
An Object-Oriented Framework of Pattern Recognition Systems

Norihiko Yoshida and Kouji Hino

Department of Computer Science and Communication Engineering
Kyushu University

Hakozaki. Fukuoka 812, JAPAN

Abstract

In this paper, we describe a purely object-oriented
framework of pattern recognition systems. Its aim is
in dealing with knowledge representation issues in
pattern recognition. In our approach, everything
works in an entirely autonomous and decentralized
manner, Even a search procedure for sample-concept
matching is distributed onto every concept object it-
self by being implemented in what we introduced as
the recursive agent-blackboard model. We developed
an experimental prototype of character recognition
systems in Smalltalk-80, which proved the ability of
the object-oriented framework and the cooperative
search procedure.

1. Introduction

Pattern recognition plays an important roll in
human information processing on such as characters,
images and speeches. It is a process of examining a set
of sensed stimuli with abstract concepts so as to iden-
tify it.

After Chapter 2 reviews pattern recognition briefly,
Chapter 3 introduces an object-oriented framework of
pattern recognition systems, and chapter 4 explains a
cooperative search procedure in the recursive agent-
blackboard model. Chapter 5 shows an experimental
prototype of character recognition systems. Chapter 6
contains concluding remarks.

Several systems which simulate the pattern recog-
nition process have been researched and developed for
various applications. In designing such systems, how-
ever, there still exist some issues as follows :

2. Pattern Recognition

1) How to formalize and represent concepts ;
2) How to structure a sample with sensed stimuli ;
3) How to find a concept which matches a sample.

These issues are, in fact, common in designing every
intelligent system.

Contextual Concepts

t Context Analysis

The object-oriented principle could. be exploited for
knowledge representation which integrates declara-

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the ACM copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Association for
Computing Machinery. To copy otherwise. or to republish, requires a fee and/
or specific permission.

1 Individual Concepts

t Matching

Sample Descriptions

z Structuriration

Feature Descriptions

t Feature Extraction

1 Processed Stimuli 1

t Signal or Image Processing

-1

@ 1988 ACM O-8979 l-284-5/88/0009/0259 $1.50 Figure 1. Outline of Human Information Processing.

tive and procedural knowledges. Concepts could be
represented as objects with inheritance and compo-
nent relationships. We, therefore, apply this principle
to pattern recognition systems.

In this paper, we describe an purely object-oriented
framework of pattern recognition systems. We ex-
plain how we can deal with the issues mentioned
above, and show a Smalltalk- prototype of character
recognition systems as an example.

The eminent characteristic of our approach is that
everything works in an entirely autonomous and de-
centralized manner. An object for a sample takes sti-
muli in by itself, extracts its own features, and struc-
tures itself. Even a search procedure for sample-con-
cept matching is distributed onto every concept object
itself.

September 2530,1988 OOPSLA ‘88 Proceedings

When we understand what we see or hear, there
occur several processing stages in our minds, as shown
in Figure 1 [Lind77]. Among them especially, feature
extraction, structurization and matching together are
refered to as pattern recognition.

2.1 Data-Driven versus Concept-Driven
Analyses

For the pattern recognition process, there are two
types of analyses, data-driven (or bottom-up) one and
concept-driven (or top-down) one [Shir87].

Data-driven analysis is initiated by sensed stimuli,
and climbs up the recognition stages. Features and
their relationships are extracted out of the stimuli,
and a sample is assembled as a structure of the fea-
tures?. Then a concept which matches the sample is
searched for.

On the other hand, concept-driven analysis is initi-
ated with expectation, and clmbs down the recog-
nition stages. The most general concept is expected,
and it is gradually specialized until a concept which
matches sensed stimuli is specified.

The data-driven analysis alone is not sufficient,
since sensed stimuli usually contain redundant infor-
mations or lack necessary informations for recog-
nition. The concept-driven analysis alone is not effi-
cient, since it tends to cause a lot of trial-and-errors.
These two should interact with and complement each
other.

