
Designing a General-Purpose Programming Language based
on Agent-Oriented Abstractions: The simpAL Project

Alessandro Ricci
University of Bologna, Italy

a.ricci@unibo.it

Andrea Santi
University of Bologna, Italy

a.santi@unibo.it

Abstract
The fundamental turn of software toward concurrency, de-
centralization, distribution, interaction calls for conceptually
extending or evolving mainstream programming paradigms
with proper high-level features to tackle these aspects. To
this purpose, in this paper we discuss the value of agent-
oriented programming as a general-purpose programming
paradigm to tackle this challenge, and, in particular, we
present an agent-oriented programming language called sim-
pAL, which is based on agent-oriented abstractions that are
meant to simplify the programming of modern applications.

Categories and Subject Descriptors D.1 [Programming
Techniques]; D.2 [Programming Languages]

General Terms Languages, Design

Keywords agent-oriented programming, actors

1. Introduction
The fundamental turn of software toward concurrency, de-
centralization, distribution, interaction that we are witness-
ing in recent years calls for conceptually extending or evolv-
ing mainstream programming paradigms with proper high-
level features to tackle these aspects. As stated by Sutter
and Larus in [18], the free lunch is over. Actually the free
lunch is over not only related to concurrency, but also to
distribution, decentralization, reactivity – in the sense of
reactive systems as defined in [9] – also autonomy. Be-
sides introducing fine-grain mechanisms or patterns to ex-
ploit parallel hardware and improve programs efficiency in
existing mainstream languages, it is now increasingly impor-
tant to introduce higher-level programming abstractions that
“help build concurrent programs, just as object-oriented ab-
stractions help build large component-based programs” [18].

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
SPLASH’11 Workshops, October 23–24, 2011, Portland, Oregon, USA.
Copyright c© 2011 ACM 978-1-4503-1183-0/11/10. . . $10.00

In that perspective, our general research aim is to explore
agent-oriented programming as a high-level general purpose
programming paradigm providing a proper set of abstrac-
tions that are meant to simplify the design and programming
of concurrent, distributed, reactive and interactive programs.

Actually, the idea of agent-oriented programming is not
new, being introduced by Shoham in 1993 [17] and since
then many agent and multi-agent programming languages
have been proposed in literature [4, 6]. However, the fo-
cus of these works so far have been mainly on architectures,
theories, languages to program agents and multi-agent sys-
tems in a (D)AI context, putting most of the effort and em-
phasis on theoretical and practical issues relevant for that
context. Given the AI background, current agent-oriented
programming languages in the state of the art (briefly ac-
counted in Section 7) are based on logic programming, fo-
cusing on features that are especially important in that con-
text – such as providing some basic reasoning capability.
This paper instead proposes agent-oriented programming as
a general-purpose programming approach, as an evolution
of the object-oriented and actor based ones, focusing then
on those aspects that are important from a programming and
software development perspective, and finally investigating
its value for the free lunch is over call. In particular we are
interested in: (i) identifying the essential concepts and fea-
tures of the paradigm, and investigating how such features
could be effective in particular for tackling complexities of
modern software programming; (ii) investigating how well-
known features and mechanisms that have been introduced
and developed in modern programming languages to sup-
port programming in the large and good programing (but
in the sequential case), could be injected and eventually re-
framed by adopting an agent-level of abstraction. An exam-
ple is typing: is it possible to define a type system also for
agent-oriented abstractions so as to, e.g., have strong error-
checking at compile time? Is it possible to define a sub-
typing relationship also for, e.g., autonomous agents so as
define and exploit some kind of substitution property? An
other example concerns code reuse and inheritance, so in-
troducing concepts, theory and mechanisms that allow for
extending, e.g., agent behaviour incrementally. Finally, (iii)

159

investigating if and how the new abstraction level raised by
agent-oriented programming impacts on the design of tools
supporting the development and deployment process, from
front-end to debuggers and profilers.

The method we chose to explore these points is the de-
sign and development of new programming language called
simpAL, and related platform / infrastructure and tools. On
the one side, differently from agent-oriented programming
languages in the DAI context, simpAL is not based on logic
programming but on object-oriented programming to define
data structures and related algorithmic parts. On the other
side, by taking inspiration from existing agent languages and
frameworks, it adopts the Belief-Desire-Intention (BDI) [14]
as reference background model/architecture for defining
agents and the A&A conceptual model [12, 15] to define
the agent environment as first-class design and programming
concept.

