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Abstract

Metaprogramming techniques to generate code at runtime

in a general-purpose meta-language have seen a surge of in-

terest in recent years, driven by the widening performance

gap between high-level languages and emerging hardware

platforms. In the context of Scala, the LMS (Lightweight

Modular Staging) framework has contributed to “abstraction

without regret”–high-level programming without perfor-

mance penalty–in a number of challenging domains, through

runtime code generation and embedded compiler pipelines

based on stacks of DSLs. Based on this experience, this pa-

per crystallizes some of the design decisions of LMS and

discusses potential alternatives, which maintain the underly-

ing spirit but differ in implementation choices: specifically,

strategies for realizing more flexible front-end embeddings

using type classes instead of higher-kinded types, and strate-

gies for type-safe metaprogramming with untyped interme-

diate representations.

Categories and Subject Descriptors D.3.3 [Programming

Languages]: Language Constructs and Features

Keywords Multi-stage programming, domain-specific lan-

guages, intermediate representation

1. Introduction

Recent years have seen a surge of interest in staging and

related metaprogamming techniques, driven by the widening

gap between high-level languages and emerging hardware

platforms. In the context of Scala, The LMS (Lightweight

Modular Staging) [61, 62] framework has seen applications

in DSLs for heterogeneous parallelism (Delite [8, 65, 44,

81]), machine learning (OptiML [80]), library generation for

numeric kernels (Spiral [52, 77]), hardware generation [24,

25], SQL database engines [40, 59], protocol and data format

parsers [36], and recently for safe systems development by

generating verifiable C code with contracts in a specification

language [2].
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Figure 1. General-purpose compiler vs DSL pipeline

With such a broad variety of applications, spanning code

generation targets from JavaScript, Scala, C/C++, CUDA, all

the way to Verilog, the desire to change different aspects of

LMS has come up from time to time. However, most such

change attempts that arose in a given use case have turned

out to break key properties necessary for at least one other

key use case of LMS. Hence, the design of LMS as it has

evolved seems to be a local optimum—but it seems hard to

believe that this particular point in the design space should

be globally optimal, in particular since there are recurring

pain points, for example repetitive boilerplate for DSL defi-

nitions and excessive Scala compile times.

What are then the constraints on the design space? We

identify five key aspects that make LMS what it is and which

we deem essential for embedded DSL compiler frameworks

to achieve applicability on a similar broad scale as LMS:

• Type-based embedding enables mixing present-stage

and future-stage computations seamlessly in a single pro-

gram, while keeping the stages stratified. Type-based em-

bedding further enables us to abstract over the stage.

• True multi-stage semantics guarantees, in constrast to

syntactic template expansion, that evaluation order within

each stage follows the normal call-by-value rules.

• Graph-based IR, where computations can move freely,

enables sophisticated and generic optimizations, imple-

mented once and for all, for many DSLs.

• Horizontal extensibility enables users to add custom

IR nodes and optimizations, based on eager exhaustive

rewriting, to an existing language definition.

• Vertical extensibility enables users to add analysis and

transformation passes, potentially introducing new in-

termediate languages. Such transformations are imple-

mented as staged interpreters.
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Together, these facilities enable high-bandwidth DSL

compiler pipelines as illustrated in Figure 1. The left-hand

side depicts a general-purpose compiler, whose generic ab-

stractions like objects, modules, or higher-order functions,

can be used to implement domain-specific abstractions like

matrices or graphs, but do not allow the compiler to reason

about such domain-specific objects, which leads to a seman-

tic bottleneck.