2.2 Formal Representation of Concepts

An appropriate representation of concepts is essen-
tial in understanding how we understand things.
Several models for knowledge representation such as
the frame model have been proposed [Mins75]. In them,
a concept is represented as a package of relevant
knowledges, which contains its own properties as
values or as procedures. Concept packages are linked
with some types of relationships such as a-kind-of (or
is-a) ones and a-part-of (or has-a) ones.

An a-kind-of relationship is a property inheritance,
and organizes a speciality hierarchy of concepts. A
frame for some special concept is a kind of a frame for
a general concept. On the other hand, an a-part-of
relationship is a structure composition, and organizes

+ A structure of features is often also called an object
or an instance, but we will not use the names, since
they both have partcular meanings in object-orient-
ed programming.

a structure hierarchy of concepts. A frame for some
component concept is a part of a frame for an assem-
bled concept.

2.3 An Example

I-Iere we show a primitive example to illustrate the
pattern recognition process.

In recognition of figures, concepts would be of fi-
gures with their shape descriptions, while stimuli
would be a set of points or a plane of pixels. The data-
driven analysis would be as follows : 0 extract lines,
curves and acute angles with their connections from
the stimuli, 0 assemble segments with the lines and
the curves, 0 assemble a sample with the segments,
@ examine the sample with the figure concepts. The
concept-driven analysis would be as follows : 0 expect
the most general concept, Figure, @ specialize it gra-
dually, regarding the stimuli, to such as Triangle,
Quadrilateral, Circle or else, 0 specify a concept such
as Square which matches the stimuli.

As implied in this example, an inheritance hierar-
chy of concepts is related to the ConceptJriven anaIy-
sis, while a component hierarchy is related to the
data-driven analysis.

3. An Object-Oriented Framework

Several systems which imitate pattern recognition
have been researched and developed for industrial,
military and office applications. They usually simu-
late the process reviewed in Chapter 2. In designing
such systems, however, there still exist some issues on
knowledge representation, which are related especial-
ly to the structurization and matching stages.

A formal representation of concepts is,. in its es-
sence, a package of relevant knowledges with a-kind-
of and a-part-of relationships, while an object in the
object-oriented principle is a package of relevant infor-
mations with inheritance and component relation-
ships. Some attempts have, therefore, been made to
apply this principle to knowledge representation [Bohr

82, Toko861. They aim in dealing with general types of
knowledges, and exploit this principle as only one ba-
sis of their frameworks, together with other principles
such as access-oriented programming or concurrency.

We are examining the ability of a purely object-ori-
ented framework applied to knowledge representa-
tion in pattern recognition. At an extreme of the prin-
ciple, we claim that an object should be self-contained
for all it concerns ; namely, everything should work in
an entirely autonomous manner with no centralized
managers or controllers. This could be similar to the
autonomous decentralized systems, which are fit well

280 OOPSLA ‘88 Proceedings September 25-30,1988

for distributed environments and highly tolerant to
faults [Ihar841.

Here we explain our object-oriented framework in
an autonomous decentralized approach.

3.1 How to Formalize and Represent
Concepts

Each concept is represented as an object respective-
ly, as in other object-oriented knowledge representa-
tion forms. An object, or more precisely, a class for a
concept contains some features which are to identify
itself, and has a facility of comparing features of a
given sample with its own for sample-concept match-
ing. A concept class has no instance.

The classes are linked with inheritance relation-
ships, and relevant concepts are placed onto an inheri-
tance hierarchy. A class at the root (or the top) has
the most general features, while classes at the leaves
(or the bottoms) have the most special features for
specific concepts. The exact form of this hierarchy
depends on the nature of patterns to recognize. Figure
2 shows primitive examples of concept hierarchies.
Classes at each level need not be uniform, and any
sub-hierarchy could be of a different form, if its proto-
cols are consistent.

3.2 How to Structure a Sample with
Sensed Stimuli

A sample is represented as an object at the root of a
component hierarchy. A sample instance has a set of

, I

1 Fiqure]

Polygon
I

Circle

(al Single Inheritance.

