
Alternative Programming Interfaces for Alternative Programmers

Toby Schachman
New York University, Interactive Telecommunications Program

tqs@alum.mit.edu

Abstract
This paper seeks to broaden the view of what programming
is, who programs, and how programming fits in to larger sys-
tems. With growing frequency, people are approaching pro-
gramming from unlikely backgrounds such as the arts. Of-
ten these new programmers bring with them ways of work-
ing which are incompatible with mainstream programming
practices, but which allow for new possibilities in program-
ming interfaces. This paper makes suggestions for the de-
sign of these new programming interfaces. It presents as a
case study and demonstration Recursive Drawing. Recur-
sive Drawing is a reimplementation of the textual program-
ming language Context Free as a graphical, directly manip-
ulable interface. Instead of a compiler or interpreter, Recur-
sive Drawing’s programming interface is modeled as a con-
straint solver. This allows the programmer to modify the pro-
gram’s source code by manipulating the program’s output.
Additionally, the design of the interface focuses on program
transformation, rather than program construction.

Categories and Subject Descriptors D.1.7 [Programming
Techniques]: Visual Programming

General Terms Design, Experimentation, Human Factors,
Languages

Keywords Art, Constraint Solver, Direct Manipulation,
Improvisation, Program Transformation, Recursion

1. Introduction
This paper posits the emergence of a new generation of “al-
ternative programmers.” This new generation has no pro-
gramming background, but has a need to program comput-
ers in order to realize their goals. Indeed they approach pro-
gramming from unrelated backgrounds, from well-developed
disciplines with their own paradigms for understanding the
world.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
Onward! 2012, October 19–26, 2012, Tucson, Arizona, USA.
Copyright c© 2012 ACM 978-1-4503-1562-3/12/10. . . $10.00

This influx of new programmers provides an opportunity
to radically shift the way programming is done. But to real-
ize this opportunity, we will need to be sensitive to the back-
grounds and goals of this new generation, and to reconsider
the activity of programming itself.

This paper explores the notion of alternative program-
ming interfaces for the next generation of alternative pro-
grammers.

Sections 2 and 3 define these terms, with the goal of ex-
panding the scope of what is traditionally considered pro-
gramming and who are traditionally considered program-
mers.

Section 4 introduces a case study, Recursive Drawing.
Recursive Drawing is a reimplementation of the textual pro-
gramming language Context Free as a graphical, directly
manipulable programming interface. The following sections
are illustrated with examples from Recursive Drawing.

Section 5 suggests an alternative to the linear nature of
programming. Instead of compilers, programming interfaces
are implemented as constraint solvers, which allows the pro-
grammer to modify the source code by modifying a running
process.

Section 6 suggests shifting our focus from program con-
struction to program transformation.

Section 7 discusses the strengths and weaknesses of Re-
cursive Drawing and directly manipulable programming in-
terfaces in general.

Section 8 concludes.

2. What are Alternative Programming
Interfaces?

I will address programming interfaces from three perspec-
tives: physical, conceptual, and social.

2.1 Physical Interfaces
Physical interfaces concern the human body and the com-
puter’s “body”–its hardware inputs and outputs–and the af-
fordances allowed by each of these bodies.

The dominance of the text medium tends to dictate the
form of physical interfaces. The human communicates to
the computer through typing on the keyboard. The computer
communicates back through whichever outputs the program
addresses: the screen, speakers, or other peripherals. But

1

even if a program is intended to create audio or graphical
output, throughout much of the programming process the
computer communicates to the programmer through text on
the screen (through the console).

Communicating text back and forth through these inter-
faces has proven to be effective because this medium can
be made largely unambiguous (through formal languages),
it emulates how we communicate intellectually with other
humans (talking and writing), and we have evolved conven-
tions (syntax and semantics) for densely packing abstract in-
formation into this form.

Alternative physical interface possibilities for program-
ming include:

1. Visual interfaces. These exploit the full graphical capabil-
ities of the screen rather than just text, and often encour-
age human input through a spatial pointing device such as
a mouse, trackpad, or stylus, in addition to or replacing
keyboard input.

2. Touch screen interfaces. Building on visual interfaces,
but with the human touching the screen directly. Two
potential advantages over mouse-based visual interfaces
are a more direct feeling of manipulation of the screen’s
output, and the expressive possibilities of multiple points
of contact (multitouch).

3. Arbitrary interfaces. These include the human communi-
cating to the computer using physical gestures in space,
sounds, or the manipulation of peripheral sensors such as
knobs and accelerometers. The computer communicates
back visually, aurally, or haptically.

