe+MatType by (mMsg) 
because s has intended type Int Type, actual type 
MatType, Integer.mult %! Matrix.multMat, and 
multMat has type MatType+MatQpe in MatType 
(after substituting for mt). The rest of the body is 
typechecked similarly (recall that also Integer.power 

m Matrix.powerMat), and we are done. 
Having shown that t- m&Class : Mat2’~peC”aSS, 

proving 

let matrix:MatTypeC’aSs = matC2ass 
in let o:MatType = new matrix 

in o c powerMat(5) 

is typable is straightforward. 

3.4 Operational Semantics and Soundness of the 
Type System 

The type system importantly has a subject reduc- 
tion property. The reduction system is given in 
natural semantics (“big-step”) form in Appendix 
A, defining a relation e qh u reducing expressions 
to values. The irreducible values of LCP are nat- 
urals, booleans, function closures, object closures, 
and class closures. In e J,ta w, the parameter I 
propagates the originally intended type informa- 
tion, mapping free variables to their intended types, 
and M is a standard environment which maps free 
variables in e to their values. 

The reduction system uses the intended typings 
and the correspondence relation to compute appro- 
priate message dispatch. In particular, if message 
send e t m is being computed and e is an object 
with identifier S but of originally intended object 
identifier T, and T.m m S.n, then e t m dis- 
patches to method n in e. To perform this dispatch, 
each message send e t m for e with intended object 
identifier T is compiled with a lookup table, which 
maps S to n whenever S.n m T.m. At run-time, 
each object is labeled with its object type identifier 

S, and e t m looks up S in its table, finds n and in- 
vokes it. So, this notion of dispatch is in fact not sig- 
nificantly more inefficient than traditional dispatch. 
Besides the issue of method/instance dispatch via 
the correspondence relation, and method/instance 

extraction which also uses a, the operational se- 
mantics is completely standard. 

The subject reduction property is as follows. 
Theorem 3.5 (Subject Reduction): If e J.h u 
and I, A I- e : 7 for some A such that A I- M then 
l-v::. 

The proof appears in Appendix B. 

4 Conclusions 

We have defined a new class of polymorphism, cor- 
respondence polymorphism, and defined a simple 
language LCP to concretely illustrate the expres- 
siveness of the concept. This paper represents a 
feasability study-LCP is still a toy language, but 
it illustrates well the fundamental new concepts pro- 
posed. Three contributions were made here to build 
a feasible programming language based on metaphors: 

The notion of a correspondence relation, m: 
methods are considered “the same” when they 
are related via PT, not when they circum- 
stantially have the same name. Consequently, 
typing, subtyping, and the semantics of method 
dispatch all use m. 

Type declarations ae nonrestrictive but veri- 
fied interfaces. Even though the language looks 
- and in many respects also behaves - like 
an explicitly-typed language, it can also be 
viewed as an implicitly-typed language in which 
declared types are verified to be valid (and, in 
which declared types are required in certain 
locations such as on all object and class decla- 
rations). 

Fine-grained reuse: code is reused at the gran- 
ularity of the method level rather than class 
level. This creates more opportunity for code 
reuse. 

These three, plus a reuse mechanism (here as the 
less than ideal poor-man’s let-polymorphism), work 
together to achieve type-safe reuse in non subtyp- 
ing/subclassing contexts. 

In the context of object-oriented languages with 
programmer type declarations, better code reuse 
can often be obtained either via universal polymor- 
phic type declarations, or via correspondence poly- 
morphism. There is however an essential differ- 
ence between them: universal polymorphism con- 

179 



sists in writing generic code for universal appli- 
cability, foreseeing, so to speak, all its potential 
instantiations. Correspondence polymorphism, on 
the other hand, makes specific code reusable in new 
contexts. This dichotomy bears some resemblance 
to the difference between class-based and prototype- 
based languages. There is also an important cogni- 
tive analogy: universal polymorphism represents a 
cognitive activity of abstraction, whereas correspon- 
dence polymorphism is related to (and in fact mo- 
tivated from) metaphors (see [17] where correspon- 
dence polymorphism was called “metaphoric poly- 
morphism”). 

