
GraphTrace - Understanding

Object-Oriented Systems Using
Concurrently Animated Views

Michael F. Kleyn and Paul C. Gingrich
Schlumberger-Doll Research

Old Quarry Road
Ridgefield, CT 06877-4108

USA

Abstract:

Object-Oriented programming is a powerful means of
developing large complex systems. In this paper we ad-
dress the need to understand the behavior of objects
in order to facilitate code sharing and reusability. We
describe GraphTbace, a tool we have developed that
has allowed us to experiment with new ways of visu-
alizing the dynamic behavior of object-oriented pro-
grams. Based on our experience with the GraphTrace
tool we suggest that being able to present many differ-
ent views of an object-oriented system and then ani-
mating these views concurrently represents a powerful
means for understanding such systems.

1 Introduction

This paper describes GraphTrace, a tool we have de-
veloped to assist in understanding object-oriented pro-
grams, GraphTrace allows a user to create displays re-
vealing different aspects of the structure of an object-
oriented program, and then to animate these dis-
plays in order to visually understand how the program
works. In this paper we show how different displays
(or views) can be created and animated with the tool,

We use mainly (though not exclusively) graph dia-
grams to display the structure of programs. Graphs
consist of nodes and links. In general the nodes repre-
sent components of the system, such as objects, meth-
ods and instance variables, and the links represent
some .relationship or set of relationships that exist
among the components, such as inheritance and dele-
gation.

Permission to copy without fee all or part of this material is granted provided

that the copies are not made or distributed for direct commercial advantage,

the ACM copyright notice and the title of the publication and its date appear.

and notice is given that copying is by permission of the Association for

Computing Machinery. To copy othenuise. or to republish, requires a fee and/

or specific permission.

0 1988 ACM 0-89791-284-5/88/0009/0191 $1.50

Animation is achieved by highlighting and dynamically
annotating the nodes and links to show the activity of
the program. We have found that animation, even in
this simple form, is an effective technique for helping
a developer understand how a system works.

The paper is divided into four parts. In Section 2 we
motivate the need for tools for understanding object-
oriented systems by recognizing that the programming
methodology associated with the reuse and extension
of existing objects pre-supposes the designer has some
understanding of the behavior of the objects. We show
how GraphTrace builds on previous work to provide a
tool for understanding both the detailed workings and
the large scale operation of object-oriented systems.
Section 3 provides a description of how our system is
implemented and how it is used. It includes a simple
illustrative example of GraphTrace in operation. In
Section 4 we explore a detailed case study in which we
show how multiple concurrent GraphTrace views can
explain the workings of an example system. Finally,
Section 5 compares GraphTrace to previous work in
the area of program animation and diagramming mes-
sage sending in object-oriented programs.

2 Background and Goals

We briefly review the important characteristics of all
object-oriented languages. Objects have both methods
and local state. Methods are the operations that de-
fine an object’s behavior and an object’s local state is
the current set of data values maintained by the ob-
ject. Object-oriented programs execute through mes-
sage passing among objects, The methods in an ob-
ject execute in response to a message and may then
invoke further messaging. An object-oriented lan-
guage also includes the concepts of class and inher-
itance where objects of the same class have the same
methods and classes may inherit operations from su-
perclasses [WegSir]. Connections between objects rep-
resent many different kinds of relationships, including

September 25X,1988 OOPSLA ‘88 Proceedings 191

th<: mcrst commonly used is-a and y&-of.

We address the problem of understand jng and explain-
ing the behavior of large-scale object-oriented systems.
An application system written in an object-oriented
programming language contains many complex objects
linked in a variety of relationships. The intent in using
an object-oriented programming language is to model
a richly structured application domain. It is for this
reason that object-oriented languages are increasingly
being used as the medium in which knowledge-based
systems are designed. A typical application program
can include hundreds of objects and hundreds of meth-
ods defining the operations for those objects.

Understanding and explanation are general issues that
arise in the concerns of program usage, education,
technology transfer and object reusability. An expla-
nation facility for a system is an integral part in ensur-
ing that the system is understood and used correctly
[Bro78]. Swartout’s work has emphasized that pro-
gram explanation is one of the key features of expert
and knowledge-based systems [Swa83]. Consider also
the problems involved in technology transfer, when it
is necessary for programmers to expand or enhance an
object-oriented system they did not design.

