
Building White-Box Abstractions by Program Refinement

Mehrdad Afshari Zhendong Su

Department of Computer Science, University of California, Davis, USA

{mafshari, su}@ucdavis.edu

Abstract
Abstractions make building complex systems possible. Many
facilities provided by a modern programming language are
directly designed to build a certain style of abstraction. Ab-
stractions also aim to enhance code reusability, thus enhanc-
ing programmer productivity and effectiveness.

Real-world software systems can grow to have a compli-
cated hierarchy of abstractions. Often, the hierarchy grows
unnecessarily deep, because the programmers have envi-
sioned the most generic use cases for a piece of code to make
it reusable. Sometimes, the abstractions used in the program
are not the appropriate ones, and it would be simpler for
the higher level client to circumvent such abstractions. An-
other problem is the impedance mismatch between different
pieces of code or libraries coming from different projects
that are not designed to work together. Interoperability be-
tween such libraries are often hindered by abstractions, by
design, in the name of hiding implementation details and en-
capsulation. These problems necessitate forms of abstraction
that are easy to manipulate if needed.

In this paper, we describe a powerful mechanism to cre-
ate white-box abstractions, that encourage flatter hierarchies
of abstraction and ease of manipulation and customization
when necessary: program refinement.

In so doing, we rely on the basic principle that writing
directly in the host programming language is as least restric-
tive as one can get in terms of expressiveness, and allow the
programmer to reuse and customize existing code snippets
to address their specific needs.

Categories and Subject Descriptors D.1.m [Programming
Techniques]: Miscellaneous; D.2.3 [Software Engineer-

ing]: Coding Tools and Techniques; D.2.6 [Software En-
gineering]: Programming Environments; D.3.3 [Program-
ming Languages]: Language Constructs and Features

Keywords white-box abstractions, program refinement,
syntactic manipulation, reusability

1. Introduction
Programming is about expressing ideas. Ideas expressed in
programs vary widely in complexity. Programs can exhibit
small ideas or very complex ones. Complex ideas are built
from simple ones. There are three ways to build complex
ideas from simple ones: by combining them into a compound
one, by comparing them with each other without unifying
them, and via abstraction, i.e. distancing them from other
ideas that accompany them in their concrete existence [14].

Complex programs, like ideas, are generally composed
of smaller pieces. In order to make building complex sys-
tems tractable, and to be able to reuse these smaller pieces in
different contexts, we need to rely on abstraction. Program-
ming languages provide various ways to build abstractions,
like procedures [3], abstract data types [13], classes [6], ob-
jects [7], and actors [8]. Different programming languages
provide different means of abstraction.

In practice, software systems often consist of complex ab-
stractions composed of other complex abstractions, forming
a deep hierarchy of abstractions, created by different people
at different times to achieve different goals. While some of
the nodes in this hierarchy are essential to the program, a
deep hierarchy of abstractions has some obvious downsides.

One issue is imperfections of the abstractions themselves,
i.e. they do not fully abstract away the related ideas that
accompany the underlying concrete instantiations of the
abstraction and the subtleties leak to the higher level ob-
server, making it responsible for specifically working around
such leaks, thereby hindering the reusability of the abstrac-
tion in arbitrary contexts. A library abstracting a TCP-
based network connection as if it were a local in-memory
stream might limit the caller who may also need to access

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.

Onward!’16, November 2–4, 2016, Amsterdam, Netherlands
ACM. 978-1-4503-4076-2/16/11...$15.00
http://dx.doi.org/10.1145/2986012.2986025

74

the network-specific state and manually tweak flushing the
stream and traffic flow parameters that may not necessarily
be exposed via an explicit API, but nevertheless affect the
caller’s expectations, making it distinguishable from a local
stream a disconnection event, for instance.

