
Language Extension and Composition
with Language Workbenches

Markus Völter
Independent/Itemis, Germany

http://www.voelter.de
voelter@acm.org

Eelco Visser
Delft University of Technology, The Netherlands

http://eelcovisser.org
visser@acm.org

Abstract
Domain-specific languages (DSLs) provide high expressive
power focused on a particular problem domain. They pro-
vide linguistic abstractions and specialized syntax specifi-
cally designed for a domain, allowing developers to avoid
boilerplate code and low-level implementation details.

Language workbenches are tools that integrate all aspects
of the definition of domain-specific or general-purpose soft-
ware languages and the creation of a programming environ-
ment from such a definition. To count as a language work-
bench, a tool needs to satisfy basic requirements for the in-
tegrated definition of syntax, semantics, and editor services,
and preferably also support language extension and compo-
sition. Within these requirements there is ample room for
variation in the design of a language workbench.

In this tutorial, we give an introduction to the state of the
art in textual DSLs and language workbenches. We discuss
the main requirements and variation points in the design of
language workbenches, and describe two points in the de-
sign space using two state-of-the-art language workbenches.
Spoofax is an example of a parser-based language work-
bench, while MPS represents language workbenches based
on projectional editors.

Categories and Subject Descriptors D.2.3 [Software En-
gineering]: Coding Tools and Techniques; D.2.6 [Software
Engineering]: Programming Environments; D.3.4 [Pro-
gramming Languages]: Processors

General Terms Languages

Keywords Language Workbench, Domain-Specific Lan-
guage, Meta-tooling, IDE, Projectional Editing, Parsing,
Textual Language, Eclipse, Stratego, SDF, Spoofax, SGLR,
MPS,

Copyright is held by the author/owner(s).
SPLASH’10, October 17–21, 2010, Reno/Tahoe, Nevada, USA.
ACM 978-1-4503-0240-1/10/10.

1. Domain Specific Languages
Domain-specific languages (DSLs) provide high expressive
power focused on a particular problem domain. They pro-
vide linguistic abstractions and specialized syntax specifi-
cally designed for a domain, allowing developers to avoid
boilerplate code and low-level implementation details. The
syntax can be graphical, textual, or even a mixture of the
two. DSL code (often called a “model”) is typically executed
by an interpreter, or transformed into programming language
code for subsequent execution. In addition to aligning nota-
tions closely with the domain, DSLs allow error messages
using domain terminology and optimizations based on do-
main knowledge.

Since DSLs typically focus on a single aspect of software
implementation, models in multiple DSLs or combinations
of models and regular programs are needed to cover all
aspects of a complete software system. Thus, DSL models
need to interact with models expressed with other DSLs and
with programs in general purpose programming languages.
This requires the extension of domain-specific checking and
optimization to combinations of languages.

To enhance acceptance of DSLs with their prospective
users (programmers or domain experts), the languages must
come with good IDE support, as we know it from tools like
Eclipse, Visual Studio or IntelliJ. Modern IDEs increase de-
veloper productivity by incorporating many different kinds
of editor services specific to the syntax and semantics of a
language. They assist developers in understanding and nav-
igating through the code, they direct developers to inconsis-
tent or incomplete areas of code, and they even help with
editing code by providing automatic indentation, bracket in-
sertion, and content completion.

The development of new DSLs comprises many tasks,
ranging from syntax definition to code generation to the con-
struction of an integrated development environment (IDE).
Language engineering tools are essential for productivity in
each of these tasks. Specifically for project-specific DSLs,
which are by their nature limited in scope, development must
be efficient, so DSLs can be developed as part of real-world
development projects.

301



2. Language Workbenches
Language workbenches [3] are tools that integrate all aspects
of the definition of domain-specific or general-purpose soft-
ware languages and the creation of a programming environ-
ment from such a definition. To count as a language work-
bench, a tool needs to satisfy the following basic require-
ments and preferably also support language extension and
composition. Within these requirements there is ample room
for variation in the design of a language workbench.

2.1 Basic Requirements
A language workbench should at least support the definition
of individual languages. A language definition consists of
the definition of the syntax and semantics of the language,
as well as the editor services that form the IDE.

Syntax definition: defines the concrete notation used for
models and their underlying structure, which is the basis
for analysis and transformation.

Semantics definition: defines the analyses and transforma-
tions applied to the structures defined by the syntax defi-
nition, including error checking, transformations such as
refactorings, and code generation to translate a model to
an implementation in a target language.