Object reusability is the characteristic that a well de-
fined object designed for one application can be used
in a similar application. One can also reuse objects in
the same system by creating subclasses that will in-
herit the operations of superclass objects (code shar-
ing). Specializing an object can also involve the over-
riding of default states and methods. New methods
are then written so that the speciaIized object behaves
in a slightly different manner. The reusability sce-
nario, however, often involves some understanding of
the specific behavior of existing objects. Documenta-
tion is one answer to this problem but documentation
rarely keeps pace as an object’s methods are altered
over time. Furthermore, static descriptions are often
inadequate for the task of conveying an understanding
of inherently dynamic processes.

Simply executing a computation is not enough to ex-
plain a system’s behavior. One must understand both
the structure and the function of the objects involved.
One must understand the taxonomic structure of the
class objects, the inheritance mechanisms used, the
individual behaviors of objects, and the dynamic be-
havior of the system as a whole.

The problem is somewhat analogous to that of view-
ing a sports event such as as tennis or football game.
IvIany different camera angles are required to provide
an understanding of the action taking place. Each
camera reveals particular aspects of the action that

cou1r.l not b conveyed by one camera alone. Further-
morel it is the combination of views of the same action
that provides an even more complete understanding,

In a similar manner, one must examine an object-
oriented system from many different views. We define
a view to be a user’s interface into an object or set
of objects. A taxonomy graph is a view of the class-
subclass structure in a knowledge base. Likewise, the
yati-ofrelationship for the same objects may be viewed
in a part-whole graph. A window into the contents of
a single object is also a view. The important point is
that the structures and the links that define relation-
ships are already in place - they are part of the original
system design.

Because systems have become increasingly large and
complex, developers have turned to software tools to
record and report on the internal state of a program
in operation. Developers are increasingly turning to
the use of high-resolution bit-mapped displays and in-
teractive graphics as vehicles for their software tools.
This has lead to experimentation with program and al-
gorithm animation as a basis for program explanation
and comprehension. Animation for programs draws
from work in the field of graphical animation tech-
niques [%e85,BS84] and from work in program anal-
ysis [MM85]. Environments to support programming
in specific languages sometimes include animation; see
[Bar861 for an example in dataflow program develop-
ment. The work described in this paper builds on this
body of work in program animation.

By collecting and concurrently animating the differing
views of an object-oriented system, a graphic visual-
ization of the dynamic behavior of the entire system
can be provided. The GraphTrace facility enables the
user to easily produce animated views of his or her
program; these views resemble a motion-picfure of the
entire system’s dynamic behavior.

GraphTrace was developed within the powerful object-
oriented programming environment that we use. The
environment consists of two major parts, Strobe and
Impulse-86. Strobe, is an object-oriented language
implemented as an augmentation to Common Lisp.
We have built a large number of systems in Strobe
and one of the reasons for developing GraphTrace is
to be able to show colleagues how these Strobe pro
grams work. Strobe is a language that provides many
advanced features such ss message passing, multiple
inheritance, and method combination. In Strobe an
object is composed of slots where a slot may represent
either a method or a state variable. More details of
the architecture of the Strobe language can be found
in [SC86,Smi83,SS83]. Impulse is a substrate for build-

192 OOPSIA ‘88 Proceedings S9?9her 2530,1988

ing user interfaces. It is itself implemented as a collec-
tion of Strobe objects so that building user interfaces
consists of modifying, specializing and extending the
objects that make up Impulse. Impulse was used to
implement the user interface of GraphTrace. A large
number of interfaces have been built in Impulse includ-
ing extensions for graphical interfaces, interactive data
editing and forms interfaces. The workings of these
interfaces, also termed specialized editors, will be used
as examples of object programs that can be analyzed
with GraphTrace. More details on the implementation
of Impulse and how it is used to create user interfaces
are found in [SDB86,SBY87,SK87,RGSD87].

3 The GraphTrace Tool

This section describes how GraphTrace is implemented
and how it is used. Figure 1 shows a typical Graph-
Trace display. On the left is an application program
which is running. The application program is the Ida
system, an interactive system for displaying and view-
ing 2-D data plots [You87]. This snapshot was taken
just after the user changed some of the values in the
data and invoked a “refetch” command to redraw the
display. The display has just been cleared in prepara-
tion for redrawing the data plot.

The displays on the top and on the right are two
GraphTrace views of the application program. The
view on the right is the method invocation graph, a
view of the sequence of methods that are invoked as a
program runs. The method invocation graph is one of
the most used GraphTrace displays and is described in
more detail in Section 3.2. The view on the top of the
figure is a taxonomy graph of some of the objects that
,implement Ida. The highlighting of links and nodes in
the graphs show which parts of the system are involved
in computation at the current time. In this particu-
lar case the node Clear representing the method used
to clear the display is highlighted to show that it is
cutren tly being invoked.