Another concern is understandability of programs rely-
ing heavily on complex abstractions: by design, many of the
language features and techniques to build abstractions, e.g.
procedural abstraction and object orientation, aim to build
black-box abstractions. Black-box abstractions are double-
edged swords. The advantage of hiding the internals is that
the component can be isolated and reasoned about as a sepa-
rate unit with clear interfaces and boundaries. The disadvan-
tage is that the interfaces can be arbitrary and lacking doc-
umentation, or worse, having incorrect documentation that
does not perfectly reflect the subtleties of the implementa-
tion, causing confusion for the programmer. Anecdotally,
sometimes reading the source code for the component, if
available, can be the best path for understanding the sub-
tleties of the implementation. Deep abstraction hierarchies
can make this more difficult.

1.1 Abstraction by Refinement

In this paper, we introduce a new mechanism for building ab-
stractions: program refinement. In particular, we capture the
programmer’s intent by tracking modifications to pieces of a
program. A modified piece of code is implicitly considered
a specialized verion of the original, inducing a relationship
between the two, not too dissimilar to inheritance in object-
oriented programming, but in a static syntactic fashion.

The core idea is treating a certain procedure (β) as the
base template and letting the programmer modify it as they
wish. The new, specialized, procedure (Γ) can be formally
described of as a pair consisting of the original base proce-
dure and its differences (∆).

Γ = (β,∆)

∆ is the refinement applied by the programmer and cap-
tures the intent of the specialization on the base template.
The way ∆ is interpreted is implementation-dependent. In
the simplest implementations, it can be a syntactic difference
provided by a version control tool.

For it to be a proper abstraction, we need to be able to
liberate ∆ from being meaningful only in the context of
that particular base, and be able to apply it to other base
templates as well, computing a new specialization with the
same delta over a new base template. This is formalized by
a merge operation:

Γ2 = merge(Γ, β2) = merge((β,∆), β2)

The actual behavior of a merge operation is also imple-
mentation dependent. In the simplest case, it is a version
control-like syntactic automerge, but it can be made smarter
and more semantic-oriented. The smartness of the merge op-
eration is, in a way, representative of how capable the pro-
gramming system is in capturing the programmer’s intent.

A single base can serve as the template for many spe-
cializations. There can, in principle, be a nested tree of
specializations. When the root base changes, the changes
would propagate by applying successive merge operations.
The merge operation can be unsuccessful. We will leave the
discussion on how we resolve this issue to section 3.

We have used this simple formalization to describe the
idea as an analogy to another known idea, and the differences
between the two.

At this point, the description might sound similar to a
macro system, or a template metaprogramming feature in
a language like C++. Subtle, but key, differences, however,
exist, as we describe.

Refinement vs. Macros Macros are powerful abstraction
tools. Similar to refinement, they offer specialization from
a symbolic template. Macros, in languages that embrace
them, like flavors of Lisp, operate at the abstract syntax tree
level, and therefore make the full power for the underlying
language accessible to the programmer. However, there are
two key differences:

1. Macro expansions are evaluated in the scope of the use
site. In this manner, they are similar to copy-pasted code.
A key feature in refinement abstractions is evaluation
within the environment of the original base template.

2. Macros need to be predefined. A programmer generally
needs to think beforehand about what macros to write,
and provide appropriate “holes” in them for the external
arguments. The programmer would often overgeneralize
the macro before the complexity is actually needed in the
program. The opposite can also occur, where the macro
definition does not support parameterization of certain
parts of itself. Clearly, arbitrary procedures do not be-
come macros automatically, but you can apply refinement
to any procedure in the program, without any special con-
sideration when the procedure is being authored.

Refinement vs. Metaprogramming Templates Metapro-
gramming template systems vary in design and function. To
address the differences, we take C++ template system as
a popular, concrete instantiation. In contrast with the C++
templates:

75

1. Refinements, being syntactic, are constrained by the ex-
pressiveness of the host language only. Templates, how-
ever, can only be parameterized in certain areas. An arbi-
trary statement cannot be fed into a C++ template as an
argument. The parameterization potential is usually lim-
ited to types, values, and function references.