Editor services definition: defines the editor services that
bind the language to an integrated development environ-
ment (IDE), including syntax highlighting, outline view,
bracket matching, automatic indentation, reference re-
solving, content completion, error marking, and refactor-
ing. Editor services often depend on syntactic or semantic
analyses of the structure of edited models.

Language workbenches typically provide high-level,
declarative DSLs to make language definition efficient.

2.2 Extension and Composition
The next step beyond support for the basic language def-
inition requirements is support for language extension and
composition to cater for language evolution and software
projects consisting of models in multiple languages.

Language extension: existing languages can be extended
with new concepts, adapting them to more specific con-
texts.

Language composition: languages for different domains
can composed, either by symbolic integration such that
language concepts in one language can reference con-
cepts defined in other languages, or by embedding, such
that concepts from one language can be embedded in an-
other one.

2.3 Variation Points
There are many decisions that must be made in the design of
a language workbenches. The following is a list of variation
points in the design space:

Concrete syntax: The main dividing line is between graph-
ical and textual notations. While in the long run we want
to be able to mix the two, currently most tools are either
focused on one, or at least have a strong bias. In this tu-
torial, we focus on textual notations.

Parser-based vs. projectional: Textual notations can either
be implemented based on parsers or based on a projec-
tional editor.

Derivation of editor services: Some editor services can be
automatically derived from the language specification
(e.g. code completion), others may have to be customized
by the developer (outline view icons, or custom syntax
highlighting).

Storage: Storage can either be file-based, using existing ver-
sion control tools for team collaboration, or repository-
based, often supporting real-time collaboration by vari-
ous users. Furthermore, storage can be based on the ab-
stract or the concrete syntax.

Inconsistent definitions: The model editor may or may not
allow models to be in an inconsistent or erroneous state.
Supporting (temporary) inconsistencies improves agility
of software development, not requiring the developer to
tend to each detail immediately.

In the tutorial we discuss two state-of-the-art language
workbenches. Spoofax is an example of a parser-based lan-
guage workbench, while MPS represents language work-
benches based on projectional editors.

3. Spoofax
The Spoofax language workbench [1, 6] is a platform for the
development of textual (parser-based) domain-specific lan-
guages with state-of-the-art IDE support. Spoofax provides
a comprehensive environment that integrates syntax defini-
tion, program transformation, code generation, and declara-
tive specification of IDE components. The environment sup-
ports agile development of languages by allowing incremen-
tal, iterative development of languages and showing editors
for the language under development alongside its definition.
These editors can be used to view the abstract syntax of a
program or to directly apply transformations on a selection
of text. Spoofax is based on Eclipse, an extensible program-
ming environment that offers many language-generic devel-
opment facilities such as plugins for version control, build
management, and issue tracking. Spoofax language defini-
tions take the form of Eclipse plugin projects, and can be
distributed to “end developers” using the Eclipse update site
mechanism.

3.1 Syntax Definition
The grammar forms the heart of the definition of any textual
language. It specifies the concrete syntax (keywords etc.)
and the abstract syntax (data structure for analysis and trans-
formations) of a language. In Spoofax, the syntax is also

302



used to derive customizable editor services, such as a de-
fault syntax highlighting service and an outline view service.
Spoofax uses the modular syntax definition formalism SDF2
[4, 8] for the specification of grammars. SDF grammars are
highly modular, combine lexical and context-free syntax into
one formalism, and can define concrete and abstract syntax
together in production rules.

3.2 Semantics Definition
Spoofax uses the Stratego program transformation lan-
guage [2] to describe the semantics of a language. Stratego
is based on rewrite rules for first-order terms, and strategies
that control the application of these rules. During develop-
ment, the abstract syntax view can be used as a reference for
the first-order term representation of a language’s abstract
syntax. Rewrite rules may use string interpolation to conve-
niently generate text from textual templates. Alternatively,
rules may rewrite to abstract syntax or may use syntax-
checked concrete syntax expressions [9]. Code generation
rules can be used to transform the DSL to a compilable form.
They can be applied automatically as files are saved, or man-
ually when triggered by the user. They can also be used to
create views of the language. By default, views are automat-
ically kept up-to-date and regenerated in the background as
the source is changed. Stratego rewrite rules are also used
to specify semantic editor services, such as error checking,
reference resolving, and content completion.