3.1 Using GraphTrace

GraphTrace is operated via the control panel menu
shown in Figure 2. There are two phases to using
GraphTrace - recording and animation. The user first
sets GraphTrace into recording mode by selecting the
recording mode item in the Record/Animate menu.
An application program (or operation within an ap-
plication) that the user wishes to investigate is then
run and GraphTrace records information about the
messaging activity that occurs as the program runs.

When completed, GraphTrace is set to animate mode
and a view of the recording is displayed on the screen.
The application program is then re-run and Graph-
Trace causes the recording and other active views to
be animated.

The speed at which the animation is re-run is con-
trolled with the right-side menu. The animation can
be slowed down or speeded up as the program is run-
ning. This allows, for example, the user to quickly run
the animation at FAST speed and then to change to
MEDIUM or SLOW as the program approaches the point
in the computation that is of interest. Since the ani-
mation by GraphTrace consists only of simple graph-
ical operations, the speed of running an application
with GraphTrace is very close to that of the program
running by itself (this is true for both recording and
animation). SINGLE STEP can be used to cause the
program to halt before each message is sent.

The GraphTrace graph displays include a pop-up
menu of commands to selectively prune the graph so
that the user can zoom in on activity in particular
parts of the graph. GraphTrace graphs can be stored
on file so that the displays can be regenerated and re-
animated at a later time.

3.2 GraphTrace Implementation

GraphTrace works by temporarily modifying the low-
level lisp function that implements message passing in
Strobe. Two modifications are alternately applied. In
the recording mode, the function is made to record in-
formation about the context of message invocation as
a program is run. This information includes the origi-
nator of the message, the recipient object of the mes-
sage, the name of the method that was invoked, and
the values of arguments passed in the message. This
information is stored and then used to create graph
displays. In animation mode, the lisp function is mod-
ified to cause animation of the displays as the program
is re-run.

This kernel component of GraphTrace does not require
the animation to occur in a graph display. Indeed, any
editor built with Impulse can be interfaced to Graph-
Trace and animated if it has methods to highlight
components of its display. Most editors do have such
methods which are used for interaction purposes. In
this paper, however, we concentrate on graphs since we
have found animated graph displays to be a compact
and expressive representation for understanding pro-
gram behavior. The GraphTrace graph displays fall
into two general categories - structural and behavioral:

September 25-30,1988 OOPSLA ‘88 Proceedings 193

Ida Exampfc 1

Figure 1: Ah Analysis Session with two GraphTrace views

194 OOPSLA ‘88 Proceedings

Figure 2: GraphTrace Control Panel Menu

September 2530,198

3.2.1 Structural Graph Displays

A structural display is a view of static structure in
a program. Graph displays showing the static struc-
tures that exist in a Strobe program are available as
part of Impulse. With GraphTrace, these displays are
augmented with animation to show how the running
of a program relates to the particular structure being
displayed.

For example, the GraphTrace taxonomic displays show
how activity is partitioned across the class hierar-
chy. Taxonomic displays include both Progeny graphs
which show the standard taxonomic hierarchy and An-
cesiy graphs which “look up” the inheritance hierar-
chy towards the root object. In an ancestry graph, it
is possible to show how the inheritance structure is be-
ing exploited by highlighting the class object in which
a method is defined when the method is invoked.

Another type of structural display is the part-whole
graph. In Strobe a built-in part-of construct is not
available, but program designers can easily create their
own application dependent part-oflinks. To then dis-
play a parts relationship the designer creates his or
her own Impulse structure graph by defining a gener-
ator function. The generator function specifies how to
generate a part-whole relationship graph from an ob-
ject with the appropriate links. GraphTrace can also
animate these graphs.

3.2.2 Behavioral Graph Displays

Behavioral graphs show the dynamic relationships that
occur as the program is run and messages are ex-
changed. Behavioral graph displays can be thought
of as displays of “run-time structure” since they show
the temporal (and temporary) connections that occur
between components of the program. A method invo-
cation graph is one kind of behavioral view. It is a
condensed view of the sequence of messages that are
invoked as a program runs. In this display, the child
nodes of a node show the methods that are invoked
by another method. The graph as a whole shows the
complete nesting of message invocations.

An invocation trace is a program debugging display
which is similar to, but more concise and evocative
than a standard program trace. In a standard “ter-
minal output” program trace some facility (or the in-
sertion of “print” statements in the code) allows the
programmer to cause the program to have the side ef-
fect of printing some information into a text window.
A typical printout trace might look like this:

3 Entering Method1
ZP Entering Method2

q Entering Method3
3 Exiting Method3

s- Exiting Method2
s- Entering Method4
3 Exiting Method4

3 Exiting Method1

Such a terminal output trace is useful for showing de-
tails of a program’s activity, but one can get lost in
several pages (or screens) of indented method invocs-
tions. Invocation tracing is simply the idea of using a
tree display to represent this same information. Thus,
an invocation trace would appear in a “method invo-
cation graph” as shown in the Figure 3.