None of these alternative physical interfaces have pro-
duced widely adopted general purpose programming envi-
ronments. However, they have had significant success in lim-
ited domains. Patching environments such as Pd [20], Max
[19], vvvv [3], Quartz Composer [16], and Isadora [7] use
visual interfaces with dataflow semantics to program interac-
tive audio and visual works. Rebecca Fiebrink’s Wekinator
[11] uses arbitrary inputs (such as cameras and accelerome-
ters) and arbitrary outputs (usually sound) to program novel
musical instruments using a supervised learning workflow
both on the part of the computer (recognizing human ges-
tures) and the human (learning to “play” the instrument).

I see three reasons to continue pursuing these alternative
physical interfaces, in growing order of importance:

1. We have the technology. The programming interfaces to-
day are largely a result of the technological evolution
of the computer going all the way back to mainframes
and teletypes. This historical bias suggests that alterna-
tive physical interfaces may have dormant potentials.

2. Alternative physical interfaces allow new workflows for
programming. Communicating text back and forth is
a turn-based experience. Programmer talks, computer
talks, etc. Alternative interfaces can allow for a contin-

uous feedback loop between human and computer. For
example, each of the patch-based visual environments al-
low the user to adjust parameters with sliders, and see
the results of these changes in realtime. This live coding
workflow is possible with text–syntax highlighting is a
form of realtime feedback, for example–but the medium
does not naturally support it. This is why textual inter-
faces supporting live coding are often augmented with
visual inputs like sliders, as in Bret Victor’s “Inventing on
Principle” demonstrations [24] and OpenEnded Group’s
Field [4].

3. Alternative physical interfaces engage different parts of
the human brain. Textual interfaces engage the “lan-
guage center” of our brain. We have difficulty express-
ing concepts to the computer which we cannot translate
through this part of our brain. Yet many of our most
profound ideas we think of visually or kinesthetically.
Alan Kay relates an anecdote about the mathematician
Jacques Hadamard, who polled the great mathematicians
and scientists of his day about how they “do their thing.”
Most replied that they did not think using mathematical
symbols (the language center of mathematics) but rather
imagined figures or even experienced sensations. Einstein
replied, “I have sensations of a kinesthetic or muscular
type.” [15]

2.2 Conceptual Interfaces
Conceptual interfaces concern the the metaphors we use to
think about our programs. Examples include objects, actors,
structures, and streams. Conceptual interfaces are largely
equivalent with the semantics of a programming language.
They are the key mental structures that must exist solidly and
isomorphically in the mind of the programmer and the mind
of the computer (that is, in its implementation), in order for
programmer and computer to collaborate effectively.

2.3 Social Interfaces
Social interfaces concern programming’s relationship to so-
ciety and how program creation interacts with social sys-
tems. It addresses the questions:

1. What is programming and how does it relate to the rest of
the world?

2. How should we program together?

3. Who should program?

A traditional, now humorously out-dated view, is that pro-
gramming is calculating. Computer operators feed problems
into a (physically huge) computer which spits out an an-
swer. Calculation (usually prefaced with “cold”) is the an-
tithesis of humane, creative activity. We have made inroads
towards a new perspective, where programming is seen as
a creative, collaborative process between human and ma-
chine. This is largely due to pioneering work such as Ivan
Sutherland’s Sketchpad [22] and Douglas Engelbart’s NLS

2

[10]. Yet the traditional view still maintains a hold on the
collective (un)consciousness. Many people are intimidated
by computers, or intimidated by programming. They see the
computer as The Other, a soulless entity with whom they
cannot engage.

The next question concerns how we relate to our human
collaborators in programming. People have always worked
together in teams when appropriate, but the internet and
platforms such as GitHub [2] have made the world of code
more like an ecosystem than ever before.

The semantics of a language often reflect and reinforce
the organizational structures that collaborate using the lan-
guage. Social interactions are subtle–and I want to avoid
making sweeping generalizations–but for the purposes of
illustration I will provide a stereotyped example: Java’s
semantics reinforce an insulated hierarchical organization
of programmers where one programmer cannot “step on
the toes” of another. Contrast this with Ruby, whose se-
mantics encourage substantial monkeying with the lan-
guage internals. Ruby’s semantics thus require more cross-
communicative teams, necessarily smaller, or alternatively
the top-down institution of conventions like Rails [13].