3.3 Editor Services
Spoofax provides declarative editor descriptor languages for
the definition of editor services. For many editor services,
Spoofax generates default editor service descriptors from
the syntax of the language, which can be combined with
custom user-defined specifications in such a way that default
descriptors can be re-generated when the syntax definition
changes. Semantic editor services such as code generators
and refactorings are declared by binding a user interface
action to a semantics definition in Stratego.

3.4 Language Extension and Composition
Spoofax supports extension and composition of languages
through the modularity of its underlying SDF and Stratego
languages.

The syntax definition formalism SDF supports the full
class of context-free grammars, which is the only class of
grammars that is closed under composition. The definition
of lexical syntax is integrated with the definition of context-
free grammars, instead of using a separate language based
on regular grammars for the definition of tokens. As a re-
sult, also lexical syntax definitions of SDF are closed under
composition.

The semantics definitions in Stratego are also modular.
The definitions of rules and strategies can be modularly ex-
tended to support new language constructs. More precise ex-
tensions can be achieved by extending hook definitions or

instantiating parameters of transformation strategies. How-
ever, such extensions requires anticipation of extensibility in
the design of the base language by including proper exten-
sion points.

Composition of languages is typically handled by means
of a normalizing (‘desugaring’) transformation, which trans-
lates statements in an embedded language to an implemen-
tation in a common core language.

4. JetBrains MPS
JetBrains’ Meta Programming System is a projectional lan-
guage workbench [5] that has been developed over the last
couple of years by JetBrains and is now available open
source under Apache 2.0. MPS comes with an integration
into popular version control systems. While the code is rep-
resented as XML files, the tool provides diff and merge fa-
cilities on the level of the concrete, projected syntax. Start-
ing with version 1.5, MPS also comes with a facility to de-
fine debuggers for DSLs. The tool has been used extensively
within JetBrains and is slowly getting traction outside of the
company [7, 11]. An extensive, detailed tutorial for MPS can
be found here [10]. An illustration of the capabilities of the
tool is provided by the screencasts and papers listed on the
mbeddr.com website [11].

4.1 Syntax Definition
MPS is a projectional editor. Consequently, language defi-
nition does not involve a grammar. Instead, language defini-
tion starts by defining the structure of the language through
concepts. Secondly, projection rules, also known as editors,
define the textual, tabular or graphical rendering of concepts.

The projectional approach has a couple of nice character-
istics, in addition to fulfilling the requirements for language
workbenches described above:

– Notations are more flexible than ASCII/ANSI/Unicode.
Graphical, semi-graphical and textual notations can be
mixed and combined. For example, a graphical tool for
editing state machines can embed a textual expression
language for editing the guard conditions on transitions.

– Since the model is stored independently from its concrete
notation, it is possible to represent the same model in dif-
ferent ways simply by providing several projections. Dif-
ferent viewpoints of the overall program can be stored in
one model, but editing can still be viewpoint specific. It is
also possible to store out-of-band data, i.e. annotations on
the core model/program, such as documentation, pointers
to requirements (traceability) , or feature dependencies in
the context of product lines.

4.2 Semantics Definition
In MPS, the structure of a program can be restricted using
various kinds of constraints: scopes, determine the set of
possible targets for references, type system rules calculate

303



types based on typing rules and an inference engine, and
constraints check domain-specific properties of programs.

Transformations can be defined between arbitrary lan-
guages. Transformations are mappings from one language
structure onto another one, i.e. transforming the underlying
graph structure of a model. However, the concrete syntax of
the target language can be used in transformations, making
them look more like code generators.

Transformations can be cascaded and the MPS transfor-
mation engine incrementally reduces code until it cannot be
reduced any further, at which point a text file is generated for
subsequent compilation.

4.3 Editor Services
In parser-based environments where users basically enter
text into a buffer, sophisticated editor services are optional
— one can, in principle, use a simple text editor for editing.
In a projectional environment this is different because edit-
ing requires the projection engine. Consequently, language
definition requires the definition of IDE services. MPS does
not even attempt to draw a line between the two: the def-
inition of a language and it’s editors automatically entails
the creation of services for code completion, syntax high-
lighting, error markers, go-to-definition, and find references.
While all of these can be customized, editor services can not
be removed, since it would make editing models impossible.

4.4 Language Extension and Composition
In MPS, language definition is similar to object oriented pro-
gramming in the sense that language concepts correspond to
classes and models to objects. Thus, the principles for exten-
sion and composition from OO programming can be applied
to languages. A language can inherit from another language,
making the concepts from the base language available in the
sub-language. The sub-language can then add new concepts,
making the sub-language an extended version of the base
language. Concepts in the sub-language can also extend con-
cepts in the base language. This is the primary means of lan-
guage extension: a base language might define a Procedure
concept that contains a list of Statements. By defining sub-
concepts of Statement, a sub-language can essentially plug
into the base language, providing other kinds of statements
usable in procedures.

