
Checking API Protocol Compliance in Java

Kevin Bierhoff
Carnegie Mellon University

http://www.cs.cmu.edu/∼kbierhof/

Abstract
Reusable APIs often define usage protocols. The author pre-
viously developed a sound and modular type system that
checks compliance to typestate-based protocols while af-
fording a great deal of aliasing flexibility. This paper fo-
cuses on making these ideas available in tools for main-
stream object-oriented languages and evaluating their prac-
tical effectiveness.

Categories and Subject Descriptors D.2.4 [Software En-
gineering]: Software/Program Verification

General Terms Languages, Verification.

1. Introduction
The use of libraries and in particular the enormous “stan-
dard” libraries included with most programming languages
is abundant. Such APIs often define usage protocols that API
clients must follow in order for code implementing the API
to work correctly. Usage protocols define legal sequences of
method calls on objects. For example, one can retrieve rows
of a database query result and then close it, but one cannot
retrieve more rows after the result was closed.

The goal of my work is to give developers comprehensive
help in following and implementing API protocols express-
ible using typestates (Strom and Yemini, 1986). I previously
developed a sound (no errors missed) and modular (every
method is checked separately), but highly non-deterministic,
type system based on typestates for a core object-oriented
calculus that offers a great deal of flexibility in reasoning
about aliased objects (Bierhoff and Aldrich, 2007). Unlike
existing modular protocol checkers (e.g. DeLine and Fähn-
drich, 2004) we do not require precise tracking of all aliases
to an object, and in contrast to modern program verification
tools (e.g. Barnett et al., 2004) we do not impose an owner-
ship discipline on the heap.

This paper describes Plural, a tool that automates this
approach (section 3), and reports on a case study in using
Plural on open-source code that uses Java APIs (section 4).

Copyright is held by the author/owner(s).
OOPSLA’08, October 19–23, 2008, Nashville, Tennessee, USA.
ACM 978-1-60558-220-7/08/10.

Figure 1. Simplified JDBC ResultSet protocol. Rounded
rectangles denote states refining another state. Arches repre-
sent method invocations, optionally including return values.

2. Protocols with Access Permissions
In my approach, developers can associate objects with a hi-
erarchy of typestates. For example, while a result set is open,
it is convenient to distinguish whether the result currently
points to a valid row or reached the end (figure 1).

Methods correspond to state transitions and are specified
with access permissions that describe not only the state re-
quired and ensured by a method but also how the method will
access the references passed into the method. We distinguish
exclusive (unique), exclusive modifying (full), read-only
(pure), immutable, and shared access. Furthermore, per-
missions include a state guarantee, a state that the method
promises not to leave (Bierhoff and Aldrich, 2007). For ex-
ample, next can promise not to leave open (figure 1).

Permissions can be split when aliases are introduced. For
example, we can split a unique permission into a full and a
pure permission to introduce a read-only alias. Using frac-
tions (Boyland, 2003) we can also merge previously split
permissions when aliases disappear (e.g., when a method re-
turns). Fractions are conceptually rational numbers between
zero and one. In previous work, fractions below one make
objects immutable; in my approach, they can alternatively
indicate shared modifying access. Splitting a permission into
two means to replace it with two new permissions whose
fractions sum up to the fractions in the permission being re-
placed. Merging two permissions does the opposite.

3. Plural: Access Permissions for Java
Plural implements the type system proposed in Bierhoff and
Aldrich (2007) as a static dataflow analysis for Java. De-
velopers use Java 5 annotations to specify method pre- and

915



public interface ResultSet {

@Full(guarantee = "open")

@TrueIndicates("unread")

@FalseIndicates("end")

boolean next();

@Full(guarantee = "valid", ensures = "read")

int getInt(int column);

@Pure(guarantee = "read")

boolean wasNull();

@Full(ensures = "closed")

void close(); ... }

Figure 2. Simplified ResultSet specification in Plural (us-
ing the typestates shown in figure 1).

post-conditions with access permissions (figure 2). No anno-
tations are needed inside method bodies: Plural infers how
permissions flow through the code—including loops—and
checks that the declared post-condition holds. The analysis is
modular because Plural “trusts” annotations on called meth-
ods and checks their bodies separately.1