2. Refinements can be applied to any base procedure,
whereas templates, like macros, need to be predefined
as such.

3. Depending on the way the template system is imple-
mented, its expansions can exhibit the second limitation
described for macros, i.e. redefinition of the environment
in which the template is expanded.

1.2 Main Contributions

This paper makes the following contributions:

• We introduce a new general paradigm for building ab-
stractions by allowing the programmers to refine existing
code.

• We present and discuss the design choices in GOCLR, our
development environment for Go featuring abstraction by
refinement.

• We illustrate the usefulness of this abstraction toolkit
through a collection of case studies.

• We discuss open issues, such as usability, challenges in
merging, interactions with external editors, and possible
approaches for resolving them.

1.3 Paper Outline

The rest of this paper is organized as follows. First, in sec-
tion 2, we use two examples to motivate building abstrac-
tions by refinement and illustrate its use. In section 3, we
describe our design and realization of a system with support
for building abstractions via program refinement for a real-
world language, Go. We then use a few examples in sec-
tion 4 to highlight the utility of the paradigm. In section 5,
we discuss a few open issues. Finally, section 6 surveys re-
lated work, and section 7 concludes.

2. Illustrating Examples
To motivate and illustrate the utility of white-box abstrac-
tions created with program refinement, we highlight the fol-
lowing examples.

Depth-First Search Imagine using a package that imple-
ments some graph operations, among other things. The pack-
age contains a public DFS function that does a depth-first
traversal of a graph passed via a root node as an argument

1 func DFS(root *Node) {

2 q := Stack{}

3 q.Push(root)

4 for !q.Empty() {

5 node := q.Pop()

6 if !visited(node) {

7 markVisited(node)

8 for adj := adjacentNodes(node) {

9 if !visited(adj) {

10 q.Push(adj)

11 }

12 }

13 }

14 }

15 }

Figure 1. The original depth-first search function provided
by the library.

1 func DFS(root *Node, look func(*Node)) {

2 q := Stack{}

3 q.Push(root)

4 for !q.Empty() {

5 node := q.Pop()

6 if !visited(node) {

7 markVisited(node)

8 look(node)

9 for adj := adjacentNodes(node) {

10 if !visited(adj) {

11 q.Push(adj)

12 }

13 }

14 }

15 }

16 }

Figure 2. Depth-first search procedure extended to support
a custom processing via a function reference.

and marks them as visited. The end result is that all reach-
able nodes are marked as visible in some state variables in-
ternal to the package for future use, for instance to check
graph connectivity.

A programmer using this package is interested in the
depth-first search functionality (Figure 1), but needs to per-
form a custom task when a new node is visited, like printing
its satellite data.

Had the original author of the DFS function had the fore-
sight that it would be used this way, they would have pro-

76

vided a generic way to pass in, say, a function pointer to the
DFS function (Figure 2). The caller would have then sup-
plied a function that takes a node and processes it as an ar-
gument to the DFS function. Note that providing this func-
tionality is only possible if the underlying language has the
required bells and whistles, like the ability to pass functions
as arguments. Furthermore, this approach limits the degree
of freedom of the client to intervene at the specific point af-
ter visit is called in the function. Any other functional-
ity would still be unsupported. Realistically, the caller might
want to use the DFS code to find back-edges in the graph,
which requires more changes to DFS than just being able to
pass the callback that would be run on every visit.

Nevertheless, the original author has not provided us with
this functionality. We are stuck with a decision to copy and
paste the DFS source code or modify it in-place.

There are a number of problems with explicit copying and
pasting. First, the programmer needs to figure out where to
paste the copied code. If the code is pasted in the caller con-
text, it will not compile, because its identifiers refer to depen-
dencies that are meaningless in the caller’s scope. Therefore,
the programmer needs to manually resolve the references, if
possible. It is not always possible due to private identifiers
within packages.