The equivalent of delegation can be used to embed lan-
guages. A language can use another language and then de-
fine concepts that contain (as children) concepts from the
used language. No special steps have to be taken to be able
to integrate the languages syntactically, because no grammar
and no parser is used.

There is another way of extending languages that closely
resembles aspect oriented programming. A language can
“contribute” additional properties to concepts defined in
other languages, without invasively modifying this other lan-
guage. This is very useful for all kinds of annotations such
as documentation or traces to requirements.

Finally, the upcoming MPS 2.0 will allow sub-languages
to define new notations for concepts inherited from a base
language.

More details on language composition and extension with
MPS can be found here [12].

References
[1] The Spoofax project. http://www.spoofax.org/.

[2] M. Bravenboer, K. T. Kalleberg, R. Vermaas, and E. Visser.
Stratego/XT 0.17. A language and toolset for program trans-
formation. Sci. of Comp. Programming, 72(1-2):52–70, June
2008.

[3] M. Fowler. Language workbenches: The killer-app for do-
main specific languages? http://martinfowler.com/

articles/languageWorkbench.html, 2005.

[4] J. Heering, P. R. H. Hendriks, P. Klint, and J. Rekers. The syn-
tax definition formalism SDF: Reference manual. SIGPLAN
Not., 24(11):43–75, 1989.

[5] JetBrains. Meta Programming System. http://www.

jetbrains.com/mps/.

[6] L. C. L. Kats and E. Visser. The Spoofax language workbench.
Rules for declarative specification of languages and IDEs.
In M. Rinard, editor, Proceedings of the 25th Annual ACM
SIGPLAN Conference on Object-Oriented Programming, Sys-
tems, Languages, and Applications, OOPSLA 2010, October
17-21, 2010, Reno, NV, USA, 2010.

[7] Realaxy LTD. Realaxy action script editor. http://www.

realaxy.com/.

[8] E. Visser. A family of syntax definition formalisms. In
M. G. J. van den Brand et al., editors, ASF+SDF 1995. A
Workshop on Generating Tools from Algebraic Specifications,
pages 89–126. Technical Report P9504, Programming Re-
search Group, University of Amsterdam, May 1995.

[9] E. Visser. Meta-programming with concrete object syntax. In
D. Batory, C. Consel, and W. Taha, editors, Generative Pro-
gramming and Component Engineering (GPCE 2002), vol-
ume 2487 of LNCS, pages 299–315. Springer-Verlag, October
2002.

[10] M. Völter. LWC 11 MPS Submission. http://code.

google.com/p/mps-lwc11/wiki/GettingStarted.

[11] M. Völter and B. Merkle. mbeddr.com. http://mbeddr.

com.

[12] M. Völter and K. Solomatov. Language compo-
sition with projectional language workbenches il-
lustrated with mps. http://www.voelter.de/

data/pub/VoelterSolomatov_SLE2010_Language%

20ModularizationAndCompositionLWBs.pdf.

304

http://www.spoofax.org/
http://martinfowler.com/articles/languageWorkbench.html
http://martinfowler.com/articles/languageWorkbench.html
http://www.jetbrains.com/mps/
http://www.jetbrains.com/mps/
http://www.realaxy.com/
http://www.realaxy.com/
http://code.google.com/p/mps-lwc11/wiki/GettingStarted
http://code.google.com/p/mps-lwc11/wiki/GettingStarted
http://mbeddr.com
http://mbeddr.com
http://www.voelter.de/data/pub/VoelterSolomatov_SLE2010_Language%20ModularizationAndCompositionLWBs.pdf
http://www.voelter.de/data/pub/VoelterSolomatov_SLE2010_Language%20ModularizationAndCompositionLWBs.pdf
http://www.voelter.de/data/pub/VoelterSolomatov_SLE2010_Language%20ModularizationAndCompositionLWBs.pdf

	Domain Specific Languages
	Language Workbenches
	Basic Requirements
	Extension and Composition
	Variation Points

	Spoofax
	Syntax Definition
	Semantics Definition
	Editor Services
	Language Extension and Composition

	JetBrains MPS
	Syntax Definition
	Semantics Definition
	Editor Services
	Language Extension and Composition


