
VET3D: A Tool for Execution Trace Web 3D Visualization

Craig Anslow, Stuart Marshall, and
James Noble

Victoria University of Wellington, New Zealand
{craig, stuart, kjx}@mcs.vuw.ac.nz

Robert Biddle
Carleton University, Ottawa, Canada

robert biddle@carleton.ca

Abstract
We are interested in finding new ways to visualize our software
execution traces. An issue in visualizing our execution traces is de-
ploying and integrating them into users’ environments. We have a
tool called VET3D that transforms execution traces into visualiza-
tions over the web. Our tool will help developers to understand the
structure and behaviour of software.

Categories and Subject Descriptors D.2.6 [Programming Envi-
ronments]: Graphical Environments

General Terms Design

Keywords Software Visualization, Execution Traces, XSLT, X3D

1. Introduction
Software visualization is the use of the crafts of typography,
graphic design, animation, and cinematography with modern human-
computer interaction and computer graphics technology to facili-
tate both the human understanding and effective use of computer
software [7]. However, we are more focused on program visual-
ization which is the visualization of actual program code or data
structures in either static or dynamic form.

The potential use of 3D graphics for program visualization is
significant and mostly unexplored [7]. The use of 3D graphics is
not to enhance the beauty of a program visualization; instead it
provides additional and fundamental information. A great deal of
experimentation is needed to better understand the strengths and
weaknesses of using interactive 3D graphics for software visual-
ization.

We are interested in visualizing the structure and behaviour of
software over the web in 3D. We currently have a Visualization
Architecture for REuse (VARE) [6] for deploying software compo-
nents over the web. VARE is a client-server architecture for sup-
porting the visualization of software in a distributed environment.
The design supports components in multiple languages and con-
figurations (e.g. complete programs or just code fragments), and
provides user control for all parts of the visualization process.

VARE requires tools to develop and deliver visualizations from
execution traces that are easy to learn and are intuitive to under-
stand for users. Our XML execution traces contain static and dy-
namic information of software components including the events

Copyright is held by the author/owner(s).
OOPSLA’06 October 22–26, 2006, Portland, Oregon, USA.
ACM 1-59593-491-X/06/0010.

that happened during the execution of a component. We have previ-
ously created a tool that could produce 2D Scalable Vector Graph-
ics (SVG) [2] visualizations from our execution traces. We now
describe a tool for creating 3D visualizations from our execution
traces using X3D [8] – the Web3D Consortium’s X3D open stan-
dard for web based 3D graphics.

2. VET3D
We are developing a web-based software visualization tool called
VET3D (Visualizing Execution Traces in 3D) that transforms XML
execution traces into X3D visualizations. Figure 1 shows the over-
all architecture of VET3D. Users make queries from a web browser.
Users can test drive1 remotely executing software components to
produce an XML execution trace, transform XML execution traces
using XSLT into X3D visualizations, and display X3D visualiza-
tions in a web browser.

Separating the test driving and creation of visualizations steps
allows users to test drive components and then create visualiza-
tions in the future. Users can also view stored X3D visualizations
without having to test drive remote software or transform XML ex-
ecution traces. Previous work describes our XML execution traces
for software visualization [5], test driving software components [4],
and databases for storing and querying XML execution traces [1].

From the architecture in Figure 1, VET3D currently implements
transforming our XML execution traces into X3D visualizations so
that users can interact with the visualizations in a web browser.
VET3D has been integrated with our database tools but has yet
to work in conjunction with our test driving tools. Some design
features of VET3D include plug-in features to create new types of
visualizations and capabilities to add to existing visualization types.

X3D [8] is an XML language for 3D content delivery on the
web. X3D is the successor to the Virtual Reality Modeling Lan-
guage (VRML97). X3D combines both geometry and runtime be-
haviour into a single XML file. X3D can be displayed in a native
X3D browser, a web browser that has a X3D plug-in or transformed
and delivered to a VRML97 viewer. The X3D runtime environment
is the scene graph which is a directed, acyclic graph containing
the objects represented as nodes and object relationships in the 3D
world. X3D content can be created using authoring tools such as
X3D Edit, text editors, or transformed using XSLT [3]. X3D al-
lows scripting languages to be embedded such as ECMAScript and
Javascript.