The tree displays the nesting structure of messages.
While a program is running, the method names in the
graph are “flashed” by highlighting a name and/or link
on entry and then unhighlighting it on exit. This rep-
resentation is more compact than a printout. The tree
shows a complete history of the invocation stack. Each
step in a depth-first traversal of the tree corresponds
to the successive states of the stack as the program
runs. The path of highlighted links and names from
the root indicates the current stack state of the pro-
gram. We can deduce from Figure 3.2.2 that the stack
goes through the following six states:

Method3
Method2 Method2 Method2 Method4

Method1 Method1 Method1 Method1 Method1 Method1
1 2 3 4 5 6

Many programming environments have a break facility
[Int85]. In a typical break package it is possible to
stop the computation to view the current state of the
stack, and see what the current nesting of function
invocations is, but it is not possible to see the past
state of the stack when other functions were on it.
An invocation trace graph does allow the user to see
this past history, branching off from the current “stack
state path.” It gives a better overall view of where
the program has been and where it is going. In the
example of Figure 1, the current stack state path is
Execute, Clear.

Note that we display a method invocation as a graph,
not a tree, so that repeated invocations of the same
method are represented by a single node, and not sev-
eral nodes of the same name for each invocation. The
repeated highlighting of the single node during ani-
mation shows repeated invocations. We do, however,
show two nodes of the same name to indicate recur-
sion; a node that has a child node of the same name
indicates that the method invokes itself.

Programming environments often also provide cross-
referencing or code analysis facilities that can display

September 2X30,1988 OOPSLA ‘88 Proceedings 195

/
Method2 -Method3

Methodl
\ Method4 I

.
Figure 3: Invocation Graph

the graph of method invocation nesting by deducing
it from a static analysis of the code (such as the In-
terlisp Masterscope Browser tool [Int85]). In the case
of an object-oriented message passing system such as
Strobe, binding of methods to Lisp functions occurs at
run-time, and so an invocation trace is the only way
of acquiring a view of the functions as they are ac-
tually invoked. The invocation graph can be thought
of as the object-oriented programming equivalent of
a calling or function nesting graph in functional pro
gramming languages.

Another example of a behavioral graph display is
the object invocation graph. This is similar to the
method invocation graph, but shows only the names of
the objects involved without indicating the particular
method that was involved. It gives a large-scale view
of the overall message traffic between objects. Another
behavioral graph is the object-slot invocation graph in
which each node is and object, slot pair identifying a
specific method in a specific object. This provides a
detailed view that will highlight different nodes when
the same method is invoked in different objects.

object-oriented system. The application we examine
is the user interface substrate Impulse. As previously
mentioned, Impulse is a general and extensible sub-
strate upon which a large variety of interactive user
interfaces have been developed. In particular, editors
have been developed in Impulse that are used for edit-
ing the internal structures of Strobe objects. The ex-
ample we present is the creation of a fast object editor
used for editing a single Strobe object. The incre-
mental creation or instantiation of a fast object editor
inspecting the LoggingDemo object is presented in Fig-
ure 4. The first five lines of the completed editor show
the values of properties that are common to all objects
and the remaining lines show the local methods and
state variables. The slot LOG is a method (indicated
by the [LISP] annotation immediately after the name
of the slot) and the name of the method handler is
IHPULSE/LOGGINGDEMO/LOGUELL. RIG and TRUCK are
local state variables with bitmap values.

The behavioral graph displays are generated at run
time which is why a two-phase record and animate
protocol is needed for showing these displays - the
first to create the graph and the second to animate it.
Structural graphs can often be derived from the static
structure of the object program and so they can be
generated without a preliminary record phase.

One advantage of using such a simple medium for
showing animation is that it is easy to create new dis-
plays and animate them. Particular object-oriented
programs may have unique structures in addition to
the is-u hierarchy and method invocation nesting. The
next section describes an example analysis session with
GraphTrace and includes a variety of displays.

An editor in Impulse is built using the five basic classes
Editor, EditorWindow, PropertyDisplay, Menu, and
Operations as shown in Figure 5. These classes
are connected in a uniform framework and each class
has a well-defined set of operations and responsibil-
ities [SDBSS]. The PastObjectEditor class defines
the fast object editor. It is a specialization of the
ObjectEditor class which defines the standard object
editor. The name derives from the fact that time is
saved by not instantiating the command menus asso
ciated with the editor. These menus normally appear
attached to the side of the window with the standard
object editor but are only instantiated and popped-up
upon user demand in this specialized editor.