(b) Multiple Inheritance.

Figure 2. Examples of Concept Hierarchies.

segment instances, each of which has a set of sub-seg-
ment instances. Instances at the leaves have stimuli
data. The exact form of this hierarchy depends on the
nature of patterns to recognize. Instances at each
level need not be uniform, and any sub-hierarchy
could be of a different form, if its protocols are consis-
tent.

Structurization in the data-driven analysis is per-
formed on the component hierarchy of a sample. A
sample instance itself has a facility to take stimuli in
and to give them to leaf instances. Instances at each
level of the component hierarchy structure themselves
with sub-level instances ; namely, they assemble their
sets of sub-level instances according to extracted fea-
tures. Then they give themselves to super-level ins-
tances. This proceeds up to structuring a sample.
There is no centralized structuring engine in a system.
Figure 3 shows a primitive example of structurization.

3.3 How to Find a Concept which Match-
es a Sample

When a sample instance is structured, a concept
class which matches it is searched for in the inheri-
tance hierarchy. A concept is nominated one by one,
and it compares features of the sample with its own so
as to find whether it matches the sample or not.

Specialization of expectation in the concept-driven
analysis is performed as downward search in the inhe-
ritance hierarchy. The root concept, which has the
most general features, is nominated first, and if it
matches the sample, then each of the sub-level con-
cepts are nominated. This proceeds down to specifying
one of the leaf concepts, which have the most special
features.

We distribute a search procedure onto each concept
class itself ; namely each has the identical procedure,

points points features features
,^..

l . . l l . . l

.

: -+

. l . . l .

J
segments segments a sample a sample

rl
.-..........._...... .-..........._......

Figure 3. An Example of Structurization. Figure 3. An Example of Structurization.

September 25-30,1988 OOPSLA ‘88 Proceedings 261

which searches in only its neighborhood, but coopera-
tes with one another so as to search in the entire
hierarchy. There is no centralized search engine in a
system. Each procedure could be non-identical, and
we could use a different one to any sub-hierarchy, if its
protocols are consistent.

We explain the details of this cooperative search
procedure in the next Chapter.

4. Search in a Concept Hierarchy

The agent-blackboard model is exploited to illust-
rate and simulate human information processing [Lind

771. This model is composed of one blackboard and se-
veral agents around it. The agents are certain autono-
mous experts, and they watch and update bulletins on
the blackboard. Typically, the blackboard announces
a problem to its agents, then each of them solves its
part of the problem by itself, and finally the black-
board collects their answers.

For example, in sample-concept matching imple-
mented in this model, individual concepts would act as
agents, and one of them would claim when a sample
was announced on a blackboard. There would be no
concept-driven gnalysis.

Here we introduce an augmentation of this model,
and name it the recursive agent-blackboard model
[Yosh871. In it, agent-blackboard relationships are
nested recursively, as illustrated in Figure 4. An
agent itself acts as a blackboard against its inner
agents, while a blackboard itself acts as an agent
against its outer blackboard. An agent, getting a part
of a problem from its outer blackboard, then, as a
blackboard, announces its own part to its inner

L I m

blackboard
I , .

*..

m .I... .I,

.

I$

._ L--f---l
--,...._._,_

.., .I... I,

.
0

.
,.

.
‘.._.,

.%Al%A

A

‘* agent

ag, “i

agent

.

Figure 4. The Recursive Agent-Blackboard Model.

agents. This could be considered as a model of the
divide-and-conquer strategy.

The recursive agent-blackboard model can corres-
pond directly to an inheritance hierarchy. Each class
in the hierarchy would act both as an agent and as a
blackboard ; namely, in each inheritance relationship,
a subclass would act as an agent, while a superclass
would act as a blackboard. It is important to note that
a class delegates its task to its subclasses in this mo-
del, while a class could delegate its task to its super-
classes in ordinary object-oriented programs.

Our cooperative search procedure for sample-con-
cept matching is implemented in this recursive agent-
blackboard model. Every concept class in an inheri-
tance hierarchy has an identical procedure using the
method inheritance mechanism.