Pasting the code in the callee context is essentially fork-
ing the function into two. The first downside is doing that
means you are essentially forking the dependency library
and updates to the dependency will not be as straightforward
to use from then on. Second, even with a good version con-
trol system, the updates and bug fixes to the original DFS
would not propagate to the cloned implementation.

Modifying the code in-place has the obvious downside of
potentially breaking the existing clients who are relying on
the subtleties of the existing behavior of the function.

With our system, this problem is easily fixable by right-
clicking on the DFS identifier in the programming environ-
ment. The system will let you specialize DFS function for
that specific call site. That way, you can modify the body at
will and add appropriate statements wherever needed. The
language does not even need to support function pointers.

If the original library changes upstream, the system will
automatically try to merge the specialized versions of the
functions with the updates to them fetched from the up-
stream package source. Should the merge succeed automat-
ically, the update would be seamlessly applied to all of the
specialized versions of DFS.

Importantly, the visual footprint of the specialized DFS is
confined to that particular caller only. It would not be visible
when browsing the source code of the dependency package.

Syntax Tree Visitor Programming language toolchains of-
ten provide procedures that parse the program text into a tree
data structure representing the program. Scanning the ab-
stract syntax tree has many use cases from pretty-printing to
enabling editor refactorings and compiler optimization and
code generation. Since this is a common operation, the li-
braries defining the AST structure usually provide an explicit
API to help visit the nodes in the tree. Nonetheless, due to
many node types in the AST, implementation of a visitor is
tedious and one can end up with a long switch-case con-
struct.

Indeed, the structure of various visit procedures are usu-
ally the same, reflecting the structure of the AST, as opposed
to the nature of the specific process, making this problem a
prime candidate to leverage program refinement.

One could start by calling the pretty-printing proce-
dure often shipped with the language library, passing in
an AST representation. To get to the more specialized use
case in mind, the programmer makes the programming
environment–likely by right clicking on the function invo-
cation and selecting “Specialize” in a visual environment–
aware of their intent to customize the body of the callee for
their own purpose. The programming environment then pro-
vides them with the existing callee source code as the basis
for modification. When the changes are saved, the program-
ming environment asks for a summary of changes, analo-
gous to a commit message in a revision control system.

The message is made visible at the specialized call site to
make the user aware that the callee is in fact modified and
would potentially exhibit different behavior at run time.

When a modification is more generally usable, the pro-
grammer may want to give it a unique name, so it can be used
from multiple call sites. This is possible by simply renaming
the function when editing the initial template. The new func-
tion act as if it were a separate function declarared adjacent
to the original template in terms of access to the variables
in its scope, without requiring source-level changes to the
original library. The existence of this function would be de-
pendent upon continued existence of the original template
and changes to the original are propagated to the specialized
versions as well.

3. Design and Realization
To experiment with building abstractions by program re-
finements, we designed a prototype system, GOCLR (pro-
nounced “go clear”). In this section, we describe some of
the design challenges we faced and how we tackled them
and the rationales behind our choices.

77

3.1 Programming Environment

GOCLR has its own custom programming environment that
is based on the Go programming language [2] and Git ver-
sion control system [1] internally. Go was chosen as the pro-
gramming language for the following technical and conven-
tional reasons:

• Go is designed to understand the need for external pack-
ages and tools for package management.

• Go packages are conventionally distributed as source
code and dependencies are often compiled in a static
binary at build time.

• Go is a simple language and lacks many of the conven-
tional mechanisms to build abstractions, like generics,
making it a particularly suitable testbed for building ab-
stractions with program refinement, due to a more acute
need for alternate abstraction mechanisms, and minimal
potential complexity arising from interference with exist-
ing language features.

• The Go community seems to strongly prefer lightweight
abstractions and has a tendency to more strongly re-
sist overengineering relative to the communities of more
common languages. Specifically, this helps in being able
to statically resolve the callees in invocations, as refin-
ing dynamically dispatched procedures is confusing and
unsupported.