4 Understanding a System Using
GraphTrace

The first step towards understanding the fast object
editor is to locate the object in the Impulse taxon-
omy (Figure 5). This view of Impulse is not the entire
hierarchy but is a subset, selected according to mem-
bership in the group FastObjectEditor. The objects
that constitute the fast object editor are boxed. It can
be seen that these objects are specializations of the ob-
ject editor for all five of the major Impulse classes.

ln this section we present an example of how Graph- In Impulse one can inspect relationships other than
Trace is used in the understanding of a sophisticated is-a through the use of user-defined structure graphs.

198 OOPSLA ‘88 Proceedings september25-30,1988

Figure 4: Progression of a fast object editor view instantiation

September 25-30,1989

Figure 5: Subset of Impulse taxonomy

OOPSIA ‘88 Proceedings 197

The associated structure graph for the fast object

editor is called EditorParts. These links were cre-
ated by the original designers indicating that the
part-of relationship is an important aspect of this
editor. Selecting the parts view yields a graph of
the components of the fast object editor (Figure 6).
It can be seen that the fast object editor is corn--
posed of a window (the FastObjectEditorYindoo),
several displays, a slot editor and an operations
object. The FastObj ectSlotEditor component is
itself an editor with its own components. With
the use of GraphTrace, we will show how the
FastObjectSlotsDisplay is responsible for the actual
printing of the slot names and values in the editor win-
dow when the editor is invoked.

At this point we have discovered where the
FastObj actEditor exists in the Impulse taxonomy
and the objects that constitute this editor. We can
examine this object, on the left in Figure 7, and see
that only the Components and Operations slots are lo-
cally defined. All of the methods defining the behav-
ior of this object are inherited from its superclasses.
We can examine some of these methods (on the right
in Figure 7), but we can not be certain which of the
methods are used during editor creation. Methods also
exist for interactive updating and editor deletion. Vi-
sually inspecting an object, therefore, will not explain
the dynamic behavior of that object during a given
process. One can always examine the method handler
code in detail but this would entail constructing the
sequence of method invocations by hand. A dynamic
trace of the instantiation of a fast object editor view is
needed in order to determine which methods are used
during the creation process and the sequence in which
they are invoked.

Figure 8 is a GraphTrace method invocation graph
displaying the names of the FastObj ectEditor meth-
ods that are invoked during the instantiation of
the fast object editor. Tracing and animating
this graph during the instantiation of the edi-
tor reveals the underlying operations of this editor
class. The graph indicates that the current stack
state includes the FastObj ectEditor methods CODE,
InstantiateComponents and EditorYindou. We
have only included the methods that are inherited
by the FastObjectEditor but we can also produce a
graph displaying all of the methods that are used dur-
ing the instantiation process (Figure 9). Figure 9 dis-
plays a different sequence of methods because Graph-
Trace has recorded methods from all of the fast object
editor component objects.

As explained in the previous section, we can pro
duce other types of invocation graphs each with

its own particular view. For example, when the
FastObj ectEditorUindow creates a lisp window,
the CreateLispUindou handler sends several mes-
sages to collect local state. We can examine
the CreateLispUindou handler more closely and let
GraphTrace display the actual values being sent to
and returned by the subordinate methods (Figure 10).
This invocation graph shows that messages are being
sent to the InitiaIYidth and InitialHeight slots to
retrieve the initial dimensions of the editor window.

Strobe uses the Flavors [SBSS] idea of m&ins for meth-
ods combination, that is, one can successively execute
a series of methods that are linked vii inheritance. In
Strobe the top-down addifive inherifance mechanism
can be used to execute one method and then proceed
down the class taxonomy executing methods of the
same type. For example, a top-down additive inher-
itance message sent to the Initialize method of a
FastObj ectEditorWindou instance will invoke all of
the Initialize methods from that editor window’s
highest superclass to the most immediate superclass.
This process of method execution can be viewed in an
animated GraphTrace ancestry graph (Figure 11).

We have examined various aspects of
the FastObjectEditor and the creation of a fast ob-
ject editor view, from a global taxonomic perspective
to the more detailed level of methods and the values

they return. By animating all of these views concur-
rently as an editor view is created we can see a graphic
visualization of the entire editor instantiation process.
Figures 12 and 13 are screen snapshots of GraphTrace
animating different views as a fast object editor is cre-
ated. These figures correspond to the first and second
last pictures in the sequence of Figure 4.