The procedure works as follows : 0 when a sample
is given to a concept, the concept (as an agent) checks
the sample, namely compares the features of the sam-
ple with its own, 6 if the check ends in success, the
sample must be of the concept itself or of its descend-
ants, $3 then the concept (as a blackboard) announces
the sample to its sub-concepts, @ each sub-concept
performs the same procedure, 0 the concept (as a
blackboard) collects answers which its sub-concepts
reply, @ the concept (as an agent) replies its own
answer to its super-concept. This proceeds recursively
from the root to the leaves.

4.1 The Case of Single Inheritance

In single inheritance, which is a restricted type, a
hierarchy has a tree form. Each class has only one
superclass, and this means that each agent watches
only one blackboard. The procedure could be consi-
dered as an augmentation of the decision tree mecha-
nism.

An agent can reply yes or no immediately after its
blackboard inquires, namely announces a sample to
examine. A blackboard has only to find whether one
or none of its agents replies yes.

For example, if a sample of a square is given to the
figure hierarchy shown in Figure 2 (a), the following
sequence would occur : a Figure inquires to Polygon,
@ Polygon inquires to Triangle, 8 Triangle replies
‘no’ to Polygon, 9 Polygon inquires to Quadrilateral,
0 Quadrilateral replies ‘yes’ to Polygon, 8 Polygon
replies ‘yes’ to Figure.

Figure 5 (a) shows an Algal-like description of an
implementation of the search procedure, search, in the
case of single inheritance. In it, %....% denotes a com-
ment, and object.selector(parameters) denotes me-

262 OOPSIA ‘88 Proceedings September 2530,1988

thocl application. Search replies self instead of ‘yes’ so
that we identify which class replies yes.

4.2 The Case of Multiple Inheritance

In multiple inheritance, which is the general case, a
hierarchy has a network form. Each class may have
several superclasses, and this means that each agent
may watch several blackboards.

An agent can reply yes or no to its all blackboards
only if they all inquire to it. It must reply no if any of
its blackboards does not inquire to it after all, and this
can not be known until the entire hierarchy is search-
ed in. For example, in a quadrilateral hierarchy, a
class Square should be a subclass of both Rectangle
and Rhombus by nature. A given sample could be
found whether it is a square or not only if both the
superclasses inquire to Square.

In order to solve this situation, we introduce a frac-
tional answer, which is a tuple of a concept itself and a
fraction value. A fraction expresses how many black-
boards have inquired to the corresponding concept out
of all so far. When collecting answers, the procedure
sums up fractions of a concept, then divides every frac-
tion by the number of the blackbosrds, and replies a
set of fractional answers. After the entire hierarchy is
searched in, a concept with its fraction 1 is the true
answer, since this concept has replied partial yeses
against inquiries of all of its blackboards.

For example, if a sample of square is given to the
quadrilateral hierarchy shown in Figure 2 (b), the fol-

class Concept has
.

class method subclasses
% returns a set of subclasses % ;

class method check(sample)
O% should be defined in each subclass % ;

class method search(sample) is begin
var subclass ;
if self.check(sample) is not ‘no’ then begin

for every subclass in self.subclasses do
% if empty, do nothing %
if subclass.search(sample) is not ‘no’ then

return subclass.search(sample) ;
return self end

else
return ‘no’ end ;

end %Concept%.

(a) Search for Single Inheritance.

lowing sequence would occur : 0 Parallelogram in-
quires to Rectangle, @ Rectangle inquires t0 Square,
@ Square replies {Square:1/2} to Rectangle, since it
has two superclasses, @ Rectangle replies {Square:
l/2, Rectangle: l} to Parallelogram, (5 Parallelogram
inquires to Rhombus, (8 Rhombus inquires to Square,
@ Square replies {Square: l/2} to Rhombus, 8 Rhom-
bus replies {Square:1/2, Rhombus:l) to Parallefo-
gram, @ Parallelogram replies {Square: 1, Rectangle:

class Concept has
property numberOfSuperclasses ;