3.2 Projects and Build Strategy

For simplicity, the initial version of GOCLR is not designed
to actively interoperate with other development environ-
ments. GOCLR normally stores program pieces as separate
Git objects and generates textual Go source files to be fed to
the actual compiler toolchain only when the project is going
to be built. For practical purposes, and for seamless work-
ing with dependencies, an import mechanism is provided.
Importing existing Go source packages will parse and trans-
form them to the internal data format, while preserving the
connection between the original location of tokens and the
abstract syntax tree. This connection is necessary to identify
and propagate changes to the program when a dependency
is updated, for instance.

3.3 Merging

A necessary feature for realization of our vision is support
for propagation of changes when a piece of code that serves
as the base for one or more refined specializations changes,
either at the source code level in an external code repository
serving the dependency, or within the current project. Proper

merging is critical to providing a great user experience when
relying on program refinement-induced abstractions.

Mechanics of a Merge For a refinement-oriented pro-
gramming system to provide effective abstractions at scale, a
mechanism to propagate updates to the upstream procedures
that serve as templates is essential. Merging is performed
by differencing an specialized code snippet from its origi-
nal base and storing the information. The system also needs
to keep an index of code snippets that are derived from the
original template.

When a change in an upstream repository is detected, the
index is looked-upon to see if there are any derivatives of
that upstream change in the codebase. If such derivatives ex-
ist, the system tries to automatically apply the stored dif-
ference for that particular derivation to the new version of
the function. Theoretically, this process can be done manu-
ally or automatically. In its primitive form, the programmer
is asked to observe the differences and either keep the ex-
isting derivation, refusing further propagation of upstream
changes, or to rewrite the derivation manually based on the
new upstream function. In the latter case, the system would
compute the new delta and update the internal propagation
link to the new upstream version, to accomodate for future
upstream changes.

It is, however, conceivable that systems that relies solely
on manual changes would be tedious to operate at scale.
Therefore, at least some level of automatic merge seems
necessary.

Automerging A difference between an upstream proce-
dure and its refined specializations is an expression of pro-
grammer intent. A programming system, by observing the
difference, can capture what the programmer intends to ex-
press in the form of “like X, but with Y”.

Distillation and store the difference information between
a code snippet and its refinement can be done at various lev-
els: at the low level, a purely string based approach with-
out any understanding of the programming language can be
used. At a higher level, programming language syntax can
be taken into account, and changes would be stored as some-
thing along the lines of “surrounded the function body with
an if statement”. This level of understanding of the program
meaning is helpful in avoiding uncompilable code genera-
tion by the merge process.

More sophisticated analysis, perhaps with the help of sta-
tistical techniques and machine, can be used to capture the
meaning of more sophisticated changes, like fixing an out-
of-bound-access bug that may require reordering of con-
trol flow within the function that can be impractical with a
syntax-level differencing engine.

78

Of course, it is possible for automatic merge tools to fail.
When that happens, the user has the option to manually do
the merge—by effectively rewriting the specialization on
a new base—, or disentangle the specialization from the
base piece of code, thus creating a new copy of the code.
Obviously, future changes to the base piece will not be
propagated to the distinct specialized copy anymore and the
new piece takes on its own independent life.

Merging in GOCLR The prototype implementation of
GOCLR only supports simple automatic syntactic merges
by piggy-backing on Git itself. While accurate and sensible
automerging is a distinct problem from the general idea of
abstraction with program refinement, a smart merge subsys-
tem is critical for a good programmer experience, especially
as the project and as a result, the quantity of specializations
grow. To help solve this problem, we envision providing
API hooks for smart mergers that can understand semantics
of the differences and the programmer intent behind change-
sets. Such smart merge tools can then automatically reapply
the modifications inferred on the new base version.