For displaying X3D visualizations VET3D uses the Octaga
Player 2 plug-in which is compatible with Mozilla Firefox. The
Apache Xalan XSLT processor is used for transforming the XML

1 Test driving is defined as specifying a sequence of method invocation and
field access/modifications and then executing the sequence on a software
component.
2 http://www.octaga.com

655



Figure 1. The VET3D architecture.

execution traces into X3D. Apache Tomcat is used to handle the
Java Server Pages and Java Servlet web front end. Finally the
eXist native XML database is used for storing and retrieving XML
execution traces and X3D visualizations [1].

Figure 2 shows a node-link X3D visualization transformed from
an execution trace of a C++ program. The visualization has two
displays, the left display shows the X3D visualization and the right
display shows the original source code of the program which was
used to produce the visualization. The source codes is rendered
in HTML. Classes are represented as spheres and the base class
is represented as a cone. The two classes that inherit from the
base class are coloured grey while the other classes are red. The
cone is animated to change colours from blue to red to purple
to green continuously every second. Larger purple links represent
inherited relationships from the base class while smaller white links
represent relationships amongst other classes.

When a user clicks on a class a light shines on the node in
the visualization, and the associated class declaration in the source
code is highlighted yellow in the right hand display. The user has
selected the class in the middle of the visualization (grey sphere)
which has highlighted the associated class declaration in the source
code (the Fox class). The user can also rotate the visualization,
zoom-in/zoom-out, pan from left to right and up and down, and
move the classes around in the 3D world.

Figure 2. X3D visualization created from an execution trace.

3. Summary and Future Work
VET3D is a prototype tool that transforms our XML execution
trace into X3D visualizations. Users can select predefined visual-
ization types to display information about a software component,
such as node/link diagrams. New visualization types can be created
by making new XML style-sheets for transforming execution traces
and then plugging them into VET3D. Existing visualizations can be
customized by adding new capabilities such as sliders to control the
number of nodes displayed in a visualization.

We believe that the X3D visualizations our tool VET3D can
produce will help assist developers to understand the structure and
behaviour of software. However further extensive research on the
performance, scalability, and usability of X3D visualizations is
required to determine if the technology is applicable for use in
software visualization. We also plan to integrate VET3D with other
test driving tools to provide an end to end software visualization
system for users.

References
[1] C. Anslow, S. Marshall, R. Biddle, K. Jackson, and J. Noble. XML

database support for program trace visualisation. In N. Churcher and
C. Churcher, editors, Information Visualisation 2004, CRPIT Vol 35.
Australian Computer Society, 2004.

[2] M. Duignan, R. Biddle, and E. Tempero. Evaluating scalable vector
graphics for use in software visualisation. In T. Pattison and B. Thomas,
editors, Information Visualisation 2003, CRPIT Vol 24. Australian
Computer Society, 2004.

[3] V. Geroimenko and C. Chen, editors. Visualizing Information Using
SVG and X3D, XML-based technologies for the XML-based Web.
Springer-Verlag, 2005.

[4] S. Marshall, R. Biddle, and J. Noble. Using software visualisation to
enhance online component markets. In N. Churcher and C. Churcher,
editors, Information Visualisation 2004, CRPIT Vol 35. Australian
Computer Society, 2004.

[5] S. Marshall, K. Jackson, C. Anslow, and R. Biddle. Aspects to
visualising reusable components. In T. Pattison and B. Thomas, editors,
Information Visualisation 2003, CRPIT Vol 24. Australian Computer
Society, 2004.

[6] S. Marshall, K. Jackson, R. Biddle, M. McGavin, E. Tempero, and
M. Duignan. Visualising reusable software over the web. In P. Eades
and T. Pattison, editors, Information Visualisation 2001, CRPIT Vol 9.
Australian Computer Society, 2001.

[7] J. Stasko, M. Brown, and B. Price. Software Visualization. MIT Press,
1997.

[8] Web3D-Consortium. X3D Specification. http://www.web3d.org/
x3d/specifications/, 2005.

656