Correspondence polymorphism has practical ad- 
vantages over expressive systems with declared uni- 
versal polymorphic types [7, 121, in that declared 
types may still be simple (first-order) types that 
programmers can easily understand, and there is no 
need to plan ahead for reuse. It is also more flexi- 
ble in that code can be reused even if some method 
names are inappropriate for the current context. 
Universal types have the advantages of straight- 
forward modular typechecking, and of giving more 
precise programmer-defined interfaces. The latter 
serve as good documentation, and give a precise 
contract between clients and server objects. In par- 
ticular, implementations can be altered as long as 
they still conform to the interfaces. 

This last point appears to be one unavoidable 
disadvantage of correspondence polymorphism: it 
lessens the ability to “implement to interfaces”, since 
an implementation needs to conform not only to its 
declared type, but also to other types, as required 
by the contexts in which it is embedded. For ex- 
ample, if we change the implementation of “power” 
in intClass, still preserving its declared interface, it 
may surprisingly affect matClass since the new im- 
plementation may not be appropriate in the matrix 
context. In other words, in LCP declared interfaces 
are sound client-side contracts, but server classes 
may need to do better. Still, such problems will 
be caught by the compiler, flagging them as type 
errors, and so this is not a new source of run-time 
errors. 

LCP uses a nonstandard notion of run-time dis- 
patch that requires run-time type information be 
kept, but this is mostly orthogonal to other general- 
ized notions of dispatch such as that found in multi- 
methods. The correspondence relation we define 
here is “context-free” in the sense that two meth- 
ods in different objects are related always or never. 
If this were generalized to a correspondence rela- 
tion in which correspondences could depend also on 
the (dynamic) types of arguments supplied to the 
method, features of multimethod dispatch (of the 

“encapsulated” variety [9]) could perhaps be mod- 
eled in the framework of correspondence polymor- 
phism. 

The most significant shortcoming of the current 
incarnation of LCP is the lack of a good type infer- 
ence algorithm. We expect that a feasible algorithm 
exists for a variant of LCP, based on recursively 
constrained types, i.e. types which include sets of 
subtyping constraints [ll, 21. This is currently the 
most widespread school for type inference over lan- 
guages with subtyping (flow analysis-based views 
[16] are also constraint-based). In this style of type 
system, let-polymorphism allows a least type to be 
given to reusable expressions. This should avoid the 
current need to re-typecheck existing code when us- 
ing let in LCP. This proposed variant would thus 
have true parametric, subtype, and correspondence 
polymorphism. Users in such a language would still 
program with first-order types only: the inferred 
types would be verified to be more general than 
the declared types, and users would not need to see 
the inferred types (which in the case of constrained 
types can be quite hard to read). 
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A Operational Semantics 

The operational semantics of LCP, presented in a 
natural semantics style, is shown in Fig. 9 and 10. 
Reductions have the form e .&L v, where I is an in- 
tended type assignment, and M is an environment 

mapping variables to irreducible values. The rules 
also implicitly depend on a fixed correspondence re- 
lation m. 

The rules for objects are in the spirit of Abadi 
and Cardelli’s object calculus. Objects, classes and 
functions are represented as closures. The most 
novel aspect of the rules is how the correspondence 
relation is used to determine method dispatch in 
(Red Msg), (Red Read), and (Red Write). Intended 
type information I is carried along in this reduction 
system, but it is in fact statically determinable and 
the only information that needs to be carried at run- 
time is the actual type identifier of objects; with this 
information, none of the proof obligations below re- 
quire actual proof at run-time, and dispatch can be 
computed in near-constant time. 

In the operational semantics, the irreducible val- 
ues 21 are precisely numbers, b.ooleans, function clo- 
sures, class closures, and object closures, where in 
the latter the component instances are also values. 

B Subject Reduction 

In this Appendix we establish the soundness of the 
type system by showing a subject reduction prop- 
erty holds. 
Lemma B.l: if I,A t- e : 7, I c I’, A C_ A’ then 
I’, A’ I- e : 7. 