In this paper we present first results about the design and
development of simpAL. First, we provide an overview of
the main concepts of the language (Section 2), and then we
go into the details of the features of the main abstractions
of the language – namely the agent abstraction (Section 3),
the environment abstraction (Section 4) and the organization
abstraction (Section 5). Finally, we conclude the paper by
discussing related work (Section 7) and sketching a roadmap
of our future work (Section 8).

2. simpAL: Overview of the Main Concepts
Quoting Lieberman [11], “The history of Object-Oriented
Programming can be interpreted as a continuing quest to
capture the notion of abstraction – to create computational
artifacts that represent the essential nature of a situation,
and to ignore irrelevant details”. Following this perspective,
agent-oriented programming can be framed as an evolution
of object-oriented and actor-based programming represent-
ing the essential nature of decentralized systems where tasks
are in charge of autonomous computational entities, which
interact and cooperate within a shared environment. In par-
ticular, the inspiration for conceiving the features of simpAL
abstractions – at the root of its computation and program-
ming model – comes from human organizations and cooper-
ative working environments.

2.1 Agents, Artifacts and Workspaces
A program in simpAL is conceived like a human organiza-
tion where articulated concurrent and coordinated activities
take place, distributed in time and space, by agents - i.e.,
the members of the organization – working in a common
environment, organized in workspaces (see Figure 1). Ac-
tivities are explicitly targeted to some objectives. The com-
plexity of work calls for some division of labor, so each
member is responsible for the fulfillment of one or multiple
tasks, by virtue of its role inside the organization. So agents
in simpAL are active components in charge of performing

WORKSPACE B

observe
use

communicate with

ARTIFACTS

ARTIFACTS

WORKSPACE A

AGENTS

Figure 1. Abstract view of a simpAL program.

autonomously some task. Autonomously means in this case
that given a task to do, they pro-actively decide what actions
to do and when to do them, promptly reacting to relevant
events from their environment, fully encapsulating the con-
trol of their behaviour.

Interaction is a main dimension, due to the dependen-
cies among the activities. Cooperation occurs by means of
both direct message-based communication – like in the ac-
tor model [1] – and through resources and tools composing
the shared environment, represented by the artifact abstrac-
tion. An example of artifact is a shared blackboard, but also
a simple counter, a clock, or rather a database—so artifacts
can be used to directly represent any computational entity
that conceptually does not need to be autonomous, but that
can provide functionalities that can be exploited by agents.
Analogously to artifacts in human organizations, artifacts in
simpAL can play an essential role to support indirect form
of coordination or to explicitly represent the co-constructed
results of workers’ activity. Like artifacts in the human case,
artifacts in simpAL can be dynamically created (by agents)
and disposed, and eventually can be designed to be com-
posed, so as to create complex artifacts by connecting sim-
pler ones.

Agents interact with other agents by means of commu-
nication actions, which allow to asynchronously exchange
messages making it explicit the objective of the message,
for instance to inform about something or to assign a task.
Agent-artifact interaction is based instead on the concept of
use and observation, reminding the way in which artifacts
are used by people in human environments. In order to be
used, artifacts provide some set of operations, that corre-
spond to the set of actions available to agents to use them.
So the repertoire of an agent’s actions at runtime depends
on the artifacts that the agent knows and can use. Besides
operations, the usage interface of an artifact includes also
observable properties, as observable information concerning
the dynamic state of the artifact which may be perceived and
exploited by agents accordingly. In this way, the observer
pattern and event-oriented communication are directly sup-
ported by the core abstractions of the model (and language),

160

but without inversion of control—this will be clarified later
on.

Finally, the environment of an organization can be struc-
tured into one or multiple workspaces, possibly distributed
in multiple nodes of the network. A workspace is a logical
container of artifacts and finally of the activities occurring
inside the organization; it is an abstraction useful then to de-
fine the logical topology of the organization, which can be
distributed, and a related notion of locality. An agent of the
organization can concurrently join and work transparently in
multiple workspaces.