.
class method subclasses

% returns a set of subclasses % ;
class method check(sample)

% should be defined in each subclass % ;
class method search(sample) is begin

var subclass, answerset ;
assign AnswerSet.new to answerset ;
if self.check(sample) is not ‘no’ then begin

for every subclass in selfsubclasses do
answerSet.collect(subclass.search(sample)) ;

answerSet.addLast((self: 1)) ;
answerSet.divideAlIBy(numberOfSuperclasses)
end ;

return answerset end ;
end %ConceptOA _

class AnswerSet has
superclass OrderedColtection ;

instance method collect(answerSet) is begin
var class, fraction, oldFraction ;
for every (class:fraction) in answerset do

if (class:oldFraction) is in self then
replace (class:oldFraction)
with (class:(oldFraction + fraction))

else
self.addLast((class:fraction)) end ;

instance method divideAIIBy(number) is begin
var class, oldfraction ;
for every (class:oldFraction) in self do

replace (class:oldFraction) with
with (class:(oldFraction / number)) end ;

instance method getTrueAnswer is begin
var class, fraction ;
for every (class:fraction) in self do

if fraction is 1 then
return class end ;

end % AnswerSetO/b .

(b) Search for Multiple Inheritance.

September 2530,1988

Figure 5. The Cooperative Search Procedure.

OOPSLA ‘88 Proceedings 263

1, Rhombus:l}. The first concept with the fraction 1 could improve it by introducing a reference counter in
in the set is Square, which is the true answer. each class.

Figure 5 (b) shows an Algol-like description of an
implementation of the search procedure in the case of
multiple inheritance. In it, (c:f) denotes a tuple. The
class AnswerSet is for a set of fractional answers.

5. An Experimental Prototype

This procedure is somewhat primitive and ineff-
cient, since it searches more than once in a sub-hierar-
chy below a class with several superclasses. But we

We have developed an experimental prototype of
pattern recognition systems in Smalltalk- [GoId831.

Its aim is in proving the ability of the object-oriented
framework and especially the cooperative search pro-
cedure described in Chapter 3 and 4 respectively.

The specifications of the prototype system are as
follows :

p CRV; ~yv}---{ C~;~p’troller~

window CRModel
mouse

Sample
I

Concept
I

I I

,E] ‘n

.
(a) The Overall Configuration.

- It is to recognize a capital alphabet ;
- It is to read an on-line drawing with a mouse and
a window.

When we draw a capital alphabet on a window using a
mouse, the system reads it as a series of coordinates,
then recognizes it, and shows us the answer. This is a
primitive example of pattern recognition, since only
trivial image pre-processing is required so as to nor-
malize the position and the size of a drawing.

Figure 6 (a) shows the configuration of the prototype
system. There could be several instances of the sys-
tem on a machine simultaneously, and they could
share the concept hierarchy.

Concept

I
1 CapitalAlphabet 1 CapitalAlphabet

[CharWith 1 1 CharWith

(bl The Concept Hierarchy. (b) The Concept Hierarchy.

Figure 6. The Configuration of the Prototype System. Figure 6. The Configuration of the Prototype System.

264 OOPSLA ‘88 Proceedings September 2530,1988

CRModel, CRView and CRController (CR stands for
“character recognition”) together manage user inter-
face using the Model-View-Controller mechanism of
Smalltalk-80. They take mouse tracks into Point-
Array instances, and show us the answer in a text
form.

CRModel : a subclass of Sample with a facility for
interacting with CRView and CRController.
CRView : a subclass of a pre-defined class View for
managing an interface window.
CRController : a subclass of a pre-defined class
MouseMenuController for managing mouse inputs
and menu selections.

‘.
Sample, Segment and PointArray organize a compo-

nent hierarchy of a sample. After structurization, A
Sample instance gives itself to the Concept class.

haradar Recogniza

(a) We Draw a Line.

(c) We Order to Recognize.