3.4 User Interface

The user interface is a critical piece of the solution. Special-
ized versions of the code should be hidden from the pro-
grammer except when they are explicitly looking for them
or they are interested in a particular specialization relevant
to a specific call site. Otherwise, the clutter caused by the
visibility of many variations of a single procedure will make
the system unbearable: imagine C++ programmers having to
see template expansions for each specialized type.

It is also of utmost importance to properly highlight and
indicate that a callee is specialized for a particular call site.
GOCLR will let you provide a short comment when special-
izing a base template that will be visible to the reader under
a specialized function name in the call site.

4. Applications
Building abstractions by program refinement is helpful in
various ways to the programmer. In this section, we discuss
a select few of its potential applications.

Debugging Aid Often in debugging scenarios, the pro-
grammer might be interested in temporarily customizing the
functionality of a procedure in a specific invocation, without
having it behave differently for the program at large. GO-
CLR lets the programmer do exactly the customization they
need per individual call site. The programmer can choose to
customize a specific procedure when called from a specific
location and add diagnostics and print statements to aid de-
bugging, for instance.

The changes will affect only calls originated from a spe-
cific call site and the rest of the program executes as it nor-
mally would.

This debugging technique can be applied even if the pro-
grammer does not expect to specialize the function perma-
nently. To get back to the original functionality, the program-
mer can just revert the specialization within the program-
ming environment.

Customizing Generated Code Automatic program synthe-
sis tools and code generation tools expect the generated code
file to not be edited manually, because the edits would be
lost if the code generation tool is run again. Therefore, gen-
erated code is usually kept in a separate file and maintains a
clean, minimal, interface to the other pieces of the program
that are non-generated. This style may make sense for tools
like parser generators, that have a very clear, isolated, func-
tionality, but they effectively discourage the use of a class of
automatic programming tools that require more customiza-
tion on the output produced and are more entangled with the
host program.

Naturally, we can simply consider the generated code a
separate dependency and propagate changes in the output of
the code generator to specialized versions of functions that
are based on pieces of the generated output.

Exposing Hidden State in Dependencies There are times
when excessive focus on encapsulation cause problems. For
instance, a concrete problem with the TLS package in older
versions of the Go runtime library was the lack of an ex-
posed connection identifier. In order to perform meaning-
ful authentication over an established but unauthenticated
TLS channel, while preventing man-in-the-middle attacks,
you need a way to bind the underlying TLS channel to the
higher level authentication sequence. There used to be no
easy way to extract a connection identifier from the Go run-
time library’s TLS package. Forking that piece of the library
and manually adding a method that exposes the internal state
variable is a way to accomplish it, and it is a huge bur-
den. Luckily, with a simple program refinement technique,
a method can be effectively added to the package that reads
the connection ID from the internal state variables and re-
turns the value for use by the caller, effectively circumvent-
ing the overly strict encapsulation policies of the package,
for good reason.

Lightweight Forking Considering the vast variety of freely
available source code on the web, sometimes all the pro-
grammer wants is to write a program whose functionality
can leverage a subset of another program, with minor ad-
ditions and differences. For instance, a static analysis tool
might be based on a compiler toolchain that was not in-

79

tended to be used as a library. GOCLR can be used to help
the programmer extend and manage the fork without sever-
ing the ties to the original program, i.e. future changes and
bug fixes in the original program can still propagate through
the derivative.

5. Open Issues
Refining programs is fundamentally a new way to define
abstractions. The GOCLR is in prototype stage and work
should to be done to ensure seamless cohabitation of this
concept with other language features present in more fea-
tureful languages. Furthermore, we must assess its utility
and usability, work to identify the applications for which it
is most useful and effective and how to ensure we maintain
a delightful user experience.