2.2 First General Remarks
First, the approach promotes a decentralized mindset in pro-
gramming: there is not a unique locus of control in the
system, which is decentralized instead into agents (decid-
ing which actions to so and when) and artifacts (hosting
action execution). The decentralization is first of all logi-
cal: the number of physical threads used to run a (possi-
bly distributed) program is related to the number of pro-
cessors or core available in the system, not the number of
agents/artifacts to be executed. Such a support to decentral-
ized mindset is in common with other main approaches in
concurrent programming, starting from the actor model [1].
Compared to actors, here we don’t have a single abstrac-
tion to represent every component of the system but two dual
abstractions: one conceptually representing autonomous en-
tities (agents) and one representing non autonomous enti-
ties that are used and observed by the autonomous one (ar-
tifacts). On the one side, the drawback for this choice is
breaking uniformity, on the other side this allows for raising
the level of abstraction. In actor-based approaches – includ-
ing those based on processes like Erlang [2] – everything
must be an actor, so also those entities that conceptually
are not thought to be autonomous or exhibiting a pro-active
behavior. An often cited example is the bounded-buffer in
producer-consumer architectures. It is more natural to model
such an entity as an artifact, providing actions to insert and
remove items, possibly coordinating such actions so as to
avoid interferences and to synchronize producers and con-
sumers agents, than as autonomous entity exchanging asyn-
chronous messages.

Then, a natural question is: where are objects? Are they
replaced by artifacts? The answer is no, objects are used to
define the data model of programs. That is, agents and arti-
facts as meant to be used as coarse grain abstractions to de-
fine the shape of the organization (that is, of the program), in
particular of the control part of it (decentralized, distributed).
This layer is fairly independent from the paradigm and lan-
guage adopted to represent data structures and purely trans-
formational computation. In the case of simpAL to this end
we adopted an object-oriented programming language, in
particular a subset of Java, that is the pure OO part of the
language, excluding constructs and mechanisms introduced

for concurrency. So objects are the basic data structures used
inside agents, artifacts and in their interactions.

3. The Agent Abstraction
The model/architecture adopted for agents in simpAL is a
simplification of the Belief-Desire-Intention (BDI) one [14],
yet extended with features explicitly devised with program-
ming and development in mind. This choice is motivated
by the capability provided by that model to represent active
components that need to integrate both task-oriented / pro-
active and even-driven / reactive behaviors, providing also
an effective way to modularize complex behaviour.

In the following, first we provide a bird’s eye view on the
model, then we describe in more detail some key concepts,
providing also some snippets of simpAL code to exemplify
the description.

3.1 Overview
An agent is a state-full task- and event-driven entity, able to
pursue autonomously tasks according to the role(s) it imple-
ments inside the organisation. Events concern both changes
in the environment and messages sent by other agents. The
private memory of the agent is given by a memory store
called belief-base, in which the information that the agent
has about its private state, about the observable state of
the environment and about information communicated by
other agents is collected in terms of variable-like informa-
tion items called beliefs. To perform tasks, the agent exploits
the plans available in its plan library. Plans are modules of
procedural knowledge specifying how to act and react to en-
vironment events in order to accomplish some specific task.
The set of plans in the plan library depends on the scripts
loaded by the agent, which group set of related plans to play
some specific role(s).

3.2 Agent Beliefs and the Belief-Base
Structurally, a belief in simpAL is similar to a variable in
procedural languages, being defined by a name, a type and
a value. Beliefs are used uniformly to represent information
that the agent knows, which can actually have a different
source. First, beliefs can refer to some information defined
by the agent itself, in the agent program, either in scripts or
in plans. In this case beliefs are analogous to instance fields
of classes and local variables declared in methods; they are
defined at compile time, and they can be accessed by name
both to read the value and assign new values.

Then, beliefs can refer to the observable state of an arti-
fact and the source in this case is the artifact itself. As will
be detailed in Section 4, the observable state of an artifact
is represented by a set of variable-like observable proper-
ties: when using an artifact, on the agent side automatically
a belief is created for each observable property of the arti-
fact and the value is automatically updated as soon as the

161

role MyRole extends BasicRole {

task MyTask {

aParam: int; // primitive type

myList: List<String>; // an object

myCounterTool: Counter; // an artifact

}

task AnotherTask {...}

}

Figure 2. Role definition in simpAL.

change is perceived by the agent1. Differently from the pre-
vious case, beliefs about observable properties are dynamic,
in the sense that the actual set of beliefs of this kind depends
on the set of artifacts (and the observable properties) that
the agent is using (observing). This is explicitly declared in
plans, by means of an attribute called using, as will be de-
scribed later. The belief is automatically removed as soon as
an agent is no more using the artifact.

Finally, beliefs can refer to information communicated by
some other agent through a specific communication action
(tell). In that case the source of the belief is the sender agent
and beliefs are dynamic: a new belief is dynamically created
for each new information communicated by other agents by
means of specific communication acts. The set of possible
beliefs sent by means of a tell that an agent can understand
is explicitly declared in task definition.