I am not implying that any one way of collaborating is
better or worse, just that there is a relationship between pro-
gramming interface design and the way we work with each
other. I see substantial opportunities to research the sociolog-
ical implications of human collaboration in programming.

Finally, the question of who should program I will ad-
dress in the next section.

3. Who are Alternative Programmers?
Many profound advances in programming were the result
of people reconsidering the question, who are the program-
mers? Engelbart’s NLS expanded the view of programmers
from business analysts and artificial intelligence researchers
to any information worker [10]. Smalltalk originally focused
on children as programmers [15]. Hypercard was developed
and distributed at Bill Atkinson’s insistence that “end users”
need programming capabilities [6]. Even web programming,
at least initially, promoted a culture where anybody could
contribute their content or software to the web.1

I believe a new generation of programmers is emerging.
These “alternative” programmers are people who do not self-
identify as programmers, but who regularly program com-
puters in order to achieve their goals. Alternative program-
mers can include for example musicians, performers, writ-
ers, visual artists, designers, scientists, architects, and ac-
tivists.

Evidence of this emergence includes:

1 There seems to be a pattern where an environment is developed for al-
ternative programmers, then as a consequence of success is overtaken by
“real” programmers. Adobe Flash, originally designed for animators who
wanted to work with interaction, also follows this pattern.

1. The growth of the DIY hacker and maker cultures, with
hacker spaces, hackathons, workshops, and meetups.
These serve as social support structures for alternative
programmers.

2. Platforms and communities built around beginner-friendly,
dive-right-in programming, such as Arduino [1] and Pro-
cessing [12].

3. The ubiquitous use of computers as a means of creative
expression, ranging from editing video for YouTube to
using Max for live performances.

Some alternative programmers take well to the current
ecosystem of programming interfaces. But certain creative
processes–relied on by alternative programmers in their pri-
mary work–are inadequately accommodated by traditional
programming interfaces. For example:

1. Non-linear workflows. Traditionally, programmers build
software towards a specification. The traditional program-
ming process works best when this specification is clear
and unambiguous. But many alternative programmers
work towards more ambiguous goals, driven for exam-
ple by feelings, intuitions, or emotions. To support these
goals, programming interfaces must support exploration
and discovery.

2. Improvisation. Improvisation is the art of tuning the
mind’s rhythms and momentum to allow for the organic
exploration of a conceptual space. Improvisation is usu-
ally brought up in the context of music, but it is often
central to the process of writers, visual artists, and other
creative explorers. To support improvisation, a program-
ming interface must first provide continuous feedback, as
turn-based feedback will impart its own rhythm on the
improvisation. Second it must let the improviser work di-
rectly in the representation of concern. Any need to trans-
late to a different representation, for example to translate
a visual or musical idea to numerical values, can break
the “flow” of improvisation.

The use of computers in general for creative expression
prompts the question: Where do we draw the line between
programming and authoring–the use of specialized com-
puter tools to produce specialized results? I don’t have a
good answer but I encourage the reader to take a broad view
of programming. For the purposes of this paper, I will take
programming to mean any instance of designing a system.
Bret Victor’s distinction between static and dynamic pictures
may also be helpful [23].

Like Smalltalk or Hypercard, I intend to blur the line
between programmer and user, between programming and
authoring. Consequently, throughout this paper the reader is
encouraged to play with substituting the words “user” and
“programmer.”

3

4. Case Study: Recursive Drawing
To explore and demonstrate alternative programming inter-
faces, I created Recursive Drawing. Recursive Drawing is
a reimplementation of the textual programming language
Context Free [9] as a graphical, directly manipulable inter-
face.

Context Free is similar in thrust to Logo’s Turtle Graph-
ics [18]. It is a small, elegant programming language for
creating graphics. But the two languages diverge fundamen-
tally in their semantics and the programming experience they
induce. Logo has imperative semantics and induces in the
programmer a “body syntonic” feeling. The programmer di-
rects a drawing robot’s movements through space. Context
Free has pure (side-effect free) semantics and induces in the
programmer a more abstract, disembodied feeling. The pro-
grammer declaratively nests spatial transformations. Each
declaration is independent of any global context, hence the
name Context Free.

In Context Free, the programmer specifies rules. A rule
is simply a list of references to other rules, each with a
spatial transformation (e.g. translation, rotation, scale) to
apply to that rule. There are two primitive rules, circle and
square, which simply draw the shape. Rules can reference
themselves. See Figure 1 for an example. 2

Figure 1. A basic example of Context Free. The rule
DRAWING draws a circle, then draws itself translated one
unit to the right and scaled by a factor of 0.8.