On the bottom of the screen is the taxonomy graph.
On the left is the method invocation graph. To the
right of the invocation graph are, from top to bottom,
the parts view, the FastObj ectSlotsDisplay object
and the fast object editor that is being examined as
it is being created. We can see that the editor is at
the point where the window has just been created and
is displayed empty on the screen. Highlighted nodes
indicate that a method or object is taking part in a
message invocation.

From the structure graphs we can tell that slot di*
play is accomplished by the FastObjectSlotsDisplap
object. As the RIG slot is displayed, (Figure 13),
the FastObjectSlotsDisplap object is highlighted
in both the taxonomy and parts graphs. Concur-
rently, the Display method is being highlighted in
both the invocation graph and the animated Fast-
GbjectSlotsDisplay. From the method invocation

198 OOPSlA ‘88 Proceedings septembr 25-30,1988

FastObjectEditorWindow

ObjectNameDisplay

ObjectSyndn$hrHlisplay

I FastObjectEditor
F

ObjectTypf2hplay

ObjectEditedbhplay

P f FacetEditorWindow

FastSlotEditor FastOb jectSlotsClisplay

SlotEditorOperations

FastObjectEditorOperations

Figure 6: FastObjectEditor Components

OBJECT: FASTOSJECTEDITOR
SYNONYMS:
GENERALIZATIONS: OBJECTEDITOR
GROWS: FASTOSJECTEOITOR IMPULSEEOITOR

~ TVPE: CLASS
, Edited: IJ-Nov-B6 132323 By: SMITH

COMPONENTS[OBJECT): FASTOEkJECTEDITORWNDOW,
FASTOSJECTWEDISPLAV, OSJECTSVNONVMSDISPLAV,
OFlJECTtENERALIZ.4lIONSDISPLAV, OSJECTGROUPSDISPL*V,
OBJECTTVPEDISPLAV, OSJECTEDITEDDISPLAV, md FASTSLOTEDITOR

OPERITlONyOSJECTI: FAS.TOSJECTEOITOROPERONS

SVNONVMS:
GENERALIZATIONS: OBJECTEDITOR
GiWIP!h FASTOBJECTEDITOR IMPULSEEDITOR
TVM: CLASS

I Edited: 13~Now36 132323 LI’I: SMITII
COMPONENTS[OWECT~: FASTOSJECTEDlTORWlNDOW,

FASTOSJECTNAMEOISPLAV, OSJECTSVNONVMSDISPLAV,
,OSJECTGENElWlI7ATIONSDISPLAV. OBJECTGROUPSOISPLAV.

I ORJECTWPEDISPLAV, OSJECTEDiDOlSPLAV,ad FASTSLOTiD

I
OPERAT,ONS,OBXCTI: FASTOBJECTEDtTOROPER*TIONS
DELETE[USPJ& IMPUk/EDlTORIDELETE
HT~lJSP)(~: lMPULSMDlTOWlNlTLUl.?E

‘lTDR

Figure 7: The FastObjectEditor class (left) with inherited methods (right)

Figure 8: Fast object editor method invocations - FastObjectEditor methods

September 2530.1988 OOPSIA ‘88 Proceedings

I

Figure 9: Fast object editor method invocations - all methods

Figure 10: CreateLispWindou method invocations with arguments

OOPSLA ‘88 Proceedings September 2530,iW

Figure 11: Combination of Iniiialire methods

Figure 12: GraphTrace screen snapshot 1 - Displaying LOG slot

September 25-30,1988 OOPSIA ‘88 Proceedings

Figure 13: GraphTrace screen snapshot 2 - Displaying RIG slot

OOPSlA’88 Proceedings September 2!20,1988

graph we can see that the invocation stack includes
the Code, Refetch, Display and RIG methods. The
Display handler is now messaging the RIG slot in the
LoggingDemo object, presumably to retrieve its value,
which is then painted onto the screen.

The name “FastObjectSlotsDisplay” is certainly an in-
dication of the object’s function but cannot explain
the object’s entire behavior. Note that a user would
not know to display this object on the screen until
he ran the trace once and saw this class object being
highlighted during slot display. After the RIG slot is
displayed, the Display handler will proceed to paint
the next slot, TRUCK.

Animating these views yields an enlightening motion
picture of the system in operation. The important
point about these views is that they expose the natu-
ral views of the system’s structure; they are the objects
and relationships built by the original designers. The
method invocation view is complementary to the tax-
onomy and parts view. Each view presents a different
perspective on system behavior and each perspective
yields different information. By using Impulse as our
example object oriented system we have tried to give
the reader a flavor of how GraphTrace can be used to
browse and gain understanding of an unfamiliar sys-
tem. Certainly a user would have to examine other
aspects of Impulse in order to gain a complete under-
standing.