It is worth remarking that in existing agent-oriented lan-
guages beliefs are typically represented by first-order logic
literals, denoting information that can be used by reasoning
engines. However the logic representation is not necessarily
part of the belief concept, as remarked by Rao and Georgeff
in [14]2.

3.3 Tasks and Roles
The notion of task is used pervasively in the analysis and
design of concurrent and distributed programs, as a starting
point to decompose and modularize the specification of what
a system has to do. For task here we mean any kind of de-
scription of some well-defined unit of work to be done—so
what must be done, not how to do it. In simpAL such a con-
cept is brought into the language level, so as to explicitly
represent and specify what drives the agent active and au-
tonomous behavior. In fact, an agent starts doing something,
selecting autonomously what actions to do, if and only if it
has at least some task to accomplish—which can be assigned
to the agent also statically, at boot time. The notion of role
is introduced to explicitly group a set of tasks, defining then
explicitly what are the tasks that agents implementing a role
are supposed to be able to do.

1 during the execution cycle, described in Section 3.7
2 “[beliefs] can be viewed as the informative component of the system state”
and “[beliefs] may be implemented as a variable, a database, a set of
logical expressions, or some other data structure”([14], p. 313)

Figure 2 shows the definition of a role and of a set of
tasks. A role is identified by a name and the definition of the
tasks. Each task is defined by a name, a set of parameters
– representing information about the task to do or done,
specified by agents at runtime – and a set of predefined
optional attributes, that allow for specify further information
about the task, such as the expected information that can be
told to agents performing the task (understands attribute),
the goal of the task i.e. the condition that the task aims at
making true (goal attribute), the list of tasks that must be
accomplished before this one (pre attribute).

It is worth noting that tasks are not a first-class concept in
actors and (concurrent) object-oriented systems, which are
based instead purely on messages (and methods). In that case
tasks are implicit: an object assigns or delegates a task to
another object by sending it a message. At the same time,
messages in actors and processes in particular – as well as
in agents – can be used not only to ask to do some task, but
also simply to communicate some information.

Introducing an explicit notion of task distinct from mes-
sages allows to define more clearly the concept of pro-active
behaviour, distinguishing it from a re-active one. Actors (and
objects) are often labelled as reactive since the only way for
an actor to do something is by reacting to the receipt of a
message. Agents – as defined here – are pro-active since they
move and keep moving as soon as they know to have a task
to accomplish, so as achieve the task – independently from
how the task have been assigned to them (not necessarily
by means of receiving a message). And they keep moving
until the task has been accomplished (or the task is aborted
because of some failure).

3.4 Typing Agents with Roles
We use the notion of task to define a notion of type for
agents. In the case of objects/actors, the type defines the set
of messages that an object/actor of that type can accept, in
spite of its implementation. The type of an agent is given
then by the role or the set of roles that it declared to imple-
ment, independently from the concrete behavior that it will
exhibit to play the role(s) and accomplish the tasks.

Analogously to the object-oriented case, the availability
of well-defined notion of type also for agents allows to:
(i) improve error checking at compile time, i.e. if an agent
declares to implement some role, then at the implementation
level it must implement the necessary to achieve every task
specified in the role (more about this in next subsection);
(ii) define and exploit a sub-typing relationship among roles,
to make it easier the incremental development and reuse of
programs. In particular, a role R′ declared as an extension
of a role R implicitly includes all the tasks defined in R
or their extension/refinement, and possibly the definition of
new tasks. In that way, an agent who declares to play the role
R′ can substitute any agent who plays the role R.

As a final note, the notion of role has a value also at the
organizational level as well (described in Section 5), allow-

162

ing for explicitly specifying information about the overall
“social” structure of the system (organization), in terms of
the possible roles available and related relationships.

3.5 Plans and Scripts
A task describes what has to be done, not how to do it.
To this end we introduce a notion of plan as a construct to
encapsulate the procedural knowledge that an agent can re-
use and exploit in order to fulfill some task, and finally to
define any block of agent behaviour. The term procedural
knowledge is referred to the fact that the content of the plan
is used by the agent to select the sequence of actions to do in
order to fulfill some task—and, as will be described in next
subsection, in the simplest case this is analogous to a simple
procedure.

The set of the plans of an agent is stored in the agent plan
library. Actually also the content of the library is represented
also in the belief base, that is an agent “knows” what plans
it has. The overall behavior of an agent is then defined by
the set of plans that it has in its plan library. So from a
programmer point of view, programming an agent means
specifying a set of plans to be included in agent plan library.
At runtime, given a task to do, the agent selects from the plan
library an applicable plan for the task and starts executing
it. Conceptually, this is analogous – at a first glance – to
message dispatch in objects/actors, where a message (task)
is handled by executing the corresponding method (plan).