Through self-reference, Context Free encourages the ex-
ploration of self-similar shapes: fractals. These shapes are
co-recursively generated infinite structures, the graphical
equivalent to Lisp’s streams [5] or Haskell’s infinite data
structures [14]. Execution of a Context Free program can be
understood as the recursive substitution of rules with their
definitions. Context Free features a form of lazy evaluation,
in that when drawing to the screen, recursion halts when
the shapes are too small to be seen (i.e., at a suitably small,
sub-pixel size).

Context Free presents a paradox. On one hand, it features
semantics which are considered advanced, even esoteric, by
the mainstream programming community: referential trans-

2 Context Free has many more features, but these basic ones will be suffi-
cient for the purposes of this paper.

parency and co-recursive structures. On the other hand, it is
visually intuitive and has been enthusiastically adopted by
artists.

Recursive Drawing was inspired by this paradox, along
with Bret Victor’s challenge to create directly manipula-
ble programming interfaces [23]. Directly manipulable in-
terfaces not only feature continuous feedback, but also al-
low the programmer to manipulate the program using a rep-
resentation that resembles the final output of the program, in
this case graphics. Note that graphical programming inter-
faces are not necessarily directly manipulable. For example,
patch-based languages can produce graphics but in this case
the programmer manipulates the patches, not the graphical
output itself.

Context Free presented a comparatively easy target for
a directly manipulable interface. Its output representation is
graphical and its semantics are based around spatial trans-
formations. Thus user interface conventions from graphical
authoring tools such as Photoshop could be employed by
the programming interface. Additionally, lazy evaluation is a
powerful abstraction which allows very small programs, so I
could mitigate the information density constraints that often
plague graphical programming interfaces.

Dynamic interaction is central to the point of Recursive
Drawing, so I encourage the reader to watch a short video
demonstration of Recursive Drawing or to try it out (in the
browser). These resources are available at:

http://totem.cc/onward2012

In the following sections I will contrast Context Free with
Recursive Drawing in order to illustrate alternative program-
ming interfaces. I am not claiming that Recursive Drawing is
a better way to program than Context Free, or even that any
of these alternative interfaces are better than traditional in-
terfaces. I only wish to illustrate that alternative possibilities
are available.

5. Rethinking Causality
Programming is traditionally a forward-progressive, linear
activity. We think in procedures: one thing leads to another.
We have a goal in mind, and in order to reach our goal we
start at the foundation and build our software step by step.
This section explores relaxing this notion of linear, forward
progression.

5.1 Cause and Effect
Changing the source code of a program so as to effect a
specifically desired change in its output is a very common
activity in programming. Indeed, in the context of traditional
programming interfaces, this activity can be seen as equiva-
lent to debugging.

Traditionally, if a programmer wants to change the output
of a program in a specific way, she must solve two problems:

4

1. Find the line(s) of code which resulted in the part of the
output she is concerned with.

2. Understand the relationship between this code and the
output, in order to adjust the code accordingly.

To deal with the first problem, the programmer must trace
backwards in the causal chain ending at the output. That is,
she must trace back to the line of source code which initially
started the chain. Some tools keep track of this chain of
causality, and attach this history to the output in some form.
For example:

1. Stack traces show the chain of functions which were
called to reach a given point in the execution of a pro-
gram.

2. Console logging is often performed for the sole purpose
of determining if certain code has been reached. Here, the
programmer manually does a binary search through the
source code, testing whether different parts of code are or
are not part of the causal chain of concern.

3. A DOM inspector in a browser allows the programmer to
point at an element on the screen and see what node of
the DOM tree was responsible for drawing it. However,
the programmer cannot look further back in the causal
chain to see, for example, what line of Javascript was
responsible for creating that DOM node.

4. Patch-based languages graphically show the flow of data
through the system. Because there are no side-effects, the
flow of data is equivalent to the flow of causality.

To deal with the second problem, understanding the relation-
ship between code and output, a programmer usually uses
some form of test-and-repeat. This activity can take the form
of:

1. A purely mental procedure. The programmer simulates
the computer’s operation step-by-step in her head.

2. Turn-based feedback with the computer. The program-
mer changes the code and recompiles, or interacts with
a REPL.

3. Continuous feedback with the computer: live coding.

A program is a collection of causal relationships, and to
program effectively the programmer must understand these
causal relationships. The tools and processes mentioned
above help build this understanding, and help solve the prac-
tical need of effecting a desired output with a program. But
I believe we can go further by rethinking the nature of our
programming interfaces.