Lemma B.2: Suppose e’ g 21’ and 11~ e’ : #. 
Then e[e’/z] Qx ZI iff e q$$,, v. 

Theorem B.3 (Subject Reduction): If e l.L& u 
and I, A k e : 7 for some A such that A I- M then 
l-v:?-. 

Proof. Suppose e q’, U, A t- M, and I, A t- e : T. 
The proof is by induction on the derivation of e l,l’, 
‘u. There is a case for each possible last step of the 
derivation. 

(Red Var) Here e = 2, so it must be that M(z) = 
w. The judgment I, A k x : T must have come 
from (mVar) with premise A(s) = IJ and con- 
clusion I, A k 2 : D, followed by a number 
of subsumption steps implying u <: T. Since 
A I- M it must be that I- v : u, so I- v : r by 
subsumption. 

(Red Abs) Here e = AZ : -9.e’ .(t’, v for (Xz : 
+.e’, I, M) = 21, so applying (mclosure) we 
obtain k (Xa: : T’.e’, I, M) : 7. 

(Red App) In this case e = el e2, el Uh (XX : 
T’.e’, I’, M’), e2 $h v’, and e’ U$T$,v, v. 
The judgment I, A t- el e2 : 7 must have come 
from (mApp) with premises I, A I- el : (T + o’ 
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(Red Obj) (where o = obj(s : 7) inst m meth mk = ek ) 

obj(s : T) inst pj = ej meth mk = ek dJ& (0, I, M) 

(Red Msg) (where o = obj(s : Obj mt < S, Inst xi : ai Meth nl : ~1 >) inst xi = vi meth n1 = et ) 

1 b e : Obj mt << T, Inst yj : Tj Meth K?k : rk >> 

e U& (0, I’, W 
T.mk m S.q 

el k?f’,BH(O,I’,M’) 
I’,s:Obj mt <S, Inst 5i:(Ti M&h nr:a?>> 21 

1 
e+-mk UMV 

(Red Read) (where o = obj(s : Obj mt << S, Inst xi : oi Meth nl : al >>) inst xi = vi meth m ) 

1 b e : Obj mt << T, Inst pj : ~j Meth mk : ?-k > 

e U& (0, I’, W 
T.9.j Forr Sexi 

e.Yj U’M Vi 

(Red Write) (where o = obj(s : a) inst xi = vi meth hl = el, 
u = Obj mt << S, Inst xi : a; Meth m >>) 

I k el : Obj mt < T, Inst Yj : 7j Meth mk : Tn: >> 

el U$ (o,I’,M’) 

T.yj CD’T S-X; 
e2 U’, v’ 
ei.Yj := e2 u’, (o[xi = V’], I’, M’) 

(Red Class) (where c = class(s : T) inst yj meth ?nk = ek ) 

c u’, (5 1, M) 

(Red New) 

e .lJ.& (class(s : r) inst 3?i’ej meth ?nk = ek, I’, M’) 

ej u& 1-j 

new e JJh (obj(s : T) inst z/j = Vj meth mk = ek, I’, M’) 

Figure 9: Reduction rules for LCP 
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(Red MExt) (where c = class(s : Obj mt 0) inst q = ei meth nl = el, 
u =< S, Inst 2i Meth nl : al >> ) 

I b e : Class < T, Inst yj : rj Meth mk : TL t) ok > 

e U’, Cc, I’, M’) 
T.mk m S.nl 
e :: mk .&‘, (AS : (Obj mt o).Q,I’, M’) 

(Red IExt) (where c = class(s : Obj mt o) inst za = ei meth nl = el, 
o =<< S, Inst m Meth 1212~ ) 

I/- e : Class < T, Inst yj : 7-j Meth mk : T; I+ Tk > 
e U’, Cc, I’, M’) 
T.yj FQ’T S.X~ 
ea l,lL, w 
e :: yj a’, 0 

(Red Abs) 

(Red APP) 

(Red Let) 

(Red Var) 

(Red CTrue) 

(Red CFalse) 

