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Abstract: 

Object-Oriented programming is a powerful means of 
developing large complex systems. In this paper we ad- 
dress the need to understand the behavior of objects 
in order to facilitate code sharing and reusability. We 
describe GraphTbace, a tool we have developed that 
has allowed us to experiment with new ways of visu- 
alizing the dynamic behavior of object-oriented pro- 
grams. Based on our experience with the GraphTrace 
tool we suggest that being able to present many differ- 
ent views of an object-oriented system and then ani- 
mating these views concurrently represents a powerful 
means for understanding such systems. 

1 Introduction 

This paper describes GraphTrace, a tool we have de- 
veloped to assist in understanding object-oriented pro- 
grams, GraphTrace allows a user to create displays re- 
vealing different aspects of the structure of an object- 
oriented program, and then to animate these dis- 
plays in order to visually understand how the program 
works. In this paper we show how different displays 
(or views) can be created and animated with the tool, 

We use mainly (though not exclusively) graph dia- 
grams to display the structure of programs. Graphs 
consist of nodes and links. In general the nodes repre- 
sent components of the system, such as objects, meth- 
ods and instance variables, and the links represent 
some .relationship or set of relationships that exist 
among the components, such as inheritance and dele- 
gation. 
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Animation is achieved by highlighting and dynamically 
annotating the nodes and links to show the activity of 
the program. We have found that animation, even in 
this simple form, is an effective technique for helping 
a developer understand how a system works. 

The paper is divided into four parts. In Section 2 we 
motivate the need for tools for understanding object- 
oriented systems by recognizing that the programming 
methodology associated with the reuse and extension 
of existing objects pre-supposes the designer has some 
understanding of the behavior of the objects. We show 
how GraphTrace builds on previous work to provide a 
tool for understanding both the detailed workings and 
the large scale operation of object-oriented systems. 
Section 3 provides a description of how our system is 
implemented and how it is used. It includes a simple 
illustrative example of GraphTrace in operation. In 
Section 4 we explore a detailed case study in which we 
show how multiple concurrent GraphTrace views can 
explain the workings of an example system. Finally, 
Section 5 compares GraphTrace to previous work in 
the area of program animation and diagramming mes- 
sage sending in object-oriented programs. 

2 Background and Goals 

We briefly review the important characteristics of all 
object-oriented languages. Objects have both methods 
and local state. Methods are the operations that de- 
fine an object’s behavior and an object’s local state is 
the current set of data values maintained by the ob- 
ject. Object-oriented programs execute through mes- 
sage passing among objects, The methods in an ob- 
ject execute in response to a message and may then 
invoke further messaging. An object-oriented lan- 
guage also includes the concepts of class and inher- 
itance where objects of the same class have the same 
methods and classes may inherit operations from su- 
perclasses [WegSir]. Connections between objects rep- 
resent many different kinds of relationships, including 
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th<: mcrst commonly used is-a and y&-of. 

We address the problem of understand jng and explain- 
ing the behavior of large-scale object-oriented systems. 
An application system written in an object-oriented 
programming language contains many complex objects 
linked in a variety of relationships. The intent in using 
an object-oriented programming language is to model 
a richly structured application domain. It is for this 
reason that object-oriented languages are increasingly 
being used as the medium in which knowledge-based 
systems are designed. A typical application program 
can include hundreds of objects and hundreds of meth- 
ods defining the operations for those objects. 

Understanding and explanation are general issues that 
arise in the concerns of program usage, education, 
technology transfer and object reusability. An expla- 
nation facility for a system is an integral part in ensur- 
ing that the system is understood and used correctly 
[Bro78]. Swartout’s work has emphasized that pro- 
gram explanation is one of the key features of expert 
and knowledge-based systems [Swa83]. Consider also 
the problems involved in technology transfer, when it 
is necessary for programmers to expand or enhance an 
object-oriented system they did not design. 