5.2 Constraints Generalize Procedures3

We currently think of a programming interface as a one-way
causality flow: a procedure. This one-way arrow is embod-
ied by a compiler, interpreter, or live coding environment.
Compilers are functions. They take input (source code) and
return output (a running process). REPLs and live coding
environments are stream processors. They take a stream of
input (source code modifications) and incrementally modify
a running process.

The alternative is to think of a programming interface as
a two-way causality flow: a constraint system. Instead of
specifying a compiler, the programming interface specifies
a constraint solver.

The traditional workflow proceeds as normal. When the
programmer modifies the source code, these modifications
propagate via the constraints to the running process. But al-
ternatively, the programmer can manipulate the running pro-
cess, and these modifications will back-propagate to modify
the source code.

To illustrate, Context Free uses the one-way procedural
programming model whereas Recursive Drawing uses the
two-way constraint model.

For example, when working with a self-referential rule
in Context Free, the programmer can modify the transfor-
mation under which the rule calls itself. Because the rule is
self-referential, this initial transformation gets called on it-
self iteratively so as to produce different recursive effects.
The only way to adjust the recursive effects is to adjust the
initial transformation. However in Recursive Drawing, the
programmer can modify a shape at any depth in the recur-
sion (Figure 2). This modification then back-propagates to
the rule definition which specifies the initial transformation.
This feature is implemented as a constraint solver (in this
case, with a numerical algorithm).

Figure 2. The programmer can modify a shape at any depth
in the recursion. This modification back propagates to the
rule definition.

3 “Constraints Generalize Procedures” is a section of “Building Robust Sys-
tems” by Gerald Sussman [21]. In this essay, Sussman discusses tracking
the provenance of information (keeping track of the causality chain), and
generalizing procedures to constraints so as to allow causality to flow in
multiple directions.

5

It is important to note that users intuitively think of the
common drag-and-drop convention as a constraint-based op-
eration. When the user presses down the mouse button in
preparation for dragging, she expects that the mouse pointer
and the point she pressed on will remain constrained to-
gether. So when she moves the mouse, the object she is drag-
ging moves with it. Recursive Drawing’s constraint model is
a generalization of this convention.

The major design challenge of programming interfaces
as constraint solvers is providing the user with the power to
specify what is constrained in the current context. With pro-
cedural programming interfaces, the programmer modifies a
line of source code and expects every other line of source
code to stay the same.4 But if the programmer modifies the
output, there may be multiple ways to change the source
code in order to produce the new output. The programming
interface must then either infer further, “natural” constraints,
or the programmer must be able to manually specify further
constraints so as to remain in control of her program.

Recursive Drawing currently solves this problem by only
allowing the direct editing of the rule which is currently
shown in the workspace. Thus it assumes that every other
rule’s definition is constrained to its current state. However I
don’t believe this is always the most “natural” constraint to
impose. A further line of research would be to reimplement
Recursive Drawing on a touch-screen interface. With this
interface, the programmer could drag, or more accurately
constrain, with multiple fingers at a time, allowing more
expressive modifications to the program.

6. Programming: Construction or
Transformation?

Much of the design process in programming is concerned
with how information is represented: the model. The pro-
grammer carefully chooses the data structures with which
the program is built. The programming language designer
carefully chooses the primitive constructs with which pro-
grammers will build their programs. Both of these workflows
reflect a reductionist mindset. Elements are defined by the
smaller elements they are made up of. This forms an “ab-
straction pyramid”, with primitives on the bottom and the
finished piece of software on top.

The abstraction pyramid has served us well in the past.
Reductionism allows us to reason at the relevant level of the
pyramid. It can enable us to build quite complex software
(tall pyramids) because we can build on previously laid
foundations. But a reductionist mindset can also reduce our
flexibility and produce cognitive dissonance when a piece of
software is approached from a different perspective.

For example, users approach software differently than the
creators of the software. Discrepancies inevitably arise be-

4 This can be tedious for certain types of modifications, which is why
modern IDEs relax this constraint by supporting advanced search-and-
replace functionality

tween the model underlying the program and the model that
forms in the user’s mind. Many recognize these discrepan-
cies as the root cause of usability issues [17]. Often it is ar-
gued that the model needs to be simplified–made more ele-
gant and powerful–so that the user can more fully grasp it.
This is often true but it misses a subtle issue. A creator of
software is concerned with its reductionist nature–the pyra-
mid of pieces it’s made out of. But the user of software is
concerned with what she can do with the software. That is,
the user is only concerned with the aspects of the software
which are operationally relevant in the context of a larger
system [8].