Xx : 7.e I)-h (Ax : r.e, I, M) 

el .(I.‘, (AZ : 7.e, I’, M’) e2 JJ.‘, 2)’ e tJ.$T~&l 2) 
el e2 U’, 2, 

e’ .lJ.L 2)’ e lJ.$~w,, 2) 
let x : 7 = e’ in e .lJh 2) 

M(x) = 21 
I 

XUMV 

el u’, true e2ULu 
if el then e2 else eg uh v 

el .lj’, false e3 U& 2) 
if el then e2 else e3 J,lh o 

(Red Nat) (where n = O,l, 2,. . .) 

(Red Bool) (where b = true, false) 

U&b 

Figure 10: Reduction rules for LCP - continued 
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and I, A I- e2 : u, and conclusion I, A l- u’, fol- 
lowed by a number of subsumption steps im- 
plying u’ <: r. By the induction hypothesis 
we have t- (Xs : r’.e’, I’, M’) : u + CT’. This 
must have come from (mClosure) with premise 
I’, A’ i- Xx : T’.e’ : p + p’ for some A’ I- M’ 
and conclusion I- (Xz : r’.e’, I’, M’) : p + p’, 
followed by some subsumptions implying o <: 
p and p’ <: u’. This in turn was obtained by 
(mAbs) with premise I’ U {s : T’},A’ U {cc : 

PI t- e’ : /.J’ and conclusion I’, A’ I- kc : 7’ .e’ : 
p + pi, followed by some subsumptions im- 
plying p <: ~1 and p’ <: p’. By the induction 
hypothesis we have I- v’ : u, so by subsump- 
tion also I- V’ : p. Thus A’,x : p i- M’,z : v’. 
From the induction hypothesis it follows that 
t v : $, and since ~1’ <: p’ <: u’ <: r we 
obtain I- v : r by subsumption. 

(Red Let) Here e = let x : u’ = e2 in el, e2 4.l.d 

u’, and er u&$+,, V. The judgment I, A C e : 
T must have come from (mLet) with premises 
I + e2 : CT’ and I, A t- el[ez/z] : u, and conclu- 
sion I, A t- e : (T, followed by some subsump- 
tions implying u <: 7. By Lemma B.2 we have 
er[e2/z] .lJ’, u, so it follows from the induction 
hypothesis that I- v : u. Thus I- w : r by sub- 
sumption. 

(Red Obj) Here e = obj(s : Obj mt u) inst yj = ej 

meth mk = ek .&h (o, 1, M) = v and ej uh Wj, 
where o = obj(s : Obj mt U) inst yj = Vj 
meth mk = ek and u = < T, Inst yj : Tj 
Meth mk : rk >>. The judgment 1, A l- e : T 
must have come from (mObj) with premises 
(among others) I, A I- ej : ~j and I U (S : 
Obj mt u}, AU {s : Obj mt a’) l- 
ek : Ti[Obj mt u’Meth/mt], and the conclusion 
I, A I- e : Obj mt u’, followed by a number of 
subsumption steps implying Obj mt u’ <: T 
(where u’ = << T, Inst fi Meth fi >). 

By the hypothesis we have I- fi, so by 
Lemma B.l also I, A I- 3. Thus I, A i- 
o : Obj mt u’ by (mObj). By subsumption we 
have I, A k o : r, so applying (mclosure) we 
obtain t- v : 7. 

(Red Msg) In this case e = e’ f- mk #.$ VI, 1)~ 
e’ : Obj mt < T, hst gj : Tj Methmk : 7-k >>, 

e’ #h (o,I’, M’), T.mk m 5’.nl, and 
el JJ&‘~s~~o,~f,$~ w, where o = 

obj(s : Obj mt u) inst xi = vi meth nl = el, 

u =< S, Inst xi : cri Meth nl : ul >. The 
judgment I, A I- e’ t mk : r must have come 

from (mMsg) with premises I1- e’ : Obj mt << 
T, Inst~Meth~:7k.,I,Al-e’: 