Object reusability is the characteristic that a well de- 
fined object designed for one application can be used 
in a similar application. One can also reuse objects in 
the same system by creating subclasses that will in- 
herit the operations of superclass objects (code shar- 
ing). Specializing an object can also involve the over- 
riding of default states and methods. New methods 
are then written so that the speciaIized object behaves 
in a slightly different manner. The reusability sce- 
nario, however, often involves some understanding of 
the specific behavior of existing objects. Documenta- 
tion is one answer to this problem but documentation 
rarely keeps pace as an object’s methods are altered 
over time. Furthermore, static descriptions are often 
inadequate for the task of conveying an understanding 
of inherently dynamic processes. 

Simply executing a computation is not enough to ex- 
plain a system’s behavior. One must understand both 
the structure and the function of the objects involved. 
One must understand the taxonomic structure of the 
class objects, the inheritance mechanisms used, the 
individual behaviors of objects, and the dynamic be- 
havior of the system as a whole. 

The problem is somewhat analogous to that of view- 
ing a sports event such as as tennis or football game. 
IvIany different camera angles are required to provide 
an understanding of the action taking place. Each 
camera reveals particular aspects of the action that 

cou1r.l not b conveyed by one camera alone. Further- 
morel it is the combination of views of the same action 
that provides an even more complete understanding, 

In a similar manner, one must examine an object- 
oriented system from many different views. We define 
a view to be a user’s interface into an object or set 
of objects. A taxonomy graph is a view of the class- 
subclass structure in a knowledge base. Likewise, the 
yati-ofrelationship for the same objects may be viewed 
in a part-whole graph. A window into the contents of 
a single object is also a view. The important point is 
that the structures and the links that define relation- 
ships are already in place - they are part of the original 
system design. 

Because systems have become increasingly large and 
complex, developers have turned to software tools to 
record and report on the internal state of a program 
in operation. Developers are increasingly turning to 
the use of high-resolution bit-mapped displays and in- 
teractive graphics as vehicles for their software tools. 
This has lead to experimentation with program and al- 
gorithm animation as a basis for program explanation 
and comprehension. Animation for programs draws 
from work in the field of graphical animation tech- 
niques [%e85,BS84] and from work in program anal- 
ysis [MM85]. Environments to support programming 
in specific languages sometimes include animation; see 
[Bar861 for an example in dataflow program develop- 
ment. The work described in this paper builds on this 
body of work in program animation. 

By collecting and concurrently animating the differing 
views of an object-oriented system, a graphic visual- 
ization of the dynamic behavior of the entire system 
can be provided. The GraphTrace facility enables the 
user to easily produce animated views of his or her 
program; these views resemble a motion-picfure of the 
entire system’s dynamic behavior. 

GraphTrace was developed within the powerful object- 
oriented programming environment that we use. The 
environment consists of two major parts, Strobe and 
Impulse-86. Strobe, is an object-oriented language 
implemented as an augmentation to Common Lisp. 
We have built a large number of systems in Strobe 
and one of the reasons for developing GraphTrace is 
to be able to show colleagues how these Strobe pro 
grams work. Strobe is a language that provides many 
advanced features such ss message passing, multiple 
inheritance, and method combination. In Strobe an 
object is composed of slots where a slot may represent 
either a method or a state variable. More details of 
the architecture of the Strobe language can be found 
in [SC86,Smi83,SS83]. Impulse is a substrate for build- 
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ing user interfaces. It is itself implemented as a collec- 
tion of Strobe objects so that building user interfaces 
consists of modifying, specializing and extending the 
objects that make up Impulse. Impulse was used to 
implement the user interface of GraphTrace. A large 
number of interfaces have been built in Impulse includ- 
ing extensions for graphical interfaces, interactive data 
editing and forms interfaces. The workings of these 
interfaces, also termed specialized editors, will be used 
as examples of object programs that can be analyzed 
with GraphTrace. More details on the implementation 
of Impulse and how it is used to create user interfaces 
are found in [SDB86,SBY87,SK87,RGSD87]. 

3 The GraphTrace Tool 

This section describes how GraphTrace is implemented 
and how it is used. Figure 1 shows a typical Graph- 
Trace display. On the left is an application program 
which is running. The application program is the Ida 
system, an interactive system for displaying and view- 
ing 2-D data plots [You87]. This snapshot was taken 
just after the user changed some of the values in the 
data and invoked a “refetch” command to redraw the 
display. The display has just been cleared in prepara- 
tion for redrawing the data plot. 

