
A Web Application Is a Domain-Specific Language ∗

David H. Lorenz1,2 †

1Open University, Raanana 43107, Israel
2Technion–Israel Institute of Technology,

Haifa 32000, Israel

dhlorenz@cs.technion.ac.il

Boaz Rosenan1,3

3University of Haifa,

Mount Carmel,

Haifa 31905, Israel

brosenan@gmail.com

Abstract

We introduce a correspondence between the design space

of web applications and that of domain-specific languages

(DSLs). We note that while most web applications today

are implemented in ways that correspond to external DSLs,

very little attention is given to implementation techniques

corresponding to internal DSLs. We contribute a technique

based on internal DSLs, and demonstrate a web application

implemented with our technique.

Categories and Subject Descriptors D.2.11 [Software En-

gineering]: Software Architectures—Domain-specific archi-

tectures

General Terms Language, Design.

Keywords Domain-specific language (DSL), Web applica-

tion, Von Neumann architecture.

1. Introduction

Web applications and Domain-Specific Languages (DSLs)

have many things in common. Both are built around some

schema (a database schema and an abstract syntax), both

give this schema a concrete, user-facing, representation

(user interface and concrete syntax), and both give mean-

ing to data structured under that schema (business logic and

semantics, respectively). For both, the schema is domain-

specific, describing entities from a single problem domain.

We formalize this observation in what we call the App-

DSL correspondence. According to this correspondence, a

∗ This research was supported in part by the Israel Science Foundation (ISF)

under grant No. 1440/14.
† Work done in part while visiting the Faculty of Computer Science,

Technion—Israel Institute of Technology.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without

fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice

and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be

honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, or to redistribute to

lists, contact the Owner/Author. Request permissions from permissions@acm.org or Publications Dept., ACM, Inc., fax

+1 (212) 869-0481. Copyright held by Owner/Author. Publication Rights Licensed to ACM.

Copyright c⃝ ACM [to be supplied]. . . $15.00

web application corresponds to a DSL. An instantiation of

the application’s schema – a snapshot of the application’s

state at a given time – corresponds to an instantiation of the

abstract syntax of a DSL – a single program. The evolution

of the state of an application is similar to a DSL program

being edited. In this case, the application’s user interface acts

as the editor, and in that it is inseparable from the concrete

syntax. This is similar to some Projectional Editing (PE) [1]

frameworks, where the concrete syntax of a language (DSL)

is defined as a dedicated editor for that language.

A correspondence, such as the App-DSL correspondence,

is useful if it allows us to transform methods known to be ef-

fective in one domain into novel methods in the correspond-

ing domain, and apply them effectively in that domain. In

this work we note that the state of the art techniques for im-

plementing web applications typically correspond to the im-

plementation technique of developing external DSLs, while

the technique of developing internal DSLs (also known as

DSL embedding) is not used in the context of web appli-

cations. To gain the advantages of DSL embedding in the

context of web applications we identify the essential com-

ponents for application embedding, and provide preliminary

results in implementing a simple web application using this

method.

2. The App-DSL Correspondence

The App-DSL correspondence starts with the realization

that a database schema of an application and the abstract

syntax of a DSL are both a form of type declaration. In the

case of an application, the value defined by this declaration

is the content of the database at a certain point in time,

which constitutes the state of the application at that point.

In the case of a DSL, a value of the type declared as the

abstract syntax is a DSL program. Both the state and the

DSL program are given human-readable and writable form.

In the case of a DSL, this is its concrete syntax, while in

the case of an application, this is its user interface. Both

the DSL program and the state of the application are given

meaning. In the case of a DSL, the meaning of the program

is determined by the DSL’s semantics. In the case of a web

application, the meaning of the state is given by the business

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.

SPLASH Companion’16, October 30 – November 4, 2016, Amsterdam,
Netherlands
ACM. 978-1-4503-4437-1/16/10...$15.00
http://dx.doi.org/10.1145/2984043.2989220

35

logic, which determines how state changes and how queries

are answered, based on the current state.