Actually, for the same type of task, an agent could have
multiple plans that can be used in different context. The
context is defined by the agent belief base, which includes
also beliefs about the current value of the task to be executed.
Thus, the definition of a plan can include – besides the
attribute specifying explicitly the type of the task for which
the plan is good for – also a context attribute, specifying the
condition (as a boolean expression over the belief base) in
which the plan can be used. So, by refining what previously
said, at runtime a plan is selected if type of task specified
in the attribute is compatible with the type of the assigned
task and if the condition expressed in the context attribute
holds, given the current state of the agent belief base. This
makes it possible then to modularize the agent behavior not
only on the basis of tasks, but also on the runtime context of
the agent. This is a nice feature in particular to simplify the
implementation of context-aware behavior.

In order to group and modularize set of plans related to
the same task or to the tasks of the same roles, the notion of
script is introduced. Conceptually, an agent script describes
how to play one or more roles, as defined previously. More
practically, it contains the definition of the set of plans which
can be exploited by an agent to play some role, and possibly
also the definition of the some global beliefs that are shared
and accessed in plans. Figure 3 shows an abstract example
of agent script in simpAL, including only the skeleton of the
plans. Beliefs are declared specifying the name of the belief,
the type of the value of the belief and optionally the initial

agentscript MyScript implements MyRole {

/* long-term beliefs */

value: double;

st: String;

myTool: MyTool;

plan MyPlanA

task: MyTask

context: (aParam > 0 && st.equals("test")) {...}

plan MyPlanB

task: MyTask

context: aParam <= 0

using: myCounterTool, myTool {...}

plan MyPlanC

task: AnotherTask {...}

...

}

Figure 3. Script definition in simpAL.

value. Types range from primitive data types, object-oriented
(Java) data types (so interfaces, classes) or simpAL specific
types (such as roles and artifact usage interfaces).

In plan definition, task: and (optionally) context: are at-
tributes used to specify respectively the task for which the
plan can be used and the context. The expression in context:
can refer also to the actual value of the parameters of the
task specified in task:, that triggered the selection/execution
of the plan (e.g., aParam). Other attributes are useful for
declaring information about the plan execution, for instance:
declaring explicitly the list of the artifacts that are going to
be used (and observed) in the plan, such as in the the plan
MyPlanB in Figure 3 (using: attribute); declaring explicitly
the condition over the belief-base to consider the plan com-
pleted (goal attribute); declaring if the plan should be ex-
ecuted atomically (atomically: attribute) – that means as a
single action.

So, analogously to classes in OO, agent scripts are useful
to provide a form of encapsulation and information hiding in
agent implementation: they bundle together beliefs as infor-
mational state and plans as procedural knowledge, making
beliefs only accessible internally to plans. Plans instead are
an explicit mechanism to modularize agent overall behavior,
providing also a disciplined way to allow for an agent to pos-
sibly extend its behavior at runtime, by creating and adding
plans to the plan library.

3.5.1 Error Checking, Extension and Polymorphism
If roles are what defines the interfaces for agent, agent scripts
define their implementation and they are kept separated. This
makes it possible to do some error checking on agent script
at compile time: If an agent script implements some role R,
then it must define at least one plan for each task defined

163

plan MyPlan task: MyTask, using: myCounterTool,

console @ main {

info: int;

friend: RoleB;

meetingTime: long;

meetingRequest: MeetingInfo;

...

changed count : count > 0 => someAction1 #act

when done_act => inc (delta: 2) on myCounterTool

told ping by friend => println (msg: "news")

changed time : time == meetingTime

=> tell meetingRequest to: friend

always => info = info + 1

always : info < 100 => info = info + 1

changed count : count < 0 => {

inc (delta: 2) on myCounterTool

println(msg: "inc done")

}

}

Figure 4. A plan definition with some action rules.

in R. Otherwise, it means that the script does not provide
enough skills to play the role and an error is raised.

Moreover, as in the case of classes in OOP, scripts make
it possible to define an extension and reuse mechanism for
agent for what concern the behavior/plan level, to have some
support to incremental development. In particular, an agent
script S′ can be defined as an extension of an agent script S,
inheriting in that case all the plans and beliefs defined in S
(problems related to name clash are managed accordingly)
and possibly adding further plans either to achieve tasks
already part of the role implemented by S, or new tasks
defined in a role R′ implemented by S′ (and not by S).

