
Tackling the Efficiency Problem of Gradual Typing

Esteban Allende ∗

PLEIAD Laboratory
Computer Science Department (DCC)

University of Chile
eallende@dcc.uchile.cl

Categories and Subject Descriptors D.3.4 [Programming Lan-
guages]: Processors

General Terms Languages, Performance

Keywords gradual typing, casts, performance

1. Extended abstract
The popularity of dynamic languages and their use in the construc-
tion of large and complex software systems makes the possibility to
fortify grown prototypes or scripts using the guarantees of a static
type system appealing. While research in combining static and dy-
namic typing started more than twenty years ago, recent years have
seen a lot of proposals of either static type systems for dynamic
languages, or partial type systems that allow a combination of both
approaches [2–6, 8, 10, 14].

Gradual typing [11, 12] is a partial typing technique proposed
by Siek and Taha that allows developers to define which sections of
code are statically typed and which are dynamically typed, at a very
fine level of granularity, by selectively placing type annotations
where desired. The type system ensures that dynamic code does not
violate the assumptions made in statically-typed code. This makes
it possible to choose between the flexibility provided by a dynamic
type system, and the robustness of a static type system.

The semantics of a gradually-typed language is typically given
by translation to an intermediate language with casts, i.e. runtime
type checks that control the boundaries between typed and untyped
code. A major challenge in the adoption of gradually-typed lan-
guages is the cost of these casts, especially in a higher-order setting.
Theoretical approaches have been developed to tackle the space di-
mension [7, 13], but execution time is also an issue. This has led
certain languages to favor a coarse-grained integration of typed and
untyped code [15] or to consider a weaker form of integration that
avoids costly casts [16].

∗ Esteban Allende is funded by a CONICYT-Chile Ph.D. Scholarship.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
SPLASH ’13, October 26–31, 2013, Indianapolis, Indiana, USA.
Copyright is held by the owner/author(s).
ACM 978-1-4503-1995-9/13/10.
http://dx.doi.org/10.1145/2508075.2514884

Other approaches include the work of Rastogi et al.. [10], using
local type inference to significantly reduce the number of casts that
are required; the work of Herman et al. [7], in which they propose
to use coercions instead of proxies in a chain of higher-order cast,
so as to be able to combine adjacent coercions in order to limit
space consumption; the work of Siek et al. [13], in which they
go a step further, developing threesomes as a data structure and
algorithm to represent and normalize coercions. A threesome is a
cast with three positions: source, target, and an intermediate lowest
type. Combining a sequence of threesomes is done by taking the
greatest lower bound of the intermediate types.

In developing Gradualtalk1, a gradually-typed Smalltalk, our
first concern was the design of the gradual type system, with its
various features [1]. However, in the current stage of this work, we
are concerned with the efficiency of casts. There are two concerns
about casts insertions that we like to tackle.

The first concern is where to insert casts, especially those relate
to method invocations. This is because method invocations are
naturally very frequent in object-oriented programs, especially in
pure object-oriented languages like Smalltalk. In the foundational
paper on gradually-typed objects [12], Siek and Taha describe
the semantics of cast insertion using a caller-side strategy—which
we term the call strategy. Due to implementation issues, our first
implementation of cast insertion was however based on a different
approach, which we name the execution strategy. Here, casts are
inserted on the callee side, at the beginning of each typed method.
Studying the performance of both approaches revealed that they
have complementary strengths, and that a third approach, which we
call the hybrid strategy, could combine the best of both approaches.

We evaluated all three strategies with both microbenchmarks
and macrobenchmarks. The microbenchmarks were designed to
test the best and worst case of the execution strategy and call strat-
egy and see how the hybrid strategy perform in those cases. The
objective of the macrobenchmarks is to see how well these strate-
gies translate to real world applications. Both benchmark confirm
that the hybrid strategy performs as good as its best competitor in
all cases.

The second concern is controlling when inserting casts. A grad-
ual type system make the assumption that all the values can be im-
plicitly casted from or to a dyn type, inserting the necessary cast
to ensure type safety. However, this could not be the desire of the
programmer. The programmer could have forgotten to type a vari-
able or incorrectly pass the value to an untyped method without
is knowledge. For normal methods or values, the additional cost
of cast is negligible. However, for critical methods who are called
multiple times, or blocks value where a cast insert a wrapper to the

1 http://www.pleiad.cl/gradualtalk

129



block, the additional cost in performance can be significant. In that
case, the programmer could desire to disable the automatic cast
between the statically typed and dynamically typed world and be
warned at compile time. However, the programmer does not have
that choice in the gradual typing described by Siek and Taha.

Following the philosophy of gradual typing, disabling the inser-
tion of implicit cast should be done in a fine grained way. The de-
activation can be done from both ways: disallowing the automatic
casting from the dynamically typed world to the statically typed
world, which is annotated with !T, and viceversa, i.e. disallow-
ing automatic casting from statically typed to dynamically typed,
which is annotated with ∼T.

Both of these operators, ! and ∼, have practical uses. The op-
erator ! can be used in the parameter type of a method to enforce
that the method could be called only with statically typed variables,
catching at compile time all clients who are trying to use the method
with a dynamically typed variable. The operator ∼ can be used in
an instance or local variable type to catch at compile time if a value
is being inserted incorrectly in the dynamically typed world.