The right-hand of Figure 1 depicts a DSL compiler

pipeline consisting of multiple IR levels. At the top, we

have a considerable variety of DSLs or domain specific

abstractions, e.g. an IR that models matrices, graphs, or

queries in relational algebra, with a corresponding set of

domain-specific optimizations, e.g. rewrites that exploit al-

gebraic identities. Once these optimizations are applied ex-

haustively, the program is lowered to the next abstraction

level, for example, arrays and while loops. On this level,

there is a different set of optimizations (e.g. tiling, loop fu-

sion), which is again applied exhaustively before lowering

to a variety of hardware-specific targets. In general, the dif-

ferent abstraction levels proceed from mostly declarative at

the programmer-facing side towards mostly imperative at

the hardware-facing side. To avoid the bottleneck of a gen-

eral purpose compiler, it is important that the stack can be

extended vertically, for example by adding new front-ends,

back-ends, or IR levels in the middle, and also that the IR

on each level can be extended horizontally with new data

types and optimizations. Note that there is an explicit dis-

tinction between lowering transforms and optimizations in

this model [63], a distinction which is absent in most tradi-

tional compiler frameworks.

Finally, generic optimizations such as dead code elimi-

nation, common subexpression elimination, or code motion

are as important as domain-specific optimizations, and they

need to be available on all levels of the stack. With such an

architecture, DSL compilers are easy to construct from ex-

isting stacks, by horizontal or vertical extension.

Note that even though LMS primarily targets embedded

DSLs, it is easy to add textual front-ends, as has been done,

for example, with regular expressions [63] and SQL [59].

Based on these observations, this paper makes the follow-

ing contributions:

• We sketch the design space of LMS as outlined above and

review current design decisions (Section 2).

• We discuss certain issues that frequently arise in practice

(Section 3).

• We describe an alternative type-based embedding, using

type classes instead of higher-kinded types (Section 4).

• We discuss using Scala macros for certain aspects of the

embedding that have previously been implemented in a

compiler fork (Section 5).

• We present an alternative definition of a graph-based IR

which is untyped, and we discuss how to still achieve

type-safe rewritings and transformations (Section 6).

It is important to note that these patterns have been known

for some time, and that they reflect the work of a large

number of people from different institutions (EPFL, ETH,

Huawei, Stanford, and Purdue). The main contribution of

this paper is to document and crystallize them. Section 7

surveys generic related work, and Section 7 provides further

attribution for the work described in this paper.

2. The LMS Design Space

We discuss the five key elements of LMS in more depth, and

describe the design decisions taken by the current implemen-

tation.

2.1 Type-Based Embedding

The essence of multi-stage programming is that we can

operate with present-stage and future-stage values in the

same program. But how shall we distinguish the two?

There is a whole spectrum of techniques which make the

distinction more or less prominently visible in the program,

which we can classify according to their noise level. This

characterization is inspired by a remark of Bjarne Stroustrup

[78]: “People confuse the familiar for the simple. For new

features, people insist on LOUD explicit syntax. For estab-

lished features, people want terse notation.”
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Quotation Type-Based PE

Syntactic quotations on the one end make the stage dis-

tinction obvious, but introduce clutter and are thus somewhat

cumbersome to use. Traditional partial evaluation [35] does

not distinguish the stages in any observable way, but relies

on automatic binding-time analysis to separate the program

into static and dynamic components, or on automatic online

specialization [89]. Either method of fully automatic sepa-

ration is brittle in practice. Programmers have little control

over the process, and in particular few effective means for

debugging.

A similar noise level comparison can be drawn for typed

vs untyped languages and explicit type annotations vs in-

ferred types, with well-known pro and contra arguments

about reading code vs writing code, refactoring, types as

documentation, and so on.

A key design decision of LMS is to treat the stage dis-

tinction in exactly the same way as ordinary types, and use

the meta-language type system to distinguish present-stage

from future-stage expressions. This strikes a good balance in

practice, reducing syntactic noise to a comfortable volume,

consistent with the normal use of type annotations in the host

language, but at the same time keeping the programmer in

full control of the staging decisions.

In Scala, type annotations are required on method ar-

guments, but generally not within method bodies. Thus,

we can say that Scala’s local type inference performs a
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semi-automatic binding-time analysis for us, local within

a method body.