The same applies to programmers approaching existing
code. When we choose our representation for the program,
we limit the ways in which we can easily modify the pro-
gram. By “easily modify” I mean transforming the program
without choosing new primitives–what programmers appro-
priately call “refactoring.” This is why experienced develop-
ers think long and hard about the primitives they will use
before they touch the keyboard.

Is there a way make refactoring cheaper? Is there an
approach to program design that will not conceptually lock
us in to the primitives we initially choose, so that we can
open our minds to the various contexts in which our software
might be used?

This is of course a deep challenge, but I believe we can
better attack it with a shift in mindset.

I suggest we shift our focus from program construction
to program transformation. Instead of concentrating on the
primitives and what we can build from them, we concen-
trate on the transformations we might want to apply to our
program in various contexts. In other words, I’m suggesting
we think of programs operationally rather than reductively.
We define a program by its relationships to other (potential)
programs, not by the atoms which constitute it.

This is analogous to the shift in mindset from set theory
to category theory. In set theory, we define a property of a
set in terms of its elements. In category theory, we define a
property of a set in terms of its relationships to other sets.

I’ll provide two examples from Recursive Drawing. In
each case, I will show how my initial design reflected a
reductionist mindset, then how I rethought the issue from
a transformation-centric mindset.

6.1 Relativity
The first example relates to how we traditionally use coordi-
nate systems. In Context Free, the underlying representation
consists of a hierarchy of coordinate systems. The nest-able
coordinate system is a key primitive on which Context Free
programs are built.

Now, recursively nested spatial transformations are in-
trinsic to the concept of Context Free, but their representa-
tion as coordinate systems is an implementation detail which
is forced on the programmer. Indeed early versions of Recur-
sive Drawing did the same thing. Every coordinate system

6

was explicitly shown in the interface as arrows. Additionally,
the user could only manipulate the drawing by manipulating
the arrows. (Figure 3)

Figure 3. An early version of Recursive Drawing. Coordi-
nate systems are explicitly shown as arrows in the interface.

When we force an underlying representation on the pro-
grammer, program transformations can only be performed
with respect to that underlying representation. Indeed this
is the only way to tweak a Context Free Art program. The
programmer must tweak a value which makes a change with
respect to the coordinate system that the value lives in.

But as Recursive Drawing’s interface evolved, I found
that it was more intuitive to tweak a shape by transforming
it with respect to the other shapes. That is, it didn’t matter
where a shape was or how it was oriented with respect to the
underlying coordinate system, it only mattered how it related
to the other shapes. Thus Recursive Drawing’s canvas–the
model it presents to the programmer–has no center, orienta-
tion, or scale. Shapes are positioned, oriented, and sized with
respect to each other.

6.2 Ontology
The second example relates to ontology: how we divide a
program into separate objects, or equivalently, how we de-
fine identity. A reductionist mindset implies a fixed ontology.
But in life, we can shift between contexts. Each context pro-
vides a different way to divide the world. Analogously, we
would like our ontology to change depending on the context
in which we’re working with a program.

A heuristic we can use to produce an ontology in a given
context is based on the transformations that the context sup-
ports. Given two things, A and B, if in our context every
transformation we apply to A also uniformly applies the
same transformation to B and vice versa, then A and B can
be considered identical in that context.

To illustrate, say we have a rigid body like a coffee cup.
It is unclear that this should be a single object if we’re
looking at it in the context of atoms or quantum clouds.
However, in the context of everyday interactions, we can
identify the coffee cup as a single entity. We determine

this based on the transformations available in our everyday
interaction context. If I transform the handle of the cup by
lifting it two feet upwards, then the rest of the cup is also
lifted two feet upwards. Rigidity by definition implies that a
transformation on any given point of the object must apply
uniformly to every other point on the object. In this way,
an operational context–a set of allowable transformations–
implies an ontology.

This principle was violated in early versions of Recur-
sive Drawing. In an initial design, during editing, the highest
level (the rule to be modified) and the lowest level (a prim-
itive shape, circle or square) of the hierarchy were always
highlighted when the programmer hovered her mouse over
a shape (Figure 4, above). This was intended to show the
relevant parts of the abstraction pyramid, to help the pro-
grammer comprehend the reductionist model. But in user
testing, I found that users were confused about what shape
would move when they performed a manipulation. An im-
provement was made when highlighting the lowest level was
changed to highlighting all shapes which would transform
uniformly if the user started dragging (Figure 4, below). If it
moves the same, it is the same. This more closely mapped a
user’s intuition about what constituted a singular object.