The displays on the top and on the right are two 
GraphTrace views of the application program. The 
view on the right is the method invocation graph, a 
view of the sequence of methods that are invoked as a 
program runs. The method invocation graph is one of 
the most used GraphTrace displays and is described in 
more detail in Section 3.2. The view on the top of the 
figure is a taxonomy graph of some of the objects that 
,implement Ida. The highlighting of links and nodes in 
the graphs show which parts of the system are involved 
in computation at the current time. In this particu- 
lar case the node Clear representing the method used 
to clear the display is highlighted to show that it is 
cutren tly being invoked. 

3.1 Using GraphTrace 

GraphTrace is operated via the control panel menu 
shown in Figure 2. There are two phases to using 
GraphTrace - recording and animation. The user first 
sets GraphTrace into recording mode by selecting the 
recording mode item in the Record/Animate menu. 
An application program (or operation within an ap- 
plication) that the user wishes to investigate is then 
run and GraphTrace records information about the 
messaging activity that occurs as the program runs. 

When completed, GraphTrace is set to animate mode 
and a view of the recording is displayed on the screen. 
The application program is then re-run and Graph- 
Trace causes the recording and other active views to 
be animated. 

The speed at which the animation is re-run is con- 
trolled with the right-side menu. The animation can 
be slowed down or speeded up as the program is run- 
ning. This allows, for example, the user to quickly run 
the animation at FAST speed and then to change to 
MEDIUM or SLOW as the program approaches the point 
in the computation that is of interest. Since the ani- 
mation by GraphTrace consists only of simple graph- 
ical operations, the speed of running an application 
with GraphTrace is very close to that of the program 
running by itself (this is true for both recording and 
animation). SINGLE STEP can be used to cause the 
program to halt before each message is sent. 

The GraphTrace graph displays include a pop-up 
menu of commands to selectively prune the graph so 
that the user can zoom in on activity in particular 
parts of the graph. GraphTrace graphs can be stored 
on file so that the displays can be regenerated and re- 
animated at a later time. 

3.2 GraphTrace Implementation 

GraphTrace works by temporarily modifying the low- 
level lisp function that implements message passing in 
Strobe. Two modifications are alternately applied. In 
the recording mode, the function is made to record in- 
formation about the context of message invocation as 
a program is run. This information includes the origi- 
nator of the message, the recipient object of the mes- 
sage, the name of the method that was invoked, and 
the values of arguments passed in the message. This 
information is stored and then used to create graph 
displays. In animation mode, the lisp function is mod- 
ified to cause animation of the displays as the program 
is re-run. 

This kernel component of GraphTrace does not require 
the animation to occur in a graph display. Indeed, any 
editor built with Impulse can be interfaced to Graph- 
Trace and animated if it has methods to highlight 
components of its display. Most editors do have such 
methods which are used for interaction purposes. In 
this paper, however, we concentrate on graphs since we 
have found animated graph displays to be a compact 
and expressive representation for understanding pro- 
gram behavior. The GraphTrace graph displays fall 
into two general categories - structural and behavioral: 
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Ida Exampfc 1 

Figure 1: Ah Analysis Session with two GraphTrace views 
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3.2.1 Structural Graph Displays 

A structural display is a view of static structure in 
a program. Graph displays showing the static struc- 
tures that exist in a Strobe program are available as 
part of Impulse. With GraphTrace, these displays are 
augmented with animation to show how the running 
of a program relates to the particular structure being 
displayed. 

For example, the GraphTrace taxonomic displays show 
how activity is partitioned across the class hierar- 
chy. Taxonomic displays include both Progeny graphs 
which show the standard taxonomic hierarchy and An- 
cesiy graphs which “look up” the inheritance hierar- 
chy towards the root object. In an ancestry graph, it 
is possible to show how the inheritance structure is be- 
ing exploited by highlighting the class object in which 
a method is defined when the method is invoked. 

