
An Architecturally-Evident Coding Style:
Making Your Design Visible in Your Code

George H. Fairbanks
Rhino Research

george.fairbanks@rhinoresearch.com

Abstract
Because of Eric Evans’ Domain Driven Design, software devel-
opers are already familiar with embedding their domain models
in their code. But the architecture and design is usually hard to
see from the code. How can you improve that? This tutorial de-
scribes an architecturally-evident coding style that lets you drop
hints to code readers so that they can correctly infer the design. You
will learn why some design intent (the intensional part) is always
lost between your design/architecture and your code. It builds upon
ideas like Kent Beck’s Intention Revealing Method Name pattern
and provides a set of lightweight coding patterns and idioms that
let you express your design intent in the code.

Categories and Subject Descriptors D.2.11 [Software Engineer-
ing]: Software Architectures

General Terms Design, Documentation

Keywords software architecture, software design, design intent,
coding style, pattern

1. Presenter Bio
George Fairbanks is the president of Rhino Research, a software
architecture training and consulting company. He holds a Ph.D.
in Software Engineering from Carnegie Mellon University, where
he was advised by David Garlan and Bill Scherlis. His disserta-
tion introduced design fragments, a new way to specify and as-
sure the correct use of frameworks through static analysis. He has
publications on frameworks and software architecture in selective
academic conferences, including OOPSLA and ICSE. He has writ-
ten production code for telephone switches, plugins for the Eclipse
IDE, Android phone applications, and everything for his own web
dot-com startup. He maintains a network of Linux servers in his
spare time. This tutorial is based on a chapter from his book Just
Enough Software Architecture: A Risk-Driven Approach [4].

2. Target Audience
This is an intermediate-level tutorial aimed at software develop-
ers and architects. Ideal participants are active software develop-
ers who are fluent with software architecture concepts. However,

background ideas (e.g., essentials of software architecture) will be
covered sufficiently so that any software developer can participate.
This tutorial is primarily slide-based lecture and some code exam-
ples will be shown.

3. Tutorial Objectives
Participants will learn some of the basics of software architecture
just in case they do not already know them, things like the stan-
dard set of abstractions (modules, components, connectors, ports,
styles/patterns) and relationships (designation, refinement, depen-
dencies, partitions).

They will then learn what parts of the design or architecture
can be straightforwardly translated into code and what parts can-
not — the extensional parts (enumerated) go easily but the inten-
sional parts (universally quantified) do not. So general rules such as
“Never do validation in the UI” cannot easily be expressed in Java.

Given that, they learn the specific kinds of design intent that are
valuable to express in the code and corresponding hard and soft
mechanisms to make it visible.

Finally, participants learn about software frameworks as one
particular difficulty, because frameworks usually impose their own
idea of architecture on the code.

4. Summary of Contents
Kent Beck [1]and Eric Evans [3] have written about how you can
express your design in the code. This session is based on a chapter
from my book (which is going to the publisher in a few weeks).
If others have written about expressing architecture in code then
please let me know so I can add those references to the book.

A few years ago, Amnon Eden and Rick Kazman published a
paper that prescribed a distinction between architecture and design
[2]. They said that architecture included the intensional elements,
the ones that were universally quantified (like “no client can cir-
cumvent the cache”), and that these cannot be expressed in main-
stream programming languages. The code can respect intensional
constraints but you cannot, for example, write that constraint as a
Java expression (though you could in a rules-based language like
Prolog). This is one large category of design intent that the devel-
oper knows when writing the code but that cannot be expressed in
the programming language directly, so that design intent is lost.

The inspiration for this material comes from David Garlan who
commented to me that source code differs in its ability to convey
its architecture to readers. I have subsequently elaborated on his
insight to develop a set of patterns that make the architecture more
visible.

317

Copyright is held by the author/owner(s).

SPLASH’10 October 17–21, 2010, Ren Tahoe, Nevada, USA.

ACM 978-1-4503-0240-1/10/10.

4.1 Inventory of hard and soft mechanisms to convey intent.
Hard mechanisms are machine checkable (e.g., the type system)
while soft mechanisms rely on humans (e.g., method naming pat-
terns).

4.2 Architectural design intent from the module viewtype
Source code is itself in the module viewtype so code expresses most
elements from the module viewtype rather well. Most languages,
however, lack a full-featured module system. Some express mod-
ules only via the directory structure where source files are saved,
assuming that one directory means one module. They cannot ex-
press the dependencies between modules that are important parts
of the architecture model. Programming languages commonly have
relatively simple module visibility restrictions that can force you to
break encapsulation.