To describe how these operators work formally, we need to in-
troduce the relationships of consistency and consistency subtype.
Gradual typing extends traditional subtyping to consistent subtyp-
ing [12]. Consistency, denoted ∼, is a relation that accounts for the
presence of Dyn: Dyn is consistent with any other type and any
type is consistent with itself. The consistency relation is not tran-
sitive in order to avoid collapsing the type relation [11]. A type σ
is a consistent subtype of τ , noted σ . τ , iff either σ <: σ′ and
σ′ ∼ τ for some σ′, or σ ∼ σ′′ and σ′′ <: τ for some σ′′. A
cast is inserted when an operation requires that a value of type τ is
consistent subtype of a σ type, but is not strictly subtype.

In the case of the two operators ! and ∼, the type !T is consis-
tent with Dyn, but Dyn is not consistent with the type !T. For the
operator ∼ is in the inverse order: Dyn is consistent with ∼T, but
∼T is not consistent with Dyn. Looking at the description of con-
sistency, these two operators make two important changes to the
consistency relationship: there are types that that are not consistent
with Dyn and the consistency relation is now asymmetrical. The
consistency rules for the ! operator makes that Dyn is not a consis-
tent subtype of !T, raising a type check error instead of inserting
a cast when a Dyn typed value is assigned to a !T typed variable,
but still allowing that a value of type !T can be assigned (and auto-
matically casted) to a Dyn typed variable. For the ∼ operator is the
same principle, but in inverse order.

Both of these two concerns are complementary. The restricted
automatic casts permits to choose when automatic cast insertion is
not desired maintaining the flexibility of gradual typing, while the
hybrid cast insertion strategy increase the performance of the ap-
plication when automatic checks are used. We still need to fully
formalize the two operators ! and ∼, how they relate with the dif-
ferent kinds of types and what is the impact of making the consis-
tency relationship asymmetrical. We believe that tacking these two
concerns allows that gradual typing can be used in real world appli-
cations, where debugging a big application can be a daunting task,
without the concern of significant sacrifice of the performance of
those applications.

References
[1] E. Allende, O. Callaú, J. Fabry, É. Tanter, and M. Denker. Gradual

typing for Smalltalk. Science of Computer Programming, 2013. To
appear.

[2] B. Bloom, J. Field, N. Nystrom, J. Östlund, G. Richards, R. Strniša,
J. Vitek, and T. Wrigstad. Thorn: robust, concurrent, extensible script-
ing on the JVM. In Proceedings of the 24th ACM SIGPLAN Confer-
ence on Object-Oriented Programming Systems, Languages and Ap-
plications (OOPSLA 2009), pages 117–136, Orlando, Florida, USA,
Oct. 2009. ACM Press.

[3] G. Bracha. Pluggable type systems. In OOPSLA Workshop on Revival
of Dynamic Languages, pages 1–6, 2004.

[4] G. Bracha and D. Griswold. Strongtalk: Typechecking Smalltalk in a
production environment. In Proceedings of the 8th International Con-
ference on Object-Oriented Programming Systems, Languages and
Applications (OOPSLA 95), pages 215–230, Washington, D.C., USA,
Oct. 1993. ACM Press. ACM SIGPLAN Notices, 28(10).

[5] R. Cartwright and M. Fagan. Soft typing. In Proceedings of the
ACM SIGPLAN International Conference on Programming Language
Design and Implementation (PLDI), pages 278–292, Toronto, Ontario,
Canada, 1991.

[6] M. Furr. Combining Static and Dynamic Typing in Ruby. PhD thesis,
University of Maryland, 2009.

[7] D. Herman, A. Tomb, and C. Flanagan. Space-efficient gradual typing.
Higher-Order and Sympolic Computation, 23(2):167–189, June 2010.

[8] K. Knowles and C. Flanagan. Hybrid type checking. ACM Transac-
tions on Programming Languages and Systems, 32(2):Article n.6, Jan.
2010.

[9] POPL 2010. Proceedings of the 37th annual ACM SIGPLAN-SIGACT
symposium on Principles of programming languages (POPL 2010),
Madrid, Spain, Jan. 2010. ACM Press.

[10] A. Rastogi, A. Chaudhuri, and B. Hosmer. The ins and outs of gradual
type inference. In Proceedings of the 39th annual ACM SIGPLAN-
SIGACT symposium on Principles of programming languages (POPL
2012), pages 481–494, Philadelphia, USA, Jan. 2012. ACM Press.

[11] J. Siek and W. Taha. Gradual typing for functional languages. In
Proceedings of the Scheme and Functional Programming Workshop,
pages 81–92, Sept. 2006.

[12] J. Siek and W. Taha. Gradual typing for objects. In E. Ernst, edi-
tor, Proceedings of the 21st European Conference on Object-oriented
Programming (ECOOP 2007), number 4609 in Lecture Notes in
Computer Science, pages 2–27, Berlin, Germany, july/august 2007.
Springer-Verlag.

[13] J. Siek and P. Wadler. Threesomes, with and without blame. In POPL
2010 [9], pages 365–376.

[14] S. Tobin-Hochstadt. Typed Scheme: From Scripts to Programs. PhD
thesis, Northeastern University, Jan. 2010.

[15] S. Tobin-Hochstadt and M. Felleisen. The design and implementation
of Typed Scheme. In Proceedings of the 35th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages (POPL 2008),
pages 395–406, San Francisco, CA, USA, Jan. 2008. ACM Press.

[16] T. Wrigstad, F. Zappa Nardelli, S. Lebresne, J. Östlund, and J. Vitek.
Integrating typed and untyped code in a scripting language. In POPL
2010 [9], pages 377–388.

130