Another type of structural display is the part-whole 
graph. In Strobe a built-in part-of construct is not 
available, but program designers can easily create their 
own application dependent part-oflinks. To then dis- 
play a parts relationship the designer creates his or 
her own Impulse structure graph by defining a gener- 
ator function. The generator function specifies how to 
generate a part-whole relationship graph from an ob- 
ject with the appropriate links. GraphTrace can also 
animate these graphs. 

3.2.2 Behavioral Graph Displays 

Behavioral graphs show the dynamic relationships that 
occur as the program is run and messages are ex- 
changed. Behavioral graph displays can be thought 
of as displays of “run-time structure” since they show 
the temporal (and temporary) connections that occur 
between components of the program. A method invo- 
cation graph is one kind of behavioral view. It is a 
condensed view of the sequence of messages that are 
invoked as a program runs. In this display, the child 
nodes of a node show the methods that are invoked 
by another method. The graph as a whole shows the 
complete nesting of message invocations. 

An invocation trace is a program debugging display 
which is similar to, but more concise and evocative 
than a standard program trace. In a standard “ter- 
minal output” program trace some facility (or the in- 
sertion of “print” statements in the code) allows the 
programmer to cause the program to have the side ef- 
fect of printing some information into a text window. 
A typical printout trace might look like this: 

3 Entering Method1 
ZP Entering Method2 

q Entering Method3 
3 Exiting Method3 

s- Exiting Method2 
s- Entering Method4 
3 Exiting Method4 

3 Exiting Method1 

Such a terminal output trace is useful for showing de- 
tails of a program’s activity, but one can get lost in 
several pages (or screens) of indented method invocs- 
tions. Invocation tracing is simply the idea of using a 
tree display to represent this same information. Thus, 
an invocation trace would appear in a “method invo- 
cation graph” as shown in the Figure 3. 

The tree displays the nesting structure of messages. 
While a program is running, the method names in the 
graph are “flashed” by highlighting a name and/or link 
on entry and then unhighlighting it on exit. This rep- 
resentation is more compact than a printout. The tree 
shows a complete history of the invocation stack. Each 
step in a depth-first traversal of the tree corresponds 
to the successive states of the stack as the program 
runs. The path of highlighted links and names from 
the root indicates the current stack state of the pro- 
gram. We can deduce from Figure 3.2.2 that the stack 
goes through the following six states: 

Method3 
Method2 Method2 Method2 Method4 

Method1 Method1 Method1 Method1 Method1 Method1 
1 2 3 4 5 6 

Many programming environments have a break facility 
[Int85]. In a typical break package it is possible to 
stop the computation to view the current state of the 
stack, and see what the current nesting of function 
invocations is, but it is not possible to see the past 
state of the stack when other functions were on it. 
An invocation trace graph does allow the user to see 
this past history, branching off from the current “stack 
state path.” It gives a better overall view of where 
the program has been and where it is going. In the 
example of Figure 1, the current stack state path is 
Execute, Clear. 

Note that we display a method invocation as a graph, 
not a tree, so that repeated invocations of the same 
method are represented by a single node, and not sev- 
eral nodes of the same name for each invocation. The 
repeated highlighting of the single node during ani- 
mation shows repeated invocations. We do, however, 
show two nodes of the same name to indicate recur- 
sion; a node that has a child node of the same name 
indicates that the method invokes itself. 

Programming environments often also provide cross- 
referencing or code analysis facilities that can display 

September 2X30,1988 OOPSLA ‘88 Proceedings 195 



/ 
Method2 -Method3 

Methodl 
\ Method4 I 

. 
Figure 3: Invocation Graph 

the graph of method invocation nesting by deducing 
it from a static analysis of the code (such as the In- 
terlisp Masterscope Browser tool [Int85]). In the case 
of an object-oriented message passing system such as 
Strobe, binding of methods to Lisp functions occurs at 
run-time, and so an invocation trace is the only way 
of acquiring a view of the functions as they are ac- 
tually invoked. The invocation graph can be thought 
of as the object-oriented programming equivalent of 
a calling or function nesting graph in functional pro 
gramming languages. 