Finally, this characterization of scripts and plans along
with the notion of task and role defined previously make
it possible to define a well-defined notion of polymorphism
also for agents: (i) the same task can be performed by dif-
ferent agents implementing the same role in different ways,
depending on the scripts that they are using and then the set
of plans described in scripts; (ii) a task assigned to an agent
can be performed in a different way depending on the con-
textual conditions.

3.6 Plan Body: Actions Rules
Integrating both active and reactive behavior is an important
and hard programming issue, more generally related to the
well-known problem of integrating thread-based and event-
based systems [8]. In simpAL this point is tackled by the
model adopted defining the procedural knowledge of plans,
which has been conceived in order to allow for easily spec-
ifying both sequence or workflows of actions but also reac-
tions to events perceived asynchronously by the agent.

A plan body is given by a set of local beliefs and action
rules. Local beliefs are beliefs whose temporal and lexical

scope is given by the plan body, analogous to local variables
in procedures. So they are automatically added to the belief
base when a plan is instantiated and removed when a plan in
execution completes or aborts. The syntax to declare a local
belief is the same as for the beliefs declared at the script
level.

Action rules specifying what action to do and when. Simi-
larly to Event-Condition-Action (ECA) rules, when is the de-
fined by the description of an event description E and a con-
dition C as a boolean expression over agent beliefs, which
include internal beliefs and beliefs about the state of the en-
vironment. In the most general case, an action rule is syn-
tactically represented as E : C ⇒ A [label]. The informal
semantics is: if an event matching the E description occurs
and contextually the condition C holds, then select the action
A to be executed and identify it with the label identifier.
Then, a plan in execution is considered completed as soon
as: (i) the goal attribute specified in the plan or in the corre-
sponding task is satisfied; (ii) in the current plan there are no
action rules that can be triggered from now on (because no
events specified can happen anymore).

3.6.1 Events
Events concern changes to agent beliefs, caused by either
(1) some percepts received from the environment, or (2)
messages received by other agents, or rather (3) the passing
of time.

The first case concerns changes to beliefs about the cur-
rent value of the observable properties of artifacts that are
used by the agents in the plan. The syntax defining the event
in this case is changed ObsBel , where ObsBel is the name
of the belief corresponding to the name of the observable
property of an artifact, possibly including also the identifier
of the artifact, source of the belief. In the example showed
in Figure 4, the first reaction rule reacts to the change of
the belief count, which is about the current value of the cor-
responding observable property in the artifact myCounter-
Tool, declared to be used in plan by means of the using:
attribute (myCounterTool in this case is known because it
is a parameter of the task MyTask that triggered the plan).
The first case includes also changes to beliefs that used to
keep track of the execution state of those actions that have
been explicitly labelled. In this case the event is syntactically
represented by when done AL or when failed AL, where AL
is the action label. In Figure 4 the second rule says that the
inc operation is performed on the myCounterTool when the
action someAction1 completed.

The second case concerns changes to beliefs that repre-
sent information that can sent by other agents through the tell
communicative action. In that case the syntax is told What [
by Whom], where What and Whom are respectively beliefs
declared by the agents about the type of expected informa-
tion and – if specified – the role of the agent sending the
message. In Figure 4 the third rule says that the agent prints

164

a message on the console artifact when the agent receives a
message from an agent of type RoleB about the ping belief.

Finally, the third case concerns changes to the internal
belief (called time), which keeps track of time passing, in
milliseconds. The fourth rule in Figure 4 says that a meet-
ingRequest information is told to a friend agent at the time
specified by the alarm local belief.

Besides these three cases, some predefined keywords
are used to identify directly some specific events: among
the others, always is used to mean that the rule is always
triggered—the event in this case is at each new cycle, where
the agent cycle is explained in Section 3.7, or, equivalently,
the belief about the value of the agent inner logical clock
has been incremented. Two rules in Figure 4 use always, one
including also the context so that the action in that case is
executed every time the info is less that one hundred.

3.6.2 Actions
Actions specified in action rules can be either external ac-
tions, that are those affecting the environment or commu-
nicative actions to send messages to other agents, or internal
actions, affecting just the internal state of the agent. The ac-
tions on the environment are actually given by the operations
provided by artifacts—in this case the name of the opera-
tion is specified, along with parameters value and (option-
ally, when needed) the target artifact. Examples are shown
In Figure 4 in the second and third rules. Parameters are
nominal/keyword-based, so the name of the parameter plus
the value must be specified. Some predefined external ac-
tions are provided to dynamically create and dispose arti-
facts, to spawn and terminate agents, to communicate with
other agents, and other related functionalities Communica-
tive actions currently include tell, specifying the belief to
tell and the receiver of the message (see the fourth rule in
the example), and the dotask, to assign a task to an existing
agent.