Effectiveness The utility of programming languages, tech-
niques, paradigms, and tools are often subjective and diffi-
cult to evaluate. This is especially true for new paradigms
and ideas that have not been widely applied. Established
paradigms like Object-Oriented Programming and Aspect-
Oriented Programming [11] faced a similar issue. In sec-
tion 4, we follow their footsteps [4, 11] and illustrate the util-
ity of using program refinements to infer abstractions with a
few case studies.

Empirical studies are needed to quantify the impact of
availability of different ways to build abstractions on pro-
grammer productivity. Unfortunately, a meaningful empir-
ical study is hard to do before widespread adoption of a
paradigm. While we believe there are compelling use cases
for building abstractions on top of program refinements,
there are concerns about syntactic modifications leading to
the prolification of divergent specialized versions of a pro-
cedure that hardly resemble their original base and it may
prove to be hard to reason about them as a general, unified,
thing, which might lead to adverse effects on programmer
productivity. Quantifying such effects is an open issue.

Interaction with External Editors In order to capture re-
finements, propagate changes, and present the appropriate
code specializations in their right context, the programming
environment needs to store some metadata. In our imple-
mentation of GOCLR, this metadata and the associated code
is not meant to be modified outside the environment, there-
fore the developer is mostly confined to the GOCLR edi-
tor. In order to resolve this problem, a standard format for
persisting the specializations and the appropriate links and
metadata should be developed. Even with such standard for-
mat that could be supported in alternative editors, some pro-
grammers strongly prefer sticking to their favorite plain text
editors without additional functionality. It is conceivable that

a useful implementation of the concepts presented in this pa-
per would require a smart editor to be effect. Not supporting
plain text editors can hinder its adoption among some pro-
gramming circles, therefore research into adapting the tech-
niques to a text editor and command line tool-based environ-
ment remains an open issue.

Merge Conflicts While syntax oriented merges can work
well when the changes are spread away, as they become
more granular, too many conflicts start to emerge. The bur-
den of resolving conflicts is enough that if they are frequent,
it will discourage people from using the system.

Programming language-aware merge tools can help alle-
viate this problem because they can take a more semantic
oriented view at the language and do a better job at merging.
That said, the merge problem is definitely one that has a lot
of room for improvements.

6. Related Work
Kiczales [10] identifies the issue of leaky abstractions and
the necessity for being able to reach into them at times.
He observes that in practice, the implementation cannot al-
ways be hidden, citing performance characteristics show
through in significant ways as an example of how abstrac-
tions can leak. This work discusses the deficiencies in main-
stream abstraction frameworks and suggest application of a
metaobject protocol technology to resolve the problems. The
metaobject protocol is a reflection mechanism that lets the
client reach into an abstraction and alter its behavior. In dy-
namic environments like Ruby and JavaScript, the “monkey
patching” technique is commonly used to swap a value of
an object property or a method body at run time to achieve
the desired results. Reflection is often limited in its power in
more static environments and commonly these all the prior
techniques operate at the granularity of a method at best. In
comparison, program refinement can work by syntactic ma-
nipulation of statements within method bodies. Since it is
a syntactic tool, its power is effectively only limited by the
expressivity of the host language itself.

Domain specific languages [16] provide an alternative
path to managing complexity without the need to build a
deep hierarchy of abstractions. Domain specific languages
that are implemented as code generators synergize well with
program refinements.

Embedded domain specific languages [5] are basically
language extensions for which the parsing is handled by
some of the objects used in the program, depending on the
context. These languages increase expressiveness and conci-
sion of programs, but still require careful upfront thinking by
the library author. Of course, program refinement is not con-

80

fined to any particular language, so in principle, the domain
specific parts of a program can also be refined and special-
ized.

There is a body of work related to detecting cloned
code [9, 12], automatically propagating patches through
them [15], and. One distinction of these systems from our
work is that we do not increase the footprint of the codebase,
whereas copying-and-pasting excessively increases the code
size and visually cluttering to the programmer.

7. Conclusion
In this work, we have introduced a new, generic, way to build
abstractions by program refinements. Program refinement
is a powerful tool for building many forms of abstractions
because it is limited only by the expressiveness of the host
language.