Following the idea of finally tagless [11] and polymor-

phic embedding [30], LMS introduces an abstract type con-

structor Rep[T] to denote staged expressions that will gener-

ate code of type T.

Here is an example—the ubiquitous power function:

val driver = new LMS_Driver[Int,Int] {

def power(b: Rep[Int], x: Int): Rep[Int] =

if (x == 0) 1 else b * power(b, x ­ 1)

def main(x: Rep[Int]): Rep[Int] = {

power(x,4)

}

}

driver(3)

→֒ 81

The LMS_Driver class is provided by the framework. We

create a new instance driver, parameterized to create a

compiled function from Int to Int. Inside its scope, we

can use Rep types and the corresponding operations. Method

main is the entrypoint for the generated code. At staging

time, the driver will execute main with a symbolic input. This

will completely evaluate the recursive power invocations

(since it is a present-stage function) and record the individual

expression in the IR as they are encountered. On exit of main,

the driver will compile the generated source code and load it

as executable into the running program. Here, the generated

code corresponds to:

class Anon12 extends ((Int)=>(Int)) {

def apply(x0:Int): Int = {

val x1 = x0*x0

val x2 = x0*x1

val x3 = x0*x2

x3

} }

The performed specializations are immediately clear from

the types: in the definition of power, only the base b is

dynamic (type Rep[Int]), everything else will be eval-

uated statically, at code generation time. The expression

driver(3) will then execute the generate code, and return

the result 81.

From the view of client code, Rep does not have any

operations of its own. Hence, operations on, e.g., Rep[Int]

have to be defined externally:

trait Base {

type Rep[T]

}

trait IntOps extends Base {

implicit def unit(x: Int): Rep[Int]

def infix_+(x: Rep[Int], y: Rep[Int]): Rep[Int]

def infix_*(x: Rep[Int], y: Rep[Int]): Rep[Int]

}

Note that from the client’s view, all the operations are ab-

stract. Hence, we can think of these definitions as axioma-

tizing the future-stage language.

For a multi-stage expression such as b * x, we have

tricked Scala’s type inference into performing a simple lo-

cal binding-time analysis (as mentioned earlier), which de-

termines which parts of the expression are evaluated now

and which parts later. Note that this analysis is guided by

type annotations present in the code, and hence developers

can more easily reason about the process as with traditional

partial evaluators that do not make such a distinction.

Virtualization of the host language If we add booleans,

how can we use the normal if (c) a else b syntax if c has

type Rep[Boolean] instead of Boolean? The solution is to

virtualize the host language [13], redefining such primitives

as method calls:

def __ifThenElse[T](c: Rep[Boolean],

a: =>Rep[T],

b: =>Rep[T]): Rep[T]

While Scala has always had customizable for compre-

hensions in this way, features like if/else are not part of

the standard. Hence, this syntax requires a fork of the Scala

compiler, called Scala-Virtualized [60].

In the signature of __ifThenElse above, it is important

to note the by-name arguments of type =>Rep[T]: these

serve to inherit the evaluation order of the meta-language,

as described next.

2.2 Multi-stage Semantics

LMS takes care to not duplicate or re-order staged compu-

tations. This is similar to semantics in partial evaluation, but

unlike quasiquotations in languages like Lisp or MetaML,

which are based on syntactic expansion. To see the differ-

ence, consider a more sophisticated algorithm to compute

exponents in logarithmic time by repeated squaring:

def power(b: Rep[Int], x: Int): Rep[Int] =

if (x == 0) 1

else if ((x&1) == 0) { val y = power(b, x/2); y * y }

else b * power(b, x ­ 1)

The generated code in LMS will be:

class Anon13 extends ((Int)=>(Int)) {

def apply(x0:Int): Int = {

val x1 = x0+x0

val x2 = x1*x1

val x3 = x2*x2

x3

} }

By contrast, purely syntactic expansion would yield:

(((x0+x1)*(x0+x1))*((x0+x1)*(x0+x1)))

Here, staging has undone the effect of the val y = ... bind-

ing and turned our fast algorithm back into a linear one. This

behavior is widely known, and has been studied in the con-

text of MSP languages at length [84]. While the result is

“only” a slowdown here, syntactic expansion and the result-

ing re-ordering or duplication of code can be disasterous in

the presence of side effects.
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LMS achieves “proper” multi-stage semantics by eager

let-insertion [6, 29, 43, 87], i.e. binding every new staged

operation to a fresh identifier as soon as the staged operation

is encountered in the meta-language.

