
Observationally Cooperative Multithreading ∗

Christopher A. Stone Melissa E. O’Neill The OCM Team
Computer Science Department

Harvey Mudd College
{stone,oneill,ocm}@cs.hmc.edu

Abstract
Observationally Cooperative Multithreading (OCM) is a new ap-
proach to shared-memory parallelism. It addresses a key problem
of mainstream concurrency control mechanisms—they can be pro-
hibitively hard to reason about and debug. Programmers using OCM
simply write code as if they were using the cooperative multithreading
model (CM) for uniprocessors. The underlying OCM implementa-
tion then optimizes execution—running threads in parallel when
possible—in such a way that the results are consistent with CM.
In addition to providing easier reasoning and debugging, OCM is
also highly adaptable in terms of its underlying concurrency-control
mechanism. Programmers using OCM have the capability to take a
finished program and choose the strategy (e.g., locks or transactions)
that provides optimal performance.

Categories and Subject Descriptors D.1.3 [Programming Tech-
niques]: Concurrent Programming—Parallel programming; D.3.2
[Programming Languages]: Language Classifications—Concurrent,
distributed, and parallel languages

General Terms Languages, Performance

Keywords Observationally cooperative multithreading, cooperative
multithreading, transactional memory, lock inference, parallel model,
parallel debugging.

1. Introduction
Parallel programming is notoriously difficult; it is hard to predict
all ways in which threads may interact. Synchronization code to
manage these interactions can be complex and error-prone. And
when bugs inevitably arise, hard-to-reproduce race conditions make
debugging more difficult than in sequential code. Although there
has been valuable progress in making parallel programming more
accessible, popular models for parallelism are still difficult for many
programmers to use effectively [3].

Inspired by Cooperative Multithreading (CM) for uniprocessors,
where threads run one at a time and continue until they explicitly

∗ This material is based upon work supported by the National Science
Foundation under Grant No. CCF-0917345. Any opinions, findings, and
conclusions or recommendations expressed in this material are those of the
authors and do not necessarily reflect the views of the National Science
Foundation.

Copyright is held by the author/owner(s).
SPLASH’11 Companion, October 22–27, 2011, Portland, Oregon, USA.
ACM 978-1-4503-0940-0/11/10.

yield control, we propose a new model for parallel programming.
Observationally Cooperative Multithreading (OCM) offers

• Simple semantics and syntax, taken from CM;
• Parallel execution, taking advantage of modern hardware;
• Implementation flexibility, allowing a variety of contention man-

agement methods (e.g., transactional memory, lock inference);
• Serializability, simplifying debugging and reasoning.

OCM is not an implementation mechanism, but rather an ab-
straction for programmers. The observable behavior of programs
is consistent with execution on a uniprocessor with cooperative
multithreading, even if behind the scenes threads are running simul-
taneously or preempting one another.

Designed to emphasize correctness over raw performance, OCM
may not be suitable for all multithreaded applications. But just as
many systems use garbage collection and runtime bounds checking
rather than manual memory management and unsafe array accesses,
we feel that there is a place for systems like OCM that provide
an easier and safer path into parallel programming. And, as with
garbage collection and bounds checking, there is wide scope for
interesting research and design work to decrease runtime overhead.

2. Observationally Cooperative Multithreading
As with CM, under the OCM model the programmer simply
specifies locations in their code where it is safe for a thread to
yield control; the syntax for an OCM program is the same as for
a CM program. For example, the following “banking” example
of concurrent account transfers is valid in CM and in OCM.
repeatedly move $5
while acct[x] >= 5:

acct[x] = acct[x] - 5
acct[y] = acct[y] + 5
yield

repeatedly move $10
while acct[i] >= 10:

acct[i] = acct[i] - 10
acct[j] = acct[j] + 10
yield

Unlike CM, OCM is a model for parallel computation. A system
implementing the OCM model is free to run programs in parallel,
provided that the observable behavior (final results, I/O, etc.) of
a program is consistent with a possible execution under some
(nonpreemptive, uniprocessor) CM model. We call this requirement
CM serializability, and it is the fundamental property of OCM.

In the above code example, CM (and hence OCM) guarantees the
the comparison and updates in each interation execute atomically.1

The two loops can execute simultaneously if x and y are disjoint
from i and j. Otherwise, the loops must be interleaved. Either way
produces results consistent with CM.

1 Obtaining equivalent behavior with block-structured atomic blocks would
be much more awkward.

205

3. Implementations
Any means to execute code consistent with CM is a valid OCM im-
plementation. We have developed several different implementations,
which are available for download at http://ocm-model.org. In creating
these implementations, we show that a variety of implementation
strategies for OCM are feasible. Doing so also allows us to compare
the tradeoffs of these different implementation strategies.

Undoubtedly the simplest implementation of the OCM model
is traditional uniprocessor CM (or, for a parallel implementation, a
single global lock on the CPU). Although it does not exploit multiple
cores, it has value as a baseline. An OCM implementation that
exploits multiple cores should outperform CM in general, but CM
may be best in specific cases (e.g., for programs with massive thread
contention, or on a uniprocessor machine).