Another example of a behavioral graph display is 
the object invocation graph. This is similar to the 
method invocation graph, but shows only the names of 
the objects involved without indicating the particular 
method that was involved. It gives a large-scale view 
of the overall message traffic between objects. Another 
behavioral graph is the object-slot invocation graph in 
which each node is and object, slot pair identifying a 
specific method in a specific object. This provides a 
detailed view that will highlight different nodes when 
the same method is invoked in different objects. 

object-oriented system. The application we examine 
is the user interface substrate Impulse. As previously 
mentioned, Impulse is a general and extensible sub- 
strate upon which a large variety of interactive user 
interfaces have been developed. In particular, editors 
have been developed in Impulse that are used for edit- 
ing the internal structures of Strobe objects. The ex- 
ample we present is the creation of a fast object editor 
used for editing a single Strobe object. The incre- 
mental creation or instantiation of a fast object editor 
inspecting the LoggingDemo object is presented in Fig- 
ure 4. The first five lines of the completed editor show 
the values of properties that are common to all objects 
and the remaining lines show the local methods and 
state variables. The slot LOG is a method (indicated 
by the [LISP] annotation immediately after the name 
of the slot) and the name of the method handler is 
IHPULSE/LOGGINGDEMO/LOGUELL. RIG and TRUCK are 
local state variables with bitmap values. 

The behavioral graph displays are generated at run 
time which is why a two-phase record and animate 
protocol is needed for showing these displays - the 
first to create the graph and the second to animate it. 
Structural graphs can often be derived from the static 
structure of the object program and so they can be 
generated without a preliminary record phase. 

One advantage of using such a simple medium for 
showing animation is that it is easy to create new dis- 
plays and animate them. Particular object-oriented 
programs may have unique structures in addition to 
the is-u hierarchy and method invocation nesting. The 
next section describes an example analysis session with 
GraphTrace and includes a variety of displays. 

An editor in Impulse is built using the five basic classes 
Editor, EditorWindow, PropertyDisplay, Menu, and 
Operations as shown in Figure 5. These classes 
are connected in a uniform framework and each class 
has a well-defined set of operations and responsibil- 
ities [SDBSS]. The PastObjectEditor class defines 
the fast object editor. It is a specialization of the 
ObjectEditor class which defines the standard object 
editor. The name derives from the fact that time is 
saved by not instantiating the command menus asso 
ciated with the editor. These menus normally appear 
attached to the side of the window with the standard 
object editor but are only instantiated and popped-up 
upon user demand in this specialized editor. 

4 Understanding a System Using 
GraphTrace 

The first step towards understanding the fast object 
editor is to locate the object in the Impulse taxon- 
omy (Figure 5). This view of Impulse is not the entire 
hierarchy but is a subset, selected according to mem- 
bership in the group FastObjectEditor. The objects 
that constitute the fast object editor are boxed. It can 
be seen that these objects are specializations of the ob- 
ject editor for all five of the major Impulse classes. 

ln this section we present an example of how Graph- In Impulse one can inspect relationships other than 
Trace is used in the understanding of a sophisticated is-a through the use of user-defined structure graphs. 
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Figure 4: Progression of a fast object editor view instantiation 
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Figure 5: Subset of Impulse taxonomy 
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The associated structure graph for the fast object 

editor is called EditorParts. These links were cre- 
ated by the original designers indicating that the 
part-of relationship is an important aspect of this 
editor. Selecting the parts view yields a graph of 
the components of the fast object editor (Figure 6). 
It can be seen that the fast object editor is corn-- 
posed of a window (the FastObjectEditorYindoo), 
several displays, a slot editor and an operations 
object. The FastObj ectSlotEditor component is 
itself an editor with its own components. With 
the use of GraphTrace, we will show how the 
FastObjectSlotsDisplay is responsible for the actual 
printing of the slot names and values in the editor win- 
dow when the editor is invoked. 