The previously proposed type system “guesses” where
permission splits and merges occur. Plural deterministically
infers permission splits by collecting constraints on frac-
tions. For every method call argument, Plural hypothesizes
a split of the current permission. Constraints are added to
make sure the fractions used in the new permissions sum up
to the fractions in the permission being replaced. Additional
constraints are added to ensure that the called method’s
pre-condition can be satisfied. Then, the post-condition is
merged eagerly with permissions that remained with the
caller. State guarantees are introduced and dropped lazily.2

4. Case Study: Apache Beehive
Beehive3 is an open-source framework for declarative re-
source access. I have focused on the part of Beehive that ac-
cesses relational databases. I ran Plural on 10 Beehive source
files with a total of ca. 1100 lines of code, which takes about
36 seconds on a 800MHz laptop.

I specified four Java standard APIs, highlighting Plural’s
ability to treat different APIs orthogonally. I can only dis-
cuss two of them here; the others (exceptions and regular
expressions) are each only used once in Beehive.

JDBC. Java Database Connectivity defines interfaces for
accessing relational databases. Roughly, Statements can
send SQL commands on Connections to a database. Query
results are represented as ResultSets. The three mentioned

1 For downloading Plural see the author’s website.
2 I recently demonstrated an early version of Plural that could not merge
permissions or reason about object fields (Bierhoff and Aldrich, 2008).
3 http://beehive.apache.org/

interfaces each define dozens of methods with about 20 lines
of documentation each, for a total of more than 7000 lines of
code. It took nearly three days to annotate these interfaces
based on their documentation.

Figure 2 shows a small fragment of the ResultSet spec-
ification. Notice that next’s return value indicates if the re-
sult was advanced to a valid row or not. If the result points
to a valid row then cell values can be read with getInt (and
omitted similar methods). The only pure method wasNull

tests if the last read value was NULL.
Iterators. Beehive implements an Iterator over a

ResultSet. Plural can establish the connection between
those two interfaces using state invariants, i.e., predicates
over the underlying result set that specify iterator states. In-
terestingly, my vanilla iterator specification (see Bierhoff
and Aldrich, 2007) assumes hasNext, which tests if an ele-
ment can be retrieved, to be pure. Beehive’s hasNext, how-
ever, is impure because it calls next on the ResultSet.

Observations. Plural’s modular approach allowed me to
move outwards from methods calling into JDBC interfaces
to callers of those methods. It was often difficult to un-
derstand the design intent implicit in Beehive’s code. Con-
versely, the JDBC interfaces were straightforward to specify
from their extensive documentation.

Beehive is tricky to reason about because it aliases result
sets through fields of various objects. In one place, the result
set is implicitly passed in a method call. I turned it into
an explicit method parameter; otherwise, Plural was able
to analyze the code as-is. I assumed one class to be non-
reentrant, but I believe with a more complicated specification
the class can be analyzed assuming re-entrancy.

Acknowledgments
I thank Nels Beckman for his help with implementing Plural and
Jonathan Aldrich for advising me in this research. This work was
supported in part by the Army Research Office grant number
DAAD19-02-1-0389 entitled “Perpetually Available and Secure
Information Systems” and DARPA contract HR00110710019.

References
M. Barnett, R. DeLine, M. Fähndrich, K. R. M. Leino, and

W. Schulte. Verification of object-oriented programs with in-
variants. Journal of Object Technology, 3(6):27–56, June 2004.

K. Bierhoff and J. Aldrich. Modular typestate checking of aliased
objects. In OOPSLA, pages 301–320. ACM Press, Oct. 2007.

K. Bierhoff and J. Aldrich. PLURAL: Checking protocol compli-
ance under aliasing. In ICSE-30 Companion, pages 971–972.
ACM Press, May 2008.

J. Boyland. Checking interference with fractional permissions. In
SAS, pages 55–72. Springer, 2003.

R. DeLine and M. Fähndrich. Typestates for objects. In ECOOP,
pages 465–490. Springer, 2004.

R. E. Strom and S. Yemini. Typestate: A programming language
concept for enhancing software reliability. IEEE Transactions
on Software Engineering, 12:157–171, 1986.

916


	1 Introduction
	2 Protocols with Access Permissions
	3 Plural: Access Permissions for Java
	4 Case Study: Apache Beehive