Obj mt u’, and T.mk m S’.n;,, and conclu- 
sion e’ i- mk : a;,[Obj mt urMeth/mt], fol- 
lowed by a number of subsumptions implying 
c$[Obj mt u’Meth /mt] <: 7 (where ~9 =< 
S’, Inst z:, Meth R >>). By the 
induction hypothesis we have t- (o,I’, M’) : 
Obj mt u’. This came from (mclosure) with 
premise I’, A’ t- o : Obj mt u” for some A’ l- 
M’, followed by a number of subsumptions 
implying Obj mt u” <: Obj mt u’ (where 
U” =< S”, Inst x& : u:! Meth nil, : ui! >). 
Since o explicitly mentions 0, this must have 
come from (mObj) with premise (among oth- 
ers) I’U{s : Obj mt u), A’U{s : Obj mt 6} k 
el : 51 [Obj mt CMeth/mt] and conclusion I’, A’ I- 
o : Obj mt @, followed by some subsumptions 
implying Obj mt 6 <: Obj mt a”, where 
5 =< S, Inst s Meth nr >>. By 
(mclosure) we have t (0, I’, M’) : Obj mt 5, 
so A’,s : Obj mt 3 I- M’, s I+ (o,I’, M’). 
By the induction hypothesis we have I- o : 
&[Obj mt ZMeth /mt]. Since Obj mt 6 <: 

Obj mt u” <: Obj mt u’ and S.nr m T.mk 
f% S’.n;, we have el[Obj mt eMeth/mt] <: 
a[, [Obj mt ~‘~~~~/rnt] by Lemma 3.1. Com- 
bining it with ui,[Obj mt arMeth/mt] <: T we 
obtain t- v : T by subsumption. 

(Red Read) In this case e = e’.yj Q& vi = ZI, 1 k 
e’ : Obj mt < T, In& gj : Tj Meth rnk : rk >>, 

e’ 45 (0, I’, M’), and T.yj m S.xi, where o 
is 

obj(s : Obj mt u) inst zi = zli meth nl = el, 

u =< S, Inst xi : ui Meth nl : ul >>. The 
judgment I, A I- e’.yj : T must have come from 
(mRead) with premises IIN e’ : Obj mt <c 
T, Inst~Meth~>,I,At-e’: 

Obj mt u’, and T.yj Qo’c S’.x;, , and conclu- 
sion e’.yj : a:, , followed by a number of sub- 
sumptions implying u:, <: r (where u’ =<< 
S’, Inst xi, : CT:, Meth w >). By the 
induction hypothesis we have I- (0, I’, M’) : 
Obj mt u’. This came from (mClosure) with 
premise I’, A’ I- o : Obj mt u” for some A’ I- 
M’, followed by a number of subsumptions 
implying Obj mt 0” <: Obj mt u’ (where 
u” =<< S”, Inst x;, : u:I, Meth nit, : all, >). 
Since o explicitly mentions u, this must have 
come from (mObj) with premise (among oth- 
ers) I’, A’ I- ei : Gi and conclusion I’, A’ k 
o : Obj mt 6, followed by some subsumptions 
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implying Obj mt 6 <: Obj mt a”, where 
5 =< S, Inst n Meth n >. By the 
induction hypothesis we have t vi : 6i. Since 
Obj mt 5 <: Obj mt 0” <: Obj mt (T’ and 
S.xi m T.yj a S’.xi, we have ~5i C: oi, 
by Lemma 3.1. Combining it with ai, <: r we 
obtain I- v = vi : 7 by subsumption. 