Figure 4. A drawing composed of a heart shape and itself.
The heart is composed of two circles and a square. Above,
highlighting based on the abstraction pyramid. Below, high-
lighting based on what will transform uniformly.

In each of these examples, when I started from a reduc-
tionist perspective, the primitives of the model determined
the transformations that were available to the programmer.
This could be seen as a pernicious form of representation
exposure. In the alternate version, the transformations avail-
able in a given context were considered first. These transfor-
mations then implied an appropriate model to display to the
programmer in that context.

7

7. Strengths and Weaknesses of Recursive
Drawing

Context Free powerfully exploits recursion, allowing pro-
grammers to create complex graphics with surprisingly short
and elegant code. Recursive Drawing extends this strength,
encouraging experimentation with graphical co-recursive
structures.

This experimentation can lead to unexpected insights
which would be difficult to attain in a textual programming
interface. For example, these are all insights I had into the
mathematics of these shapes while playing with Recursive
Drawing:

1. Seeing how a convergent transformation applied itera-
tively always converges to the same point despite its ini-
tial position. This is perhaps the graphical equivalent of
saying if you keep dividing by 2 you will approach 0 no
matter what number you start at. By dragging around the
base case, I was able to gain a kinesthetic understanding
of this principle. (Figure 5)

Figure 5. Convergent transformations always converge to
the same point.

2. Seeing how spirals, with iterative rotation amounts close
to exact divisors of 360 degrees, create second-order spi-
rals. (Figure 6)

3. Seeing how the Fibonacci series is exponential binary
branching with one branch “carried up a level.” (Figure
7)

Recursive Drawing has several weaknesses compared to
Context Free.

The programmer loses some control over her program be-
cause Recursive Drawing does not expose the underlying
representations of numbers and coordinate systems. For ex-
ample, in Context Free, one can adjust a number manually,
in an exact way so as to, for example, make one shape ex-
actly 3 times larger than another. Further, by manually con-
trolling the nesting of coordinate systems, it is possible in
Context Free to specify an exact origin point around which
a shape should rotate. By contrast, in Recursive Drawing in

Figure 6. A single spiral creating second-order spirals.

Figure 7. Binary tree (above) and Fibonacci tree (below).

8

its current iteration, shapes can only be transformed approx-
imately, and can only be rotated with respect to the origin of
a primitive shape in the drawing. However, I am confident
that this functionality can be adequately addressed in further
iterations of Recursive Drawing by allowing the program-
mer to specify additional constraints, for example as is done
in Sutherland’s Sketchpad.

A more subtle problem is that the programmer loses con-
trol because she has less conceptual distance from her cre-
ation. This paper argues that textual interfaces may be in-
appropriate for certain types programming, but their weak-
ness is also a strength in that they force the programmer to
take a step back and consider her problem from a different
perspective (in this case, from the traditional programming
perspective). On the other hand, Recursive Drawing makes
it easy to experiment wildly. This experimentation can cause
the creator to lose sight of her original vision. Directly ma-
nipulable interfaces of the future will need to find a balance
in supporting both experimentation and meticulous control.

Directly manipulable interfaces thus share a problem with
textual programming interfaces: they both make some things
easier to do than others, and some ways of working easier
than others. This can have repercussive influences on the
programs we make and our conception of what program-
ming is about. In order to more fully explore the universe
of programming possibilities, we must always maintain vig-
ilant awareness of this influence.

8. Conclusion
The physical, conceptual, and social dimensions of our pro-
gramming interfaces reinforce our notions of what program-
ming is about. The programming community self-selects for
members who can think using the dominant paradigms of
the community.

By reaching out to alternative programmers, who do not
naturally think in these paradigms, we have the opportunity
to transform the nature of programming. But to do so we
will need to reconsider in a broad sense the nature of our
programming interfaces.

In particular, our traditional programming interfaces are
tightly coupled to the medium of text. They thus primarily
engage the language center of our brain. While great thinkers
and great programmers work on problems internally using
their visual and kinesthetic intuition, these impulses must
be filtered and processed through the symbolic manipula-
tion part of the mind in order to communicate them to the
computer.