At this point we have discovered where the 
FastObj actEditor exists in the Impulse taxonomy 
and the objects that constitute this editor. We can 
examine this object, on the left in Figure 7, and see 
that only the Components and Operations slots are lo- 
cally defined. All of the methods defining the behav- 
ior of this object are inherited from its superclasses. 
We can examine some of these methods (on the right 
in Figure 7), but we can not be certain which of the 
methods are used during editor creation. Methods also 
exist for interactive updating and editor deletion. Vi- 
sually inspecting an object, therefore, will not explain 
the dynamic behavior of that object during a given 
process. One can always examine the method handler 
code in detail but this would entail constructing the 
sequence of method invocations by hand. A dynamic 
trace of the instantiation of a fast object editor view is 
needed in order to determine which methods are used 
during the creation process and the sequence in which 
they are invoked. 

Figure 8 is a GraphTrace method invocation graph 
displaying the names of the FastObj ectEditor meth- 
ods that are invoked during the instantiation of 
the fast object editor. Tracing and animating 
this graph during the instantiation of the edi- 
tor reveals the underlying operations of this editor 
class. The graph indicates that the current stack 
state includes the FastObj ectEditor methods CODE, 
InstantiateComponents and EditorYindou. We 
have only included the methods that are inherited 
by the FastObjectEditor but we can also produce a 
graph displaying all of the methods that are used dur- 
ing the instantiation process (Figure 9). Figure 9 dis- 
plays a different sequence of methods because Graph- 
Trace has recorded methods from all of the fast object 
editor component objects. 

As explained in the previous section, we can pro 
duce other types of invocation graphs each with 

its own particular view. For example, when the 
FastObj ectEditorUindow creates a lisp window, 
the CreateLispUindou handler sends several mes- 
sages to collect local state. We can examine 
the CreateLispUindou handler more closely and let 
GraphTrace display the actual values being sent to 
and returned by the subordinate methods (Figure 10). 
This invocation graph shows that messages are being 
sent to the InitiaIYidth and InitialHeight slots to 
retrieve the initial dimensions of the editor window. 

Strobe uses the Flavors [SBSS] idea of m&ins for meth- 
ods combination, that is, one can successively execute 
a series of methods that are linked vii inheritance. In 
Strobe the top-down addifive inherifance mechanism 
can be used to execute one method and then proceed 
down the class taxonomy executing methods of the 
same type. For example, a top-down additive inher- 
itance message sent to the Initialize method of a 
FastObj ectEditorWindou instance will invoke all of 
the Initialize methods from that editor window’s 
highest superclass to the most immediate superclass. 
This process of method execution can be viewed in an 
animated GraphTrace ancestry graph (Figure 11). 

We have examined various aspects of 
the FastObjectEditor and the creation of a fast ob- 
ject editor view, from a global taxonomic perspective 
to the more detailed level of methods and the values 

they return. By animating all of these views concur- 
rently as an editor view is created we can see a graphic 
visualization of the entire editor instantiation process. 
Figures 12 and 13 are screen snapshots of GraphTrace 
animating different views as a fast object editor is cre- 
ated. These figures correspond to the first and second 
last pictures in the sequence of Figure 4. 

On the bottom of the screen is the taxonomy graph. 
On the left is the method invocation graph. To the 
right of the invocation graph are, from top to bottom, 
the parts view, the FastObj ectSlotsDisplay object 
and the fast object editor that is being examined as 
it is being created. We can see that the editor is at 
the point where the window has just been created and 
is displayed empty on the screen. Highlighted nodes 
indicate that a method or object is taking part in a 
message invocation. 

From the structure graphs we can tell that slot di* 
play is accomplished by the FastObjectSlotsDisplap 
object. As the RIG slot is displayed, (Figure 13), 
the FastObjectSlotsDisplap object is highlighted 
in both the taxonomy and parts graphs. Concur- 
rently, the Display method is being highlighted in 
both the invocation graph and the animated Fast- 
GbjectSlotsDisplay. From the method invocation 
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FastObjectEditorWindow 