(Red Write) In this case e = ei.yj := es JJ’, 
(O[Xi = v’]), I’, M’) = 21, 

II-el:Objmt 
< T, Inst yj : Tj Meth mk : Tk >>, 

el J,l’, (0, I’,&!‘), T.yj $% S.Z~, and e2 .lJ’, 
w’ , where o is 

obj(s : Obj mt o) inst xi = vi meth 721 = er, 

u =< S, Inst xi : cri Meth nl : al >. The 
judgment I,A t- er.yj := e2 : T must have 
come from (mwrite) with premises IIN er : 
Obj mt < T, Inst 1Jj:7j Meth mk : Tk >>, 

I,A I- el : Obj mt u’, T.yj QOff S’.X:,, and 
I, A f- e2 : ui,, and conclusion er.yj := e2 : 
Obj mt u’, followed by a number of subsump- 
tions implying Obj mt d <: 7 (where O’ =(< 
S’, Inst xi, : a;, Meth n;, : ui, B). By the 
induction hypothesis we have I- (0, I’, M’) : 
Obj mt rr’ and also k I! : (T:,. The former 
must have come from (mClosure) with premise 
I’,A’ F o : Obj mt (T” for some A’ I- M’, 
followed by a number of subsumptions imply- 
ing Obj mt C-F” <: Obj mt 0’ (where cr” =<< 
St’, Inst a:, : ai! Meth nil, : CY~!, >). Since 
o explicitly mentions 6, this must have come 
from (mObj) with premise (among others) I’, A’ 
l- ei : bi and conclusion I’, A’ I- o : Obj mt 5, 
followed by some subsumptions implying 
Obj mt 5 <: Obj mt d’, where 
5 =<< S, Inst z Meth fi >>. By the 
induction hypothesis we have I- vi : 5i. Since 
Obj mt 5 <: Obj mt 0” <: Obj mt IT’ and 
S.xe PY Tnyj W S’.X$ we have ai, <: 6i 
by Lemma 3.1, so from t v’ : LT;, we obtain 
I- v’ : & by subsumption. Applying (mObj) 
we obtain I’,A’ t- o[xi = v’] : Obj mt 5, and 
so I’, A’ t- o[xi = 0’1 : r by subsumption. Ap- 
plying (mclosure) we obtain I- ‘u = (o[xi = 
w’], I’, AP) : 7. 

(Red Class) Here e = class(s : T’) inst gj = ej 
meth mk = el, #‘, (claSS(s : T’) inst f/j = ej 
meth mk = ek, 1, M) = 21. By applying (mClo- 
sure) we obtain l- o : T. 

(Red New) Here e = new e’ 4J.k (0, I’, M’) = v, 

e’ JJh C, and ej lJ&, vj) where o = obj(s : 

Obj mt LT) inst yj = vj meth mk = ek, c = 
class(s : Obj mt 0) inst pj = ej meth mk = ek, 
and u = < T, Inst Yj : rj Meth mk : Tk >>. 
The judgment I,A I- new e’ : 7 must have 
come from (mNew) with premise I, A f- e’ : 
(Obj mt v)(=‘~*~ and conclusion I, A I- new e’ : 
Obj mt yMeth, followed by some subsump- 
tions implying Obj mt vMeth <: 7, where v 
is some InstMeth type. By the induction hy- 
pothesis we have t- (c, I’, M’) : (Obj mt v)~‘@‘~. 
This must have come from (mclosure) with 
premise I’,A’ I- c : p for some A’ I- M’ and 
class type p, followed by a number of subsump- 
tions implying p <: (Obj mt v)~‘~‘~. This 
must have come from (mclass) with premises 
(among others) 

I’, A’ I- ej, I’ U {s : Obj mt a}, 
A’ U {s : Obj mt a’] l- 

ek : ~;[Obj mt urMeth/mt] 

and conclusion I’,A’ t c : (Obj mt d)Class 
where u’ =< T, Inst fi Meth n >>, 
followed by some subsumptions implying 
(Obj mt o’)c~Oss <: ~1. By the induction hy- 
pothesis we have I’, A’ I- vj : ri, SO I’, A’ 1 o : 
Obj mt B’ by (mObj). From 

(Obj mt ut)C’ass <: p <: (Obj mt v)C’ass 

and Lemma 3.1 it follows that 

Obj mt u’ <: Obj mt v <: Obj mt yMeth, 

and combining it with Obj mt vMeth <: 7 we 
obtain I’, A’ k o : 7 by subsumption. Apply- 
ing (mclosure) we obtain I- w : T. 