Using the GraphTrace facility is analogous to using a
standard trace package. The user has to first identify
the particular views of interest. We have found that
as designers add different structures and relations to a
knowledge base they include the generators necessary
for instantiating and displaying them. With Graph-
Trace, structural views are just instantiated and an-
imated while behavioral views are recorded and then
animated. Without having to resort to complex graph-
ics programming, we can understand and explore a so-
phisticated object-oriented system.

5 Related Work

The extensive body of work in program animation is
surveyed by Raeder in [Rae85]. The work that is most
closely related to ours is that of London and Duisberg
[LD85] and Cunningham and Beck [CB86]. London
and Duisberg present an algorithm animation kit us-
ing the Smalltalk programming environment [Go184].
Their method of program animation involves the inser-
tion of graphics code into existing code. Animation-
View and AnimationController objects are created to

handle the animation of individual algorithms. The

view or interface is constructed by the animator and
may be useful for the animation of similar algorithms.

In GraphTrace, we create the animation by inserting
hooks into the low-level message receiver. By simply
monitoring the message traffic in the application sys-
tem there is no additional programming that needs
to be done by the user. The views that we animate
are the natural interfaces to the structures already de-
signed into a system. The animations done by London
and Duisberg are more sophisticated, but they also re-
quire extensive graphics programming. Also, London
and Duisberg are concerned with the animation of in-
dividual algorithms while we are concerned with both
the detailed workings and the large scale behavior of
a system.

Cunningham and Beck present a method for diagram-
ming the message activity that takes place during
an object-oriented computation. They use directed
arcs to represent messages between objects of different
classes. Their notation, however, does not explicitly
represent the sequence of a computation - although
they do mention that they have looked at this. The
GraphTrace invocation graph is a direct representa-
tion of the sequence of message calls. Cunningham and
Beck are primarily concerned with the visualization of
inheritance between classes. We feel that by animat-
ing different views of an object-oriented system at the
same time the user gains a greater understanding of
the relationship between the entire system’s structure
and function. With GraphTrace, the compactness of
the invocation graphs enables a user to examine the
behavior of a relatively large system on a single screen.

6 Further Work

We are currently investigating two slightly opposing
extensions to GraphTrace. The extensions are along
the lines of debugging and visualization. We are experi-
menting with GraphTrace as a debugger, so that when
a program has been stopped at a particular point in
the computation, the user can select a node in the invo
cation graph and see typical break information. This
extension aims to make GraphTrace a central compo-
nent in a unified debugging system in which tracing,
breaking and program development all occur through
a single interface. GraphTrace could also function as
a performance analysis package. Currently we only
keep track of the method invocations but we could
also generate statistics such as the number of method
invocations, the number of inheritance searches and
the average length of an inheritance search.

September 25-30,1988 OOPSLA ‘88 Proceedings

The other extension emphasizes exploiting the visu-
alization aspect of GraphTrace. We are investigating
different ways to display the animation. We are cur-
rently working on a graph that combines the taxon-
omy and method invocation views. When an object
receives a message we would like to be able to indicate
the superclass where the message receiver actually re-
sides. This idea is similar to Cunningham and Beck’s
work.

We use simple node names that represent object
names, method names or method handlers. Using
icons to represent the message traffic and convey the
flavor of the domain in a domain-specific animation
would move GraphTrace towards the work on algo-
rithm animation. We feel that this has great value in
providing “friendly” displays that would be useful for
explanation and tutorial purposes. For system devel-
opment and debugging we prefer an animation inter-
face which is simple.

As can be seen by the example in Figure 12 we present
graphs as the preferred display. There is no imple-
mentational reason to do so; any Impulse editor can
be animated. By adding simple highlight methods to
any specialized interface, an application programmer
can make use of the GraphTrace animation kernel to
expose the behavior of his or her program.

7 Summary and Conclusion

We have presented a tool for understanding the dy-
namic behavior of object oriented programs. The tool
works with both structural and behavioral views of a
system. Structural views are simply instantiated and
animated. Behavioral views are generated by record-
ing the message activity that occurs as a program is
running and then animating those views. Concurrent
animation provides the user with several perspectives
on a system’s behavior. We have already used Graph-
Trace to analyze some of our existing applications and
have improved and repaired programs as a result of
the analysis. In one test case we found that a partic-
ular handler was being called by mistake and should
not have been involved in the computation at all.