Programming languages let you declare data structures and
classes but not the larger architectural elements like component,
connector, and port types. It is difficult to see what set of classes
makes up a component or connector type. Classes and interfaces
can express what services are provided, but not what services are
required. While you can talk about the dependencies code has, it
is usually awkward or impossible to express those dependencies in
the code itself.

Protocols for interaction are an obvious concern and visible
in architecture models but have no first-class representation in
source code, though code comments often discuss legal calling
sequences. Protocols can be expressed using annotations, which are
increasingly common in object-oriented languages. Annotations
are also being used to express other architectural properties.

4.3 Architectural design intent from the runtime viewtype
The entire runtime viewtype is hard to envision from looking at
source code because you must read through the code and men-
tally animate the runtime instances. This mental animation is made
harder with branching, looping, and input parameters. When rele-
vant code is not co-located it is easy to overlook places where new
components are instantiated or where connections are made.

A runtime view of the system can look like a sea of objects.
Boundaries between components are hard to discern because the
code does not let you declare anything larger than a class. Connec-
tors are hard to see too because identical communication mecha-
nisms, such as method calls or the observer pattern, are used both
within and between components. Connectors may have no runtime
representation at all. Communication between components does
not happen just at ports, but often from any number of objects in-
side the components.

Runtime constraints and styles are exceptionally difficult to
see from the source code. Constraints and styles usually refer to
components and connectors rather than objects, so inferring them
is doubly hard. First, components and connectors must be identified
from the sea of objects and second the rules governing their runtime
arrangement must be inferred.

4.4 Architectural design intent from the allocation viewtype
The runtime viewtype is merely difficult to infer from source code,
but it is usually impossible to infer the allocation viewtype. Natural
language is used to describe how code should be deployed, if it
is written down at all. Most code is deployed in one large chunk
on a single machine, but not always. The kind of machine and the
network properties will impact the system’s performance, and in
cases it may be possible to express these properties in the code.

4.5 Patterns for expressing this design intent
Not everything can be expressed but we can express quite a bit.
Method names can embed architectural intent, such as properties

of connectors (compare “read()” with “readAsynchronous()”). The
“reification” pattern is heavily used to make explicit what was im-
plicit: The class hierarchy (or “tag” interfaces) can express compo-
nent and connector types so that they stand out from other classes.
Classes can also represent ports and can check protocol state and
compliance.

5. Structure of Contents
The example that runs throughout is for a natural-language email
processing system. Processing proceeds using a pipe and filter
network of linguistic classifiers. Each filter in the network shares
a common superclass and there is just one pipe class. Because
all components are subclasses of the Component class, you can
easily find them all by using your IDE’s “browse hierarchy” view.
Creation of these filters is localized in one method, as is the creation
of the network, so you can envision the runtime structure from
looking at the code.

Section 1: What is software architecture? This section pro-
vides background information on software architecture, including
basic concepts (quality attributes, architecture drivers, architec-
ture as a skeleton) and a conceptual model (views and viewtypes,
domain-design-code).

Section 2: Design intent and how it is lost. It shows how
design and implementations are the same and how they differ.
Specifically, it describes how intensional [2] design elements (such
as “No update may circumvent the cache”) are hard to convey in
the code, while extensional elements can be expressed.

Section 3: Techniques for expressing architecture in code. It
teaches the Model-In-Code Principle: Expressing a model in the
system’s code helps comprehension and evolution. This principle
applies equally to the domain (well-accepted in OO/agile circles)
as well as to the design / architecture (accepted in architecture
circles). However, design concepts like Layers and Components
are not automatically visible, but you can follow a set of intention
revealing patterns and idioms to do so. This tutorial describes
patterns for package organization, subclassing, naming (classes,
variables), first-class connectors, and initialization.

Section 4: Architecture and frameworks. More often than
not, developers build code within an application framework (like
Spring, Eclipse, OSGi, or Enterprise Java Beans). In some ways
this helps express architecture, and in other ways it obfuscates it.

References
[1] K. Beck. Smalltalk Best Practice Patterns. Prentice Hall PTR, 1996.
[2] A. H. Eden and R. Kazman. Architecture, design, implementation.

International Conference on Software Engineering (ICSE), pages 149–
159, 2003.

[3] E. Evans. Domain-Driven Design: Tackling Complexity in the Heart of
Software. Addison-Wesley Professional, 2003.

[4] G. Fairbanks. Just Enough Software Architecture: A Risk-Driven Ap-
proach. Marshall & Brainerd, 2010.

318