Basic internal actions include the assignment action, to
update the value of a belief, and actions to work and ma-
nipulate local (Java) objects, to instantiate local objects and
to invoke methods—adopting a Java-like syntax. Also con-
trol structures such as if, while and for are provided as spe-
cific internal actions. A particular important and useful in-
ternal action is the one that allows for instantiating anony-
mous sub-plans, as a way to define blocks of action rules.
An anonymous sub-plan is like a plan but without the spec-
ification of a name and of the task attribute. Syntactically,
they are represented by { . . . } blocks. An example is given
by the last rule in Figure 4. In that case, the action which is
performed when the count belief is updated and the value
is less than zero is the instantiation and execution of a sub-
plan, composed by some other action rules. From the execu-
tion point of view, sub-plans are stacked upon their parent
plan—similarly to what happens with procedure calls.

plan SeqPlan1 task: ... goal: done_a3 {

todo_a1 => action1 #a1

when done_a1 => action2 #a2

when done_a2 => action3 #a3

}

plan SeqPlan2 task: ... {

action1

action2

action3

}

plan ParPlan task: ... {

action1 |

action2 |

action3

}

plan ParPlan2 ... {

action1 #a1 |

action2 #a2

done_a1 && done_a2 => action3

}

Figure 5. Plans with sequences of actions and workflows of
actions.

3.6.3 Specifying Mixed Active and Re-Active
Behaviour

The combination of the event and condition attributes make
it possible to write down active behaviors exhibiting the
desired level of reactivity, from simple sequences of actions
to purely reactive behaviors to workflows of actions mixing
the styles.

The execution of a sequence of actions action1, action2,
action3, ... can be encoded in terms of actions rules as shown
in the SeqPlan1 plan in Figure 5: in that case, the action
action2 is executed when the previous one has completed
(event when done a1), and the action action1 is executed
only if it has not been already executed once. done XX and
todo XX are beliefs storing boolean values, that are auto-
matically added to the beliefs when the plan is instantiated
(as part of plan’s beliefs), initially set respectively to false
and true. Under the hood, when an event concerning the suc-
cess of an action labelled AL is perceived, then the belief
done AL is updated to true, and internally when an action
labelled with AL is executed, the belief todo AL is set to
false.

To easy the specification of sequential behavior, some
syntactic sugar and convention have been introduced. When
no event and context is specified – and so only the action
is – the action can be selected to be executed immediately
and it is executed only once. Also, the agent must wait the
completion of the action before eventually selecting the next
action, in the case that also the next action rule is without
the specification of the event and the context. Given this

165

plan MixedPlan task: MyTask, using: myCounterTool {

c: int = 0;

inc (delta: 1)

inc (delta: 5)

inc (delta: 2)

+count => atomically: {

println (msg: "new value: "+count)

c = c + 1

}

}

plan AnotherPlan task: ...

using: console @ main, counter @ wsp2 {

max : int = 100;

println (msg: "starting")

goal: count > max {

always => {

inc (delta: 1)

println (msg: "incremented ")

}

}

println (msg: "done.")

}

Figure 6. Plans integrating sequences of actions and reac-
tions.

convention, the sequence can be expressed simply by a list
of actions, as shown in the SeqPlan2 plan.

A further convention is adopted to allow for easily speci-
fying sequence of actions in which we don’t want to wait for
the completion of each action before executing the next one.
This can be done by adding a pipe character — between two
actions – that is, after the action expressed in an action rule,
which can have also the event and the condition specified,
and before an action rule with only the action specified. An
example is given by the ParPlan plan, where the actions are
selected and executed sequentially, however without waiting
the completion of any of them, that is action2 is executed
without waiting for the completion of action1 and action3
is executed without waiting for the completion of action2.
A further example is given by the ParPlan2 plan, where ac-
tion2 is executed without waiting the completion of action1.
Instead, action3 is executed only when both action1 and ac-
tion2 have completed (which is a context condition, without
events).