The record/animate mode of operation is a choice be-
tween alternative approaches to program animation.
We have chosen the technique of modifying the low-
level function in our object-oriented language that im-
plements message passing. This eliminates the work
of having to modify the original application code. The
grain of animation, therefore, is at the message level,
which is appropriate for an object-oriented system.

8 Acknowledgements

We are grateful for ideas and suggestions we have
had from discussions with Lee Metrick, Indranil
Chakravarty, Paul Barth, Ruven Brooks and Patricia
Carando.

References

[Bar861

[Bro78]

[B~84]

[CBSS]

[Go1841

[Int85]

[~~85]

[MM851

[Rae851

P. S. Barth. An object-oriented approach
to graphical interfaces. ACM TFansaciions
on Graphics Special Issue on User Interface
So@uare, 5(2):142-172, April 1986.
R. Brooks. Towards a theory of the ccom-
prehension of computer programs. Int.
Journal of Man-machine Studies, 18:543-
554, 1978.
M. H. Brown and R. Sedgewick. A Sys-
tem for Algorithm Animation. Computer
Graphics, 18(3):177-186, July 1984.
Ward Cunningham and Kent Beck. A Di-
agram for Object-Oriented Programs. In
Proceedings of the First ACM Conference
on Object Oriented Systems, Languages,
and Applications, pages 361-367, Septem-
ber 1986.
A. Goldberg. SMALLTALK-80: The In-
teractive Programming Environment.
Addison-Wesley, Reading, MA., 1984.
Interlisp-D Reference Manual. Xerox Arti-
ficial Intelligence Systems, Pasadena, CA,
October 1985.
Ralph L. London and Robert A. Duisberg.
Animating Programs Using Smalltalk.
IEEE Computer, 61-71, August 1985.
B. Melamed and R. J. T. Morris. Visual
simulation: the performance analysis work-
station. Computer, 18(8):87-94, August
1985.
Georg Raeder. A Survey of Current Graph-
ical Programming Techniques. IEEE Com-
puier, 11-25, August 1985.

[RGSD87] M. F. Kleyn R. G. Smith and R. Dinitz.
Impulse Cookbook. Research Note SYS-87-
42, Schlumberger-Doll Research, October
1987.

[SBSS] M. J. Stefik and D. G. Bobrow. Object-
Oriented Programming: Themes and Vari-
ations. AI Magazine, 6(4):40-62, 1986.

[SBY87] R. G. Smith, P. S. Barth, and R. L.
Young. A Substrate for Object-Oriented
Interface Design. In B. Shriver and P.
Wegner, editors, Research Directions In

204 OOPSLA ‘88 Proceedings September 2MO,N88

[SCS6]

[SDS%]

[SK871

[S mi83]

[SSSS]

[SW&31

[We@71

[You871

Object-Oriented Programming, pages 253-
315, MIT Press, Cambridge, MA, 1987.
R. G. Smith and P. 4, Carando. Stmc-
tured Object Programming In Strobe, Re-
search Note SYS-86-26, Schlumberger-Doll
Research, October 1986.
R. G. Smith, R. Din&z, and P. Barth.
Impulse-86: A Substrate for Object-
Oriented Interface Design. In Proceedings
of the First ACM Conference On Object
Orienied Systems, Languages, and Appli-
cations, pages 167-176, September 1986.
R. G. Smith and M. F. Kleyn. Impulse
Vser’s Guide. Research Note SYS-87-
39, Schlumberger-Doll Research, October
1987.
R. G. Smith. Strobe: Support for Struc-
tured Object Knowledge Representation.
In Proceedings of the Eighth International
Joint Conference on Artificial 1nntelligencq
pages 855-858, August 1983.
E. Schoen and R. G. Smith, Impulse:
A Dispiay-Oriented Editor for Strobe. In
Proceedings of the National Conference on
Artificial Intelligence, pages 356-358, Au-
gust 1983.
W. R, Swartout. XPLAIN: A System
for Creating and Explaining Expert Con-
sulting Programs. Arti$cial Intelligence,
21:285-325, 1983.
Peter Wegner. Dimensions of an Object-
Based Langauge Design. In Proceedings
of the Second ACM Conference on Object
Oriented Systems, Languages, and Appli-
cations, pages 168-182, October 1987,
R. L. Young. An Object-Oriented Frame-
work for Interactive Data Graphics. In
Proceedings ofthe Second ACM Conference
on Object urien ted Systems, Languages,
and Applications, pages 78-90, October
1987.

--- 4ana September 25-30,1988 OOPSLA ‘88 Proceedings