Sample : a structure of several segments with a
facility for checking its own features such as the
number of its segments and their connections.
Segment : a structure of several points with a
facility for checking its own features such as its type
of line or curve.
PointArray : a series of raw input coordinates with
facilities such as for dividing itself into two at an
acute angle.

Concept, CapitalAlphabet and its descendant class-
es, which are several tens, organize a inheritance hi-
erarchy of concepts. None of them has an instance.

Concept : the template of concepts in the hierarchy
defining the methods introduced in Chapter 4,
which all concept classes inherit.
CapitalAlphabet : the root class of the concept hier-

(d) System Gives an Answer.

(b) System Structures Segments.

Figure 7. An Example Behavior of the Prototype System.

september 2530.1988 OOPSLA ‘88 Proceed&s 265

archy.
AnswerSet : a set of fractional answers.

Figure 6 (b) shows a part of the concept hierarchy, Its
configuration was designed in a somewhat heuristic
manner.

Figure 7 shows an example behavior of the proto-
type system. It proceeds as follows :

(a) We create an window, and draw something on it
using a mouse ;
(b) The system divides the drawing into two, struc-
tures two line segments, and displays them ;
(c) When we finish the drawing, we select the
menu to recognize ;
(d) Then the system examines the drawing to find
which capital alphabet it is, and shows the answer
on an auxiliary window.

6. Conclusions

In this paper, we described a purely object-oriented
framework of pattern recognition systems. Concepts
and a sample are represented as objects with inheri-
tance and component relationships. In our approach,
everything works in an entirely autonomous and de-
centralized manner. A sample object takes stimuli in
by itself, extracts its own features, and structures it-
self. Each concept object compares a given sample
with itself, and even has a search procedure in itself.

The cooperative search procedure for sample-con-
cept matching is our major contribution. Each proce-
dure searches in only its neighborhood, but cooperates
with one another so as to search in the entire hierar-
chy. It is implemented in what we introduced as the
recursive agent-blackboard model. In this model,
agent-blackboard relationships are nested recursive-
ly. This could be considered as a model of the divide-
and-conquer strategy. This procedure can work well
on a multiple inheritance hierarchy.

We developed an experimental prototype of charac-
ter recognition systems in Smalltalk-80. This proto-
type system proved the ability of the object-oriented
framework and especially the cooperative search pro-
cedure.

We now have an attempt to design and implement a
concurrent object-oriented programming language
which directly supports the recursive agent-black-
board model.

Acknowledgment

The authors would like to thank Professor Kazuo
Ushijima of Kyushu University for ,his valuable sup-
port and suggestions.

References

[Lind77] Lindsay,P.H. and Norman,D.A., “Pattern
Recognition and Attention”, Human Information Pro-
cessing Chap.7, Academic Press (19771.

[Shir87] Shirai,Y ed., Pattern Understanding (in Ja-
panese), Ohm Publishing, JAPAN (19871.

[Mins75] Minsky,M., “A Framework for Represen-
ting Knowledge”, The Psychology of Computer Vision
(Winston,P.H. ed.), McGraw-Hill (19751.

[BobrBZ] Bobrow,D.G. and Steflk,M., “The LOOPS
Manual - A Data and Object Oriented Programming
System for Interlisp”, Memo KB-VLSI-81-13, Xerox
PARC (1982).

[Toko861 Tokoro,M. and Ishikawa,Y., “Concurrent.
Programming in Orient84/K : An Object-Oriented
Knowledge Representation Language”, ACM SigPlan
Notice 21:lO (1986139-48.

[Ihar84] Ihara,H. and Mori,K., “Autonomous Decen-
tralized Computer Control Systems”, IEEE Comp.
17:8 (1984) 57-66.

[Yosh87] Yoshida,N., “Nested Objects” (in Japanese),
Workshop on Object-Oriented Computation, Japan
Sot. Soft. Sci. and Tech. (19871.

[Gold831 Goldberg,A. and Robson,D., SmaZZtaZk-80 -
The Language and Its Implementation, Addison-Wes-
ley (19831.

286 OOPSLA ‘88 Proceedings September 2530,1%8