2.3 Graph-Based IR

Internally, the LMS API is wired to create an intermediate

representation (IR) which can be further transformed and

finally unparsed to target code:

trait BaseExp {

// IR base classes: Exp[T], Def[T]

type Rep[T] = Exp[T]

def reflect[T](x:Def[T]):Exp[T] =.. //add x to IR graph

}

trait IntOpsExp extends BaseExp {

case class Plus(x:Exp[Int],y:Exp[Int]) extends Def[Int]

case class Times(x:Exp[Int],y:Exp[Int]) extends Def[Int]

implicit def unit(x: Int): Rep[Int] = Const(x)

def infix_+(x:Rep[Int],y:Rep[Int]) = reflect(Plus(x,y))

def infix_*(x:Rep[Int],y:Rep[Int]) = reflect(Times(x,y))

}

Another way to look at this is as combining a shallow and

a deep embedding for an IR object language [82].

The fact that we are using (directed, but not necessar-

ily acyclic) graphs instead of trees enables comparatively

straightforward implementation of rather sophisticated op-

timizations [53, 16]. Common subexpression elimination is

just hash-consing. Methods like infix_+ can serve as smart

constructors that perform optimizations on the fly while

building the IR [63]. Dead code elimination is just reach-

ability. These optimization crucially rely on the ability of

(effect-free) nodes to move arbitrarily across the graph. Be-

fore unparsing, a code motion algorithm needs to schedule

the graph, and decide in which scope each expression should

be computed.

The LMS_Driver class mixes in a number of base traits to

define the core language:

abstract class LMS_Driver[A,B] extends BaseExp

with IntOpsExp

with ...

{

def main(x: Rep[A]): Rep[B] // abstract

val apply: (A => B) = {

// evaluate main to obtain IR

// unparse IR, compile, and load

}

}

2.4 Horizontal Extensibility

With this structure, it is now easy to extend the IR horizon-

tally, by adding new IR node types and corresponding con-

structors, for example for Booleans:

trait BooleanOpsExp extends BaseExp {

case class And(x:Exp[Bool],y:Exp[Bool]) extends Def[Bool]

case class Or(x:Exp[Bool],y:Exp[Bool]) extends Def[Bool]

def infix_&(x:Rep[Bool],y:Rep[Bool]) = reflect(And(x,y))

def infix_|(x:Rep[Bool],y:Rep[Bool]) = reflect(Or(x,y))

}

In the same way, we can add new optimizations via smart

constructors by overriding the default term constructor:

trait IntOpsExpOpt extends IntOpsExp {

override def infix_+(x: Exp[Int], y:Exp[Int]) =

(x,y) match {

case (Const(0), y) => y

case (x, Const(0)) => y

case _ => super.infix_+(x,y)

}

}

Multiple such extensions can be layered, thanks to the super

call in the fall-through case of the pattern match. The lin-

earization order of the traits will determine the order in

which the rewrite rules are tried.

All such rewrites are applied eagerly in an online-fashion

while constructing the IR, together with all other smart con-

structors. As a result, we do not require auxiliary mechanism

such as applying rewrite rules until a fixpoint is reached.

With smart constructors, we directly obtain a strong guaran-

tee that, in this case, no IR node of the form 0 + y or x + 0

will ever be created.