Recursive Drawing is a reconsideration of the textual lan-
guage Context Free using a graphical, directly manipulable
interface. Direct manipulation means working with the pro-
gram in a representation that closely resembles the output of
program.

Two design principles were used in the creation of Recur-
sive Drawing: the programming interface is thought of as a

two-way constraint solver rather than a one-way compiler,
and the interface focuses on the program transformations
available in various contexts, rather than program creation
from fixed foundational primitives.

Directly manipulable interfaces naturally encourage ex-
perimentation. This can lead to new insights and deeper un-
derstanding of the programming model. It can also distract
from a programmer’s original intention. Creators of directly
manipulable interfaces will thus need to carefully balance
experimentation and control, and maintain awareness of the
influences a programming interface can have on the pro-
grams we create.

Acknowledgments
Thanks to my test users, whose discoveries and frustrations
pointed the way in the development of Recursive Drawing.
Thanks to my thesis advisor, Nancy Hechinger, for com-
ments on drafts of this paper and encouragement.

References
[1] Arduino. URL http://www.arduino.cc/.

[2] Github. URL https://github.com/.

[3] vvvv - a multipurpose toolkit. URL http://vvvv.org/.

[4] Field, 2008. URL http://openendedgroup.com/field.

[5] H. Abelson, G. Sussman, and J. Sussman. Struc-
ture and Interpretation of Computer Programs. Mit
Electrical Engineering and Computer Science Se-
ries. Mit Press, 1996. ISBN 9780262011532. URL
http://books.google.com/books?id=2p887sEWtAYC.

[6] B. Atkinson. Hypercard, 1987.

[7] M. Coniglio. Isadora. URL
http://www.troikatronix.com/isadora.html.

[8] A. Cooper. The Inmates Are Running the Asylum. Macmillan
Publishing Co., Inc., Indianapolis, IN, USA, 1999. ISBN
0672316498.

[9] C. Coyne, M. Lentczner, and J. Horigan. Context free, 2005.
URL http://www.contextfreeart.org/.

[10] D. C. Engelbart. Augmenting Human Intellect: A Conceptual
Framework. Technical report, Air Force Office of Scientific
Research, 1962.

[11] R. Fiebrink. Real-time Human Interaction with Supervised
Learning Algorithms for Music Composition and Perfor-
mance. PhD thesis, Princeton University, Princeton, NJ, USA,
January 2011.

[12] B. Fry and C. Reas. http://processing.org/. URL
http://processing.org/.

[13] D. H. Hansson. Ruby on rails. URL
http://rubyonrails.org/.

[14] P. Hudak, S. Peyton Jones, P. Wadler, B. Boutel, J. Fairbairn,
J. Fasel, M. M. Guzmán, K. Hammond, J. Hughes, T. Johns-
son, D. Kieburtz, R. Nikhil, W. Partain, and J. Peterson. Re-
port on the programming language haskell: a non-strict, purely
functional language version 1.2. SIGPLAN Not., 27(5):1–164,

9

May 1992. ISSN 0362-1340. doi: 10.1145/130697.130699.
URL http://doi.acm.org/10.1145/130697.130699.

[15] A. Kay. Doing with images makes symbols:
Communicating with computers, 1987. URL
http://archive.org/details/AlanKeyD1987.

[16] P.-O. Latour. Quartz composer, 2005.

[17] D. Norman. The Design of Everyday Things. Basic
Books. Basic Books, 2002. ISBN 9780465067107. URL
http://books.google.com/books?id=w8pM72p dpoC.

[18] S. Papert. Mindstorms: children, computers, and powerful
ideas. Basic Books, Inc., New York, NY, USA, 1980. ISBN
0-465-04627-4.

[19] M. S. Puckette. Max, . URL
http://cycling74.com/products/max/.

[20] M. S. Puckette. Pure data, . URL http://puredata.info/.

[21] G. J. Sussman. Building robust systems an essay. Technical
report, 2007.

[22] I. E. Sutherland. Sketchpad: a man-machine graphi-
cal communication system. In Proceedings of the May
21-23, 1963, spring joint computer conference, AFIPS
’63 (Spring), pages 329–346, New York, NY, USA,
1963. ACM. doi: 10.1145/1461551.1461591. URL
http://doi.acm.org/10.1145/1461551.1461591.

[23] B. Victor. Dynamic pictures, 2011. URL
http://worrydream.com/DynamicPicturesMotivation/.

[24] B. Victor. Inventing on principle, 2012. URL
http://vimeo.com/36579366.

10