ObjectNameDisplay 

ObjectSyndn$hrHlisplay 

I FastObjectEditor 
F 

ObjectTypf2hplay 

ObjectEditedbhplay 

P f FacetEditorWindow 

FastSlotEditor FastOb jectSlotsClisplay 

SlotEditorOperations 

FastObjectEditorOperations 

Figure 6: FastObjectEditor Components 

OBJECT: FASTOSJECTEDITOR 
SYNONYMS: 
GENERALIZATIONS: OBJECTEDITOR 
GROWS: FASTOSJECTEOITOR IMPULSEEOITOR 

~ TVPE: CLASS 
, Edited: IJ-Nov-B6 132323 By: SMITH 

COMPONENTS[OBJECT): FASTOEkJECTEDITORWNDOW, 
FASTOSJECTWEDISPLAV, OSJECTSVNONVMSDISPLAV, 
OFlJECTtENERALIZ.4lIONSDISPLAV, OSJECTGROUPSDISPL*V, 
OBJECTTVPEDISPLAV, OSJECTEDITEDDISPLAV, md FASTSLOTEDITOR 

OPERITlONyOSJECTI: FAS.TOSJECTEOITOROPERONS 

SVNONVMS: 
GENERALIZATIONS: OBJECTEDITOR 
GiWIP!h FASTOBJECTEDITOR IMPULSEEDITOR 
TVM: CLASS 

I Edited: 13~Now36 132323 LI’I: SMITII 
COMPONENTS[OWECT~: FASTOSJECTEDlTORWlNDOW, 

FASTOSJECTNAMEOISPLAV, OSJECTSVNONVMSDISPLAV, 
,OSJECTGENElWlI7ATIONSDISPLAV. OBJECTGROUPSOISPLAV. 

I ORJECTWPEDISPLAV, OSJECTEDiDOlSPLAV,ad FASTSLOTiD 

I 
OPERAT,ONS,OBXCTI: FASTOBJECTEDtTOROPER*TIONS 
DELETE[USPJ& IMPUk/EDlTORIDELETE 
HT~lJSP)(~: lMPULSMDlTOWlNlTLUl.?E 

‘lTDR 

Figure 7: The FastObjectEditor class (left) with inherited methods (right) 

Figure 8: Fast object editor method invocations - FastObjectEditor methods 
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Figure 9: Fast object editor method invocations - all methods 

Figure 10: CreateLispWindou method invocations with arguments 
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Figure 11: Combination of Iniiialire methods 

Figure 12: GraphTrace screen snapshot 1 - Displaying LOG slot 
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Figure 13: GraphTrace screen snapshot 2 - Displaying RIG slot 
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graph we can see that the invocation stack includes 
the Code, Refetch, Display and RIG methods. The 
Display handler is now messaging the RIG slot in the 
LoggingDemo object, presumably to retrieve its value, 
which is then painted onto the screen. 

The name “FastObjectSlotsDisplay” is certainly an in- 
dication of the object’s function but cannot explain 
the object’s entire behavior. Note that a user would 
not know to display this object on the screen until 
he ran the trace once and saw this class object being 
highlighted during slot display. After the RIG slot is 
displayed, the Display handler will proceed to paint 
the next slot, TRUCK. 

Animating these views yields an enlightening motion 
picture of the system in operation. The important 
point about these views is that they expose the natu- 
ral views of the system’s structure; they are the objects 
and relationships built by the original designers. The 
method invocation view is complementary to the tax- 
onomy and parts view. Each view presents a different 
perspective on system behavior and each perspective 
yields different information. By using Impulse as our 
example object oriented system we have tried to give 
the reader a flavor of how GraphTrace can be used to 
browse and gain understanding of an unfamiliar sys- 
tem. Certainly a user would have to examine other 
aspects of Impulse in order to gain a complete under- 
standing. 

Using the GraphTrace facility is analogous to using a 
standard trace package. The user has to first identify 
the particular views of interest. We have found that 
as designers add different structures and relations to a 
knowledge base they include the generators necessary 
for instantiating and displaying them. With Graph- 
Trace, structural views are just instantiated and an- 
imated while behavioral views are recorded and then 
animated. Without having to resort to complex graph- 
ics programming, we can understand and explore a so- 
phisticated object-oriented system. 

5 Related Work 

The extensive body of work in program animation is 
surveyed by Raeder in [Rae85]. The work that is most 
closely related to ours is that of London and Duisberg 
[LD85] and Cunningham and Beck [CB86]. London 
and Duisberg present an algorithm animation kit us- 
ing the Smalltalk programming environment [Go184]. 
Their method of program animation involves the inser- 
tion of graphics code into existing code. Animation- 
View and AnimationController objects are created to 

handle the animation of individual algorithms. The 

view or interface is constructed by the animator and 
may be useful for the animation of similar algorithms. 