2.5 Vertical Extensibility

Horizontal extensibility and optimizations with smart con-

structors go a long way, but in some cases we need additional

power. In particular, it is often necessary to first perform

rewrites on a high-level of abstraction, say, matrices and vec-

tors in linear algebra, which would be implemented in the

same way as the plus operator on integers shown above. But

we also want staging to transform matrix products into tight

loops after high-level algebraic optimizations are applied ex-

haustively [63].

For such use cases, LMS provides a traversal and trans-

former API:

trait LowerVectors extends ForwardTransformer {

val IR: VectorExp; import IR._

def transformDef[T](d: Def[T]): Exp[T] = d match {

case VectorZeros(n) =>

vec_zeros_ll(transformExp(n))

case VectorPlus(a,b) =>

vec_plus_ll(transformExp(a), transformExp(b))

case _ => super.transformDef(d)

}

}

Here, vec_zeros_ll and vec_plus_ll are taken to be meth-

ods defining how zero vectors and vector addition are repre-

sented on a lower-level, using just arrays and loops:

def vec_zeros_ll[T:Numeric](n: Rep[Int]): Rep[Vec[T]] =

Vector.fromArray(Array.fill(n) { i => zero[T] })

def vec_plus_ll[T:Numeric](a:Rep[Vec[T]],b:Rep[Vec[T]])=

Vector.fromArray(a.data.zipWith(b.data)(_ + _))

The definitions of these methods can use staging again on

the lower level, and hence the overall pattern corresponds to

implementing translation passes as staged interpreters over

the higher-level IR.
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If we want to use the transformers API with custom IR

nodes, we need to implement a default transformation case

called mirroring for each of them:

// mirror: transformation default case

def mirror[T](d: Def[T])(t: Transformer) = d match {

case VectorZeros(n) =>

Vector.zeros(t.transformExp(n))

case VectorPlus(a,b) =>

t.transformExp(a) + t.transformExp(b)

case _ => super.mirror(d)

}

3. Practical Issues

Here are some issues encountered in practice with the cur-

rent design.

Non-problem: Rep types Sometimes Rep types themselves

are pointed out as an issue, or the fact that they show up

in type errors even though they might have been inferred

in the source (see e.g. [37]). We do not consider this an

actual problem, but rather a symptom of unfamiliarity. In

our experience with new LMS users, in particular students,

these issues disappear once an initial understanding of the

different stages of execution sets in. From that point on, Rep

types seem to strike a good balance in terms of noise, and

type errors are no more complicated (and often less) than

with other Scala libraries that rely on advanced types.

Conversions to/from Rep The distinction between normal

Scala types and staged Rep types sometimes leads to incon-

venient conversions. Assume we declare a user-defined class

of complex numbers:

case class Complex(re:Rep[Double],im:Rep[Double])

Since Complex is not a Rep type, we cannot easily return

complex numbers from an if expression. To do so, we would

either need to support complex numbers as first-class type

Rep[Complex] in our IR, or we would need to convert them

into a tuple Rep[(Double,Double)] and back. The issue gets

worse if we have a whole class hierarchy, e.g. Complex as

an abstract base class with subclasses Polar and Cartesian,

which necessitates a uniform encoding of all possible alter-

natives, e.g. as tagged union [63].

GADT Pattern matching Smart constructors or transform-

ers rely on pattern matching over typed IR nodes, which are

implemented as (Scala’s approximation of) GADTs. Unfor-

tunately, Scala’s GADT support in pattern matching is in-

complete. As a result, it is often required to insert type casts.

For example, the definition of mirror above will actually

look like:

def mirror[T](d: Def[T])(t: Transformer) = (d match {

case VectorZeros(n) => ...

}).asInstanceOf[Exp[T]]

This necessity for explicit casts somewhat negates the bene-

fits of a typed IR and makes pattern matching fundamentally

unsafe.