3.1 Nontrivial Lock-Based Implementations
We have developed a proof-of-concept lock-based OCM implemen-
tation as an extension to the Lua scripting language. This extension is
a dynamic library loaded by the Lua interpreter, so it cannot perform
static analysis to obtain the information needed for correct locking.
Access to shared data is therefore mediated solely through “proxy
objects” obtained through the OCM library—threads are otherwise
completely separate. Because the system knows that a thread can
only access shared data through proxies, and the system knows which
threads are holding which proxies, the OCM scheduler can acquire
and release all necessary locks on behalf of threads.

We have also implemented lock-based OCM in the form of
a source-to-source translator for C with the addition of yield
and spawn statements. The translator does dataflow analysis to
conservatively determine which variables may be accessed in the
future following each yield statement—those are the variables that
yield needs to lock. This information is then used to insert calls
to locking and unlocking functions using Pthreads in the necessary
locations. Any spawn or yield statements are replaced with calls
to library functions.

3.2 STM-based Implementations
The OCM model also permits implementations based on software
transactional memory (STM), whereby all reads and writes of shared
data are routed through an STM system. Each yield statement ends
the current transaction and begins a new one, so that changes made
by the current thread become visible to others.

As when investigating lock-based implementations, we began
with a proof-of-concept modification to Lua. In this case, we
implemented the OCM system by requiring the Lua interpreter
to use the TinySTM library when accessing memory.

We have also created an STM-based OCM implementation as a
C++ library using Pthreads. This library allows the programmer to
indicate that certain variables are shared, which causes all accesses
to those variables to be routed through the STM library. Because
transactions may begin and end in different lexical scopes, our system
saves and restores stack frames as necessary. Our library approach
requires no changes to the underlying language, relying instead on
C++ language features (overloading, templates, etc.) to make access
to shared data feel natural.

4. Debugging and Performance Profiling
Although OCM dramatically reduces the potential for race conditions
and deadlock compared to, say, explicit locking, it does not eliminate
them.

Fortunately, reproducing bugs is far easier in OCM than in many
other models, because every program execution has at least one
corresponding execution under CM. If an OCM system wishes to
allow reproducible debugging, it simply has to record a corresponding

serial execution for that program. With that serialization trace, it
is possible to rerun the program serially following that trace and
thereby reproduce the exact sequence of interleavings that trigger
the bug.

5. Conclusions and Future Work
OCM is a promising solution for shared-memory program develop-
ment. It retains many of the benefits of currently existing concurrency-
control systems, while mitigating their complexity. It allows the
programmer to focus on the logic of the program instead of the
subtleties of parallelism.

Because OCM does not require a specific implementation, an
application can be written according to the OCM model and use
whichever implementation is best suited for it.

To promote the broad adoption of OCM, others could implement
OCM using their own concurrency-control schemes. We also hope
that educators see the value in using OCM as a “kinder, gentler”
form of multicore parallelism, even if they later introduce other
models, like locks or transactions. In fact, OCM can serve as a
springboard for subject; synchronization primitives are easy to
write in OCM (e.g., semWait(i) is while (i > 0) yield; −−i
and semSignal(i) is ++i), and discussions of efficient OCM
implementations naturally lead to topics like transactions. We hope
that our available implementations and further examples of OCM in
use will provide a good starting point for these efforts.

In addition, OCM needs benchmarks that can be used to assess
the performance of different concurrency control techniques and
of the OCM approach as a whole. We are currently adapting the
benchmarking suites STAMP and PARSEC to OCM and writing a
series of examples from The Little Book of Semaphores [2] using
OCM. We are investigating how OCM scales to larger applications,
and which debugging and profiling tools prove most valuable.

6. Related Work
As a parallel model, OCM intersects with a significant portion of
prior work on parallelism and concurrency. OCM is particularly
closely related to Automatic Mutual Exclusion [1] where all code is
atomic unless marked unsynchronized (an empty unsynchronized
block corresponds to yield), and to work by Yi et al. [4] that explains
lock-based code in terms of cooperative multithreading.

Acknowledgments
The undergraduate OCM Team included Bartholomew Broad, Kwang
Ketcham, Samuel Just, Alejandro Lopez-Lago, and Joshua Peraza
(2009); Sonja Bohr, Adam Cozzette, Joe DeBlasio, Julia Matsieva,
Stuart Pernsteiner, and Ari Schumer (2010); and Xiaofan Fang, Sean
Laguna, Stephen Levine, Jordan Librande, Stuart Pernsteiner, and
Mary Rachel Stimson (2011).

References
[1] M. Abadi, A. Birrell, T. Harris, and M. Isard. Semantics of transactional

memory and automatic mutual exclusion. In POPL ’08, pages 63–74,
2008.

[2] A. B. Downey. The Little Book of Semaphores. Green Tea Press, 2nd
edition, 2008.

[3] C. J. Rossbach, O. S. Hofmann, and E. Witchel. Is transactional
programming actually easier? In PPoPP ’10, pages 47–56, 2010.

[4] J. Yi, C. Sadowski, and C. Flanagan. Cooperative reasoning for preemptive
execution. In PPoPP ’11, pages 147–156, 2011.

206