In GraphTrace, we create the animation by inserting 
hooks into the low-level message receiver. By simply 
monitoring the message traffic in the application sys- 
tem there is no additional programming that needs 
to be done by the user. The views that we animate 
are the natural interfaces to the structures already de- 
signed into a system. The animations done by London 
and Duisberg are more sophisticated, but they also re- 
quire extensive graphics programming. Also, London 
and Duisberg are concerned with the animation of in- 
dividual algorithms while we are concerned with both 
the detailed workings and the large scale behavior of 
a system. 

Cunningham and Beck present a method for diagram- 
ming the message activity that takes place during 
an object-oriented computation. They use directed 
arcs to represent messages between objects of different 
classes. Their notation, however, does not explicitly 
represent the sequence of a computation - although 
they do mention that they have looked at this. The 
GraphTrace invocation graph is a direct representa- 
tion of the sequence of message calls. Cunningham and 
Beck are primarily concerned with the visualization of 
inheritance between classes. We feel that by animat- 
ing different views of an object-oriented system at the 
same time the user gains a greater understanding of 
the relationship between the entire system’s structure 
and function. With GraphTrace, the compactness of 
the invocation graphs enables a user to examine the 
behavior of a relatively large system on a single screen. 

6 Further Work 

We are currently investigating two slightly opposing 
extensions to GraphTrace. The extensions are along 
the lines of debugging and visualization. We are experi- 
menting with GraphTrace as a debugger, so that when 
a program has been stopped at a particular point in 
the computation, the user can select a node in the invo 
cation graph and see typical break information. This 
extension aims to make GraphTrace a central compo- 
nent in a unified debugging system in which tracing, 
breaking and program development all occur through 
a single interface. GraphTrace could also function as 
a performance analysis package. Currently we only 
keep track of the method invocations but we could 
also generate statistics such as the number of method 
invocations, the number of inheritance searches and 
the average length of an inheritance search. 
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The other extension emphasizes exploiting the visu- 
alization aspect of GraphTrace. We are investigating 
different ways to display the animation. We are cur- 
rently working on a graph that combines the taxon- 
omy and method invocation views. When an object 
receives a message we would like to be able to indicate 
the superclass where the message receiver actually re- 
sides. This idea is similar to Cunningham and Beck’s 
work. 

We use simple node names that represent object 
names, method names or method handlers. Using 
icons to represent the message traffic and convey the 
flavor of the domain in a domain-specific animation 
would move GraphTrace towards the work on algo- 
rithm animation. We feel that this has great value in 
providing “friendly” displays that would be useful for 
explanation and tutorial purposes. For system devel- 
opment and debugging we prefer an animation inter- 
face which is simple. 

As can be seen by the example in Figure 12 we present 
graphs as the preferred display. There is no imple- 
mentational reason to do so; any Impulse editor can 
be animated. By adding simple highlight methods to 
any specialized interface, an application programmer 
can make use of the GraphTrace animation kernel to 
expose the behavior of his or her program. 

7 Summary and Conclusion 

We have presented a tool for understanding the dy- 
namic behavior of object oriented programs. The tool 
works with both structural and behavioral views of a 
system. Structural views are simply instantiated and 
animated. Behavioral views are generated by record- 
ing the message activity that occurs as a program is 
running and then animating those views. Concurrent 
animation provides the user with several perspectives 
on a system’s behavior. We have already used Graph- 
Trace to analyze some of our existing applications and 
have improved and repaired programs as a result of 
the analysis. In one test case we found that a partic- 
ular handler was being called by mistake and should 
not have been involved in the computation at all. 

The record/animate mode of operation is a choice be- 
tween alternative approaches to program animation. 
We have chosen the technique of modifying the low- 
level function in our object-oriented language that im- 
plements message passing. This eliminates the work 
of having to modify the original application code. The 
grain of animation, therefore, is at the message level, 
which is appropriate for an object-oriented system. 
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