Boilerplate for DSL definition Defining custom IR nodes

incurs a fair bit of boilerplate. We first need to provide the

interface trait, with abstract methods for all operations. Then

we need to provide the implementation trait, with Def classes

and implemented methods. We may need additional traits for

optimizations, again with overridden methods. And finally

we need to implement mirroring for each Def class.

Two-thirds-solution: Forge While this boilerplate is repet-

itive, it follows a clear structure, and often large parts can be

auto-generated. Forge [79] is a meta-DSL that takes a declar-

ative specification as input, and generates all the necessary

LMS definitions.

But there is still a problem: even though the boilerplate

no longer needs to written, the Scala compiler still needs to

deal with all the complexity.

Problem: Scala compile time (1) The embedding us-

ing Rep[T] means that we cannot use normal Scala meth-

ods for staged functionality. For example, an operation

Rep[Int] + Rep[Int] cannot be implemented as a method

on type Rep or Int. We could use implicits, but they are im-

precise, in particular for operations involving numeric types.

A key problem is to model the right widening behavior for

Rep[Float] + Rep[Double], Int + Rep[Int] and so on.

Scala-Virtualized implements infix_ methods, which en-

able more precision. But leveraging this precision requires

spelling out many alternative signatures: more than 30 for

+ in Delite, with {Int,Long,Float,Double} x {T,Rep} x

{Scalar,Vector}. This large set of alternatives leads to a

drastic slow-down, since overloading resolution has O(n2)
complexity in scalac. In Delite, type checking a single +

could take up to 0.5s. A notable worst case was an unrolled

determinant calculation with 33 plus operations that took a

good minute to type check.

Problem: Scala compile time (2) Another issue with com-

pile times is due to mixin composition of a large number of

traits, which each contain a large number of members. To

compile traits into JVM classes, the Scala compiler needs to

generate bridge methods and other auxiliary definition. And

when mixing traits together, the compiler needs to check for

overriding pairs, which is again an O(n2) operation in the

worst case.

4. Type-Based Embedding

Going back to our starting point, we observe that we do not

have to use Rep[T] to realize a type-based embedding. It is

enough to have some distinction between, say, the normal

Scala Int and the staged Int. In particular, we can just define

a new Int type in a given scope of the program:

package dsl

trait Int {

def +(y:Int): Int

def *(y:Int): Int

}
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and rely on scoping and path-dependent types to distinguish

between scala.Int and dsl.Int.

But how can we tell on a more abstract level whether

a given type is staged or not? The key idea here is to use

type classes: we require an instance of a type class Typ[T]

whenever T is a staged type.

Putting these ideas together, we come up with the follow-

ing alternative definition of the core LMS traits seen before:

trait Base {

// preliminaries

@implicitNotFound("${T} is not a DSL type")

type Typ[T]

}

trait IntOps extends Base {

trait IntBase {

def +(y: Int): Int

def *(y: Int): Int

}

type Int <: IntBase

implicit def intTyp: Typ[Int]

}

Again the interface is purely abstract, achieving separa-

tion of concerns, and enabling us to pick a suitable IR repre-

sentation of our choice.

Generic code now requires a Typ[T] instance instead of

using Rep types. For example:

def __ifThenElse[T:Typ](c:Boolean, a: =>T, b: =>T): T

Note that we take Boolean to be a staged boolean here,

different from the normal scala.Boolean, and implemented

in the same way as the staged Int type above.

As a pleasant side effect, the use of implicitNotFound

leads to better error messages than higher-kinded types.

For user-facing code, we now have a couple of choices,

depending on the desired noise level. Instead of going with

overloaded Int or Boolean, we could also pick unique name

for types (e.g., DInt), or use qualified prefixes like dsl.Int.

Either way, using imports and scoping we can define whether

Int resolves to dsl.Int or scala.Int by default.