2.1 DSL Embedding

There are two distinct ways to implement a DSL. External

DSLs are implemented in the form of compilers or inter-

preters, written in another programming language. Internal

DSLs [2], on the other hand, are extensions to an existing

host language, which are written in that same host language,

and are therefore internal to it. Several different techniques

exist for implementing such internal DSLs, corresponding to

different kinds of host languages. These techniques are gen-

erally referred to as DSL embedding [3].

Comparing the state of the art in web application devel-

opment to DSLs, it seems that the vast majority of exist-

ing techniques correspond to external DSL implementation.

Although web applications correspond to languages, they

are not treated as such when implemented. Web applica-

tions have been implemented in almost any programming

language, but all resulting applications are external to the

implementation language (they do not extend the implemen-

tation language and instead create something new).

There are significant trade-offs between internal and ex-

ternal DSLs. External DSLs give greater control over syn-

tax and semantics compared to internal DSLs, at the cost

of greater implementation effort. Internal DSLs are easier to

implement as they reuse the host language implementation

as well as the tools built around it, but that comes at the cost

of needing to conform to the host language’s restrictions. By

examining what application development techniques corre-

spond to DSL embedding, we discover similar trade-offs for

web applications.

2.2 Application Embedding

DSL embedding is based on the concept of a host language.

The App-DSL correspondence correlates a language to an

application, meaning that a host language corresponds to

a host application. This is an application that needs to be

general-purpose – be able to support a wide variety of web

applications. In DSL embedding, the DSL is given as a

piece of program (e.g., a software library or a module).

The App-DSL correspondence correlates programs to data,

meaning that the specific application’s implementation is

represented as data in the host application’s database. This

data resides side-by-side with user data, corresponding to

the DSL program, which in the case of internal DSLs resides

side-by-side with the DSL implementation within the same

host language program.

3. Evaluation

To show feasibility and to demonstrate the usefulness of our

approach, we implemented a proof-of-concept host appli-

cation named FishTank. This host application has the typ-

ical structure of a web application, leveraging a NoSQL

database and the Node.JS platform. However, it is designed

as a general-purpose host application, being able to store ar-

bitrary data and apply arbitrary business logic, based on rules

given to it by application developers. Our proof-of-concept

implementation uses the CloudLog [4] data language for rep-

resenting both the facts (user data) and rules to be applied

over them.

To demonstrate FishTank’s ability to host applications

we implemented a small, though nontrivial, micro-blogging

(Twitter-like) application in CloudLog, and loaded it onto

FishTank. While the latency of the resulting application is

significantly higher than what is achievable using standard

methods, it gives reasonable usability. As FishTank was de-

signed for horizontal scaling, our micro-blogging applica-

tion inherits this property out of the box. Since CloudLog

is a purely-declarative language, the micro-blogging appli-

cation we implemented is completely declarative, with the

only imperative pieces of code being a few short lines de-

scribing what happens when a user clicks a button in the

user interface.

4. Conclusion

The App-DSL correspondence illuminates the fact that web

applications are commonly developed in a way that corre-

sponds to external DSLs, while the equivalent of internal

DSLs is unexplored territory. Our preliminary results show

reasonable usability and applicability, with many opportuni-

ties for improvement and growth. The main benefit that can

be seen in our proof-of-concept is the ease in which an ap-

plication can be implemented, in an almost entirely declara-

tive manner. Defining business logic declaratively is far from

trivial, since it involves the manipulation of state. By treat-

ing state as a program we turn the state manipulation prob-

lem into a problem similar to projectional editing. The latter

is easier to solve declaratively. It allows a separation of con-

cerns between the imperative host application and the declar-

ative concrete application.

References

[1] M. Fowler. Projectional editing. Martin Fowler’s

Bliki. http://martinfowler.com/bliki/Projectional-

Editing.htmlx.

[2] M. Fowler. Language workbenches: The killer-app for domain

specific languages, 2005.

[3] P. Hudak. Building domain-specific embedded languages.

ACM Computing Surveys (CSUR), 28(4es), 1996.

[4] D. H. Lorenz and B. Rosenan. Separation of powers in the

cloud: Where applications and users become peers. In Proceed-

ings of the 2015 ACM International Symposium on New Ideas,

New Paradigms, and Reflections on Programming & Software

(Onward! 2015), pages 146–159, Pittsburgh, PA, USA, Oct.

2015. ACM.

36