(Red MExt) Here e = e’ :: mk ljh 
As : (Obj mt u).el, I’, M’) = v, I I- e : Class < 
T, Inst Yj : Tj Meth mk : TL I-) Tk >>, e’ JJ’M 

(c, I’, 1M’), and T.mk m s.n1, where c = 
class(s : Obj mt a) inst xi = ei meth nl = el, 
u =< S, Inst xi : ui Meth nr : al >. The 
judgment I, A t- e’ :: rnk: : r must have come 
from (mMExt) with premises I k e’ : Class << 
T, InStyjMeth7TXk:T~t+Tk >>, I,Al- 

e’ : u’, and T.mk $% S’.ni, ,-where u’ = 

Class << S’, Inst G$T& 
Meth nf, : u$ ++ ui,] >, 

and conclusion 1, A I- e’ :: mk : ~1’: += o;, fol- 
lowed by some subsumptions implying ai! 4 
ai, <: 7. From the induction hypothesis it fol- 
lows that I- (c, I’, M’) : 0’. This must have 
come from (mClosure) with premises I’, A’ l- 
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c : p for some A’ I- M’, where p is some 
class type, followed by a number of subsump- 
tions implying p <: u’. This must have come 
from (mClass) with premise (among others) 
I’U {s : Obj mt cr},A’U {s : vi} k el : y, and 
conclusion I’, A’ I- c : v, where v = Class << 
S, Inst xi : q Meth nl : VI’ I+ ul > followed 
by some subsumptions implying v <: CL. Thus 
we have I’,A’ t- Xs : (Obj mt u).el : v: 4 vl 

by (mAbs). Since Y <: p <: 19 and S.nl c& 

T.mk t% s’.ni, we have vi -F y <: flit + 011 
by Lemma 3.1, and combining it with a;, + 
alI <: r we obtain Xs : (Obj mt a).el : T 
by subsumption. By applying (mclosure) we 
obtain I- w : 7. 

(Red CFalse) Similar to (Red CTrue). 

(Red Nat) Trivial. 

(Red Bool) Trivial. 

(Red IExt) Here e = e’ :: uj JJb 21, I IN e : 
Class < T, Inst yj : q Methmk : 7-i I+ ok >>, 

e’ lJ’, (c, I’, M’) , T.gj Got S.zi, and e; .lJ& V, 
where c = class(s : Obj mt 0) inst xi = e; 
meth nl = ef, 

(T =<< S, Inst zi Meth nz : cq > . 

The judgment I,A t e’ :: yj : 7 must have 
come from (mIExt) with premises I I N e’ : 
Clans < T, Inst yj . 7 Meth mk : 7-i I-) Tk 23, 

I,A I- e’ : o’, and T.yj PY S’.X~,, where (T’ = 

Class < S’Jnst ::, 
Meth n;, : 0;: ++ a;,] >> 

followed by some subsumptions implying ai, <: 
7. From the induction hypothesis it follows 
that t- (c, I’, M’) : u’. This must have come 
from (mClosure) with premises I’,A’ I- c : 
p for some A’ I- M’, where p is some class 
type, followed by a number of subsumptions 
implying p <: 6’. This must have come from 
(mclass) with premise (among others) I’, A’ i- 
e; : vi, and conclusion I’, A’ I- c : v, where v = 
Class << S, Inst xi : vi Meth nl : vf I+ y >> 
followed by some subsumptions implying Y <: 
p. By the induction hypothesis we have I- w : 
vi. Since Y <: p <: U’ and Sexi FOrr T.gj W 
S’.x$ we have vi <: u:, by Lemma 3.1, and 
combining it with 01, <: 7 we obtain I- 21 : 7 
by subsumption. 

(Red CTrue) Here e = if el then e2 else es, 
el ud true, and e2 &h V. The judgment 
I,A I- e : 7 must have come from (mCond) 
with premise (among others) I, A l- e2 : u and 
conclusion I, A t- e : (T, followed by some sub- 
sumptions implying u <: 7. It follows from the 
induction hypothesis that I- v : u, so t v : T 
by subsumption. 
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