Depending on this choice, the power example can be

written in different ways:

// default is staged, i.e. dsl.Int

def power(b: Int, x: scala.Int): Int =

if (x == 0) 1 else b * power(b, x ­ 1)

// default is unstaged, i.e. scala.Int

def power(b: dsl.Int, x: Int): dsl.Int =

if (x == 0) 1 else b * power(b, x ­ 1)

5. Virtualization using Macros

Instead of having to add all Int methods to Rep[Int] exter-

nally, we now use normal objects and classes. Everything is

still implemented purely as a library, and we do not require

any other mechanisms such as macros per se.

But a number of things become simpler: since we use nor-

mal objects and classes for staged types, we do not need infix

methods anymore, and thus the first compiler performance

problem goes away.

Moreover, the Scala-Virtualized compiler had special

support for staged structural types via Struct[T]. This is

also no longer needed. We just need a macro that creates a

Typ[T] instance for structural types T <: Struct where all

fields have an implicit Typ instance available.

The remaining functionality, like virtualizing built-ins

such as if (c) a else b as __ifThenElse(c,a,b), can

easily be implemented using annotation macros, obviating

the need for a dedicated compiler fork.

6. Graph-Based IR

As a final piece in the puzzle, we can use the new embedding

with an untyped IR, based essentially on S-expressions.

trait BaseExp extends Base {

trait Typ[T] {

def decode(e:Exp): T

def encode(x:T): Exp

}

}

trait IntOpsExp extends BaseExp with DSL {

case class Int(e: Exp) extends IntBase {

def +(y: Int) = reflect[Int]("int­+", e, y.e)

def *(y: Int) = reflect[Int]("int­*", e, y.e)

}

implicit val intTyp: Typ[Int] = new Typ[Int] {

def decode(e:Exp) = Int(e);

def encode(x:Int) = x.e;

override def toString = "Int"

}

}

The encode and decode methods in Typ[T] are required to

convert between the user-facing and the IR-internal repre-

sentation, suitable for unparsing.

This removes the need for 100s of classes for different IR

nodes, leads to fewer generated bytecode, and faster compile

times, eliminating the second performance problem.

How can we add new types in this model? It’s simple, we

just create a new class and provide a Typ[T] instance. For

generic types, such as functions or collections, we require

that the type parameters come with Typ[T] instances as well.

We also have the option of introducing a notion of second-

class types DemiTyp[T] to denote staged but non-first-class

values, which is useful, for example, to model functions

when generating C [2]. How can we add new operations to

an existing type? We use normal Scala implicit classes.

Optimizations and lowerings How can we add new opti-

mizations? We provide a new facility:

rewrite { v1: Vector =>

(v1 + 0) ===> v1

}

Method rewrite can treat the passed closure as higher-order

abstract syntax, and invoke it with a fresh symbol as v1. Both

sides of the ===> arrow are now S-expressions, and the arrow
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maps to an S-expression, too. Thus, internally, rewrite will

obtain a reified representation of the rewrite rule:

(===> (vector­+ ?X1 0) ?X1)

Such rules are added to a rulebase that is automatically

queried whenever a new IR node is created. Thus, we

achieve the same behavior as with smart constructors.

How can we add new transformations? Using the same

new mechanism:

lower { v1: Vector =>

v1 ===> v1.data

}

The only difference is that the rule will be stored in a differ-

ent rulebase.

With further uses of annotation macros we can even auto-

mate this process, and derive IR definitions as well as lower-

ing transformations directly from a class definition. For this

purpose, we introduce a macro @ir, which, used as follows:

@ir class Vector(data: Array[Int]) {

def +(o: Vector) =

new Vector((data zip o.data) map (_ + _))

}

Expands the class definition to the following:

class Vector(data: Array[Int]) {

def +(o: Vector) =

reflect[Vector]("vector­+", this, o)

def +_body(o: Vector) =

new Vector((data zip o.data) map (_ + _))

}

lower { v1: Vector, v2: Vector =>

(v1 + v2) ===> (v1.+_body(v2))

}

One challenge in this model is dealing with generic types,

e.g., a class Vector[T]. Our current API is based on a set of

global placeholders Generic.T1, .T2, etc, so above lowering

for generic vectors becomes:

lower { v1: Vector[Generic.T1],

v2: Vector[Generic.T1] =>

(v1 + v2) ===> (v1.+_body(v2))

}

In summary, even though the IR is now untyped, we can

still specify rewrites and transformations in a typed way, and

get the benefits of horizontal and vertical extensibility.