The key insight about basing abstractions on modifica-
tions at the syntactic level is interpreting such changes in the
context of the original definition, as opposed to the caller’s
scope, while the effect would be limited to a specific call site.
This gives the programmer implementing the caller an easy
way to reach into the implementation and customize the con-
crete code behind an abstraction to achieve the desired effect
that is executed when necessary.

We believe that the ability of building custom abstractions
via arbitrary syntactic manipulation of code is a powerful
tool that can alleviate the need for narrower, more specific,
abstraction tools that exist in some programming languages,
and liberates the programmer from fighting with abstractions
that confuse the programmer down the line and hinder pro-
gram understanding and programmer agility.

References
[1] Git. https://git-scm.com/.

[2] Go programming language. https://golang.org/.

[3] H. Abelson and G. J. Sussman. Structure and Interpretation
of Computer Programs. MIT Press, Cambridge, MA, USA,
2nd edition, 1996.

[4] M. Afshari, E. T. Barr, and Z. Su. Liberating the programmer
with prorogued programming. In Proceedings of the ACM

International Symposium on New Ideas, New Paradigms, and
Reflections on Programming and Software, Onward! 2012,
pages 11–26, 2012.

[5] M. Bravenboer and E. Visser. Concrete syntax for objects:
Domain-specific language embedding and assimilation with-
out restrictions. In Proceedings of the ACM SIGPLAN Confer-
ence on Object-oriented Programming, Systems, Languages,
and Applications, OOPSLA ’04, pages 365–383, 2004.

[6] O.-J. Dahl, B. Myhrhaug, and K. Nygaard. Some features of
the SIMULA 67 language. In Proceedings of the Second Con-
ference on Applications of Simulations, pages 29–31, 1968.

[7] A. Goldberg and D. Robson. Smalltalk-80: The Language and
Its Implementation. 1983.

[8] C. Hewitt, P. Bishop, and R. Steiger. A universal modular ac-
tor formalism for artificial intelligence. In Proceedings of the
3rd International Joint Conference on Artificial Intelligence,
IJCAI’73, pages 235–245, 1973.

[9] L. Jiang, G. Misherghi, Z. Su, and S. Glondu. Deckard:
Scalable and accurate tree-based detection of code clones. In
Proceedings of the 29th International Conference on Software
Engineering, ICSE ’07, pages 96–105, 2007.

[10] G. Kiczales. Towards a new model of abstraction in the
engineering of software, 1992.

[11] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes,
J.-M. Loingtier, and J. Irwin. Aspect-oriented programming.
In M. Akşit and S. Matsuoka, editors, ECOOP ’97, pages
220–242, 1997.

[12] M. Kim, V. Sazawal, D. Notkin, and G. Murphy. An empirical
study of code clone genealogies. SIGSOFT Softw. Eng. Notes,
30(5):187–196, Sept. 2005.

[13] B. Liskov and S. Zilles. Programming with abstract data
types. In Proceedings of the ACM SIGPLAN Symposium on
Very High Level Languages, pages 50–59, 1974.

[14] J. Locke. An essay concerning human understanding. 1689.

[15] M. Toomim, A. Begel, and S. L. Graham. Managing du-
plicated code with linked editing. In Visual Languages and
Human Centric Computing, 2004 IEEE Symposium on, pages
173–180, Sept 2004.

[16] A. van Deursen, P. Klint, and J. Visser. Domain-specific
languages: An annotated bibliography. SIGPLAN Not., 35(6):
26–36, June 2000.

81

https://git-scm.com/
https://golang.org/

	Introduction
	Abstraction by Refinement
	Main Contributions
	Paper Outline

	Illustrating Examples
	Design and Realization
	Programming Environment
	Projects and Build Strategy
	Merging
	User Interface

	Applications
	Open Issues
	Related Work
	Conclusion