Stage polymorphism As a final note, with this new typed

embedding, we can keep the split between interface and im-

plementation traits (e.g. IntOps and IntOpsExp), and there-

fore also retains a key benefit of the finally tagless [11] or

polymorphic embedding [30] approach, namely the ability

to abstract over staging decisions. Providing a directly ex-

ecutable implementation of a DSL interface alongside the

staged implementation is not only useful for prototyping or

debugging, but stage polymorphism, is also a key program-

ming pattern for abstracting over precomputation decisions

and controlling data layout and code shape in generators for

high-performance numeric libraries [52, 77].

7. Related Work

Multi-stage programming (MSP, staging for short), as es-

tablished by Taha and Sheard [85] enables programmers

to delay evaluation of certain expressions to a generated

stage. MetaOCaml [10] implements a classic staging sys-

tem based on quasi-quotation. Lightweight Modular Staging

(LMS) [62] uses types instead of syntax to identify binding

times, and generates an intermediate representation instead

of target code [58]. LMS draws inspiration from earlier work

such as TaskGraph [4], a C++ framework for program gen-

eration and optimization. Delite is a compiler framework for

embedded DSLs that provides parallelization and heteroge-

neous code generation on top of LMS [63, 8, 65, 44, 81].

Partial evaluation [35] is an automatic program special-

ization technique. Some notable systems include DyC [27]

for C, JSpec/Tempo [68], the JSC Java Supercompiler [39],

and Civet [69] for Java. Lancet [64] is a partial evaluator for

Java bytecode built on top of LMS. Preserving proper se-

mantics in the presence of state has been an important goal

[6, 29, 43, 87]. Further work has studied partially static struc-

tures [48] and partially static operations [86], and compila-

tion based on combinations of partial evaluation, staging and

abstract interpretation [75, 17, 38]. Two-level languages are

frequently used as a basis for describing binding-time anno-

tated programs [35, 50].

Embedded languages have a long history [42]. Hudak in-

troduced the concept of embedding DSLs as pure libraries

[32, 33]. Steele proposed the idea of “growing” a language

[76]. The concept of linguistic reuse goes back to Krish-

namurthi [41]; Language virtualization to Chafi et al. [13].

The idea of representing an embedded language abstractly

as methods (finally tagless) is due to Carette et al. [11]

and Hofer et al. [31], going back to much earlier work by

Reynolds [57]. Recent work in this line builds modular in-

terpreters using object algebras [34], similar to LMS. There

are many other language extension mechanisms: prepro-

cessors or generators, and built-in meta-language facilities,

such as Template Haskell [70], Metaborg [7], SugarJ [22],

macros in Racket [88] or Scala [9]. We refer to [21] for an

overview. Compiling embedded DSLs through dynamically

generated ASTs was pioneered by Leijen and Meijer [45]

and Elliot et al. [20]. All these works greatly inspired the de-

velopment of LMS. Haskell is a popular host language for

embedded DSLs [83, 26], examples being Accelerate [47],

Feldspar [3], Nikola [46]. Recent work presents new ap-

proaches around quotation and normalization for DSLs [49,

14]. Other performance oriented DSLs include Firepile [51]

(Scala), Terra [18, 19] (Lua). Copperhead [12] (Python). A

line of work by Scherr and Chiba [66, 67, 15] is also related.

Program generators for high-performance code include,

for example, ATLAS [90] (linear algebra), FFTW [23] (dis-

crete fourier transform), and Spiral [54] (general linear trans-

formations). Other systems include PetaBricks [1], CVX-

gen [28] and Halide [56, 55].
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