This model allows for specifying quite naturally plans
that combine sequences, reactions, workflows—obtaining
behaviors in which the agent is actively doing some se-
quence of actions and at the same time is able to react to
events, eventually suspending what is doing in order to do
some other action. A simple example of this behaviour is
shown in Figure 5, where myCounterTool artifact is used
by the agent executing three times the inc action (operation

provided by the artifact), and each time the count observ-
able property changes, the agent reacts by printing the ac-
tual value on standard output and incrementing a local be-
lief. A final example is given by AnotherPlan, in which the
agent first prints a message on the console, then increments
a counter artifact until the perceived value of the observable
property is greater than a max value.

3.7 The Agent Execution Cycle
At the architectural level, the integration of a task-oriented
and event-driven behavior is made it possible by the agent
execution cycle – also called control loop – which defines
the conceptual sequence of steps that the agent processor
(interpreter) repeatedly executes to run an agent, until agent
termination (if the agent terminates). Conceptually the agent
processor can be conceived as a machine with a clock, exe-
cuting an execution cycle at each clock tick. The model of
agent execution cycle adopted in simpAL is a simplification
of the one typically adopted in BDI architecture, in partic-
ular of the one found in AgentSpeak(L) [13]/Jason [5] pro-
gramming languages. It is composed by three conceptually
different stages (see Figure 7), that are repeatedly executed:
sense, plan, and act.

Sense stage – In this stage the internal state of the agent
is updated by processing those external events coming from
the environment and stored in an agent external event queue.
Such events may concern: (i) changes of the observable state
of the environment – more specifically, the set of artifacts
– that are relevant for the agent work and that the agent
is using; (ii) the completion with success or failure of an
environment action – corresponding to the execution of an
artifact operation – that the agent executed previously; (iii)
the arrival of messages communicated by other agents.

The processing of every external event which is relevant
of the agent causes the update of the belief base. In particu-
lar, changes to the observable properties of an artifact cause
the update of the related beliefs in those plans in which the
agent declared to use the artifact. The arrival of a message
related to communication acts informing the agent about
some information causes the update of the local beliefs of
the plans in execution for which the such information is rel-
evant. Finally, external events related to action success or
failure cause the updating of the beliefs as described in pre-
vious section.

Besides the informational state, also the motivational
state and the intentional state may be updated in this stage.
If the agent receives a message related to a do-task commu-
nicative act, then a new task to do is added in the agent task
to-do list. The same applies if the agent has some percep-
tion from the environment that there is a new task to do. The
intentional state is updated instead when receiving an event
about an action success or failure, in particular the state of
the plan in execution that selected the action is updated ac-
cordingly.

166

sense stage

plan stage

act stage

events

actions

Agent State

Agent Program
(plans)

Agent Ongoing
Tasks

clock

Event
queue (sensor)

Action buffer
(actuator)

Figure 7. Conceptual representation of an agent architec-
ture, with in evidence the stages of the execution cycle.

For each update to the agent beliefs caused by external
events an internal event is generated and added into an
internal event queue, which will be accessed in the plan
stage.

Plan stage – In this stage, the next action to do is selected,
given the content of the internal even queue, the current state
of the agent, and the behavior specified by plans of the agent
script. First, the ongoing task (and plan in execution) to focus
on is selected according to a basic scheduling policy. This
because an agent may perform multiple tasks concurrently:
for each ongoing tasks there is a stack of plans in execution.
It is a stack because the execution of a plan may involve
the execution of sub-plans and/or sub-tasks, which cause
the instantiation of plans that must be completed before
the “parent” plan would proceed. These sub-plans are then
pushed on top of the parent plan, in the plan stack related to
the same task. Once chosen the ongoing task to focus, the
action selection is driven by the set of action rules currently
available given the stack of plans related to the task.

Act stage – In this stage the action selected in the plan
stage is executed. If the action is internal, the effect is just
an update of the internal state of the agent; if the action is
on the environment, the effect is to trigger the execution
of a corresponding operation on some artifact (this will be
described in Section 4). The completion of the action or its
failure will be possibly perceived as an asynchronous event
in one next future cycle.

Conceptually, the agent processor continuously executes
these three stages, performing one execution cycle at each
logical clock tick. Conceptually, the agent control flow is
never blocked: so, for instance, even if the agent has exe-
cuted some kind of blocking action – that means in our case
an action in which the completion event will be perceived

artifactmodel Counter {

obsprop count: int;

operation inc(delta: int);

}

artifact MyCounter implements Counter {

init(startValue: int) {

count = startValue;

}

operation inc(delta: int) {

count+=delta;

}

}

Figure 8. Example of a model of artifact (top) and of a
template implementing the model (bottom).

not immediately but some time in the future – it can always
react if the current plan prescribes this.

4. The Environment Abstraction
The environment of an organization is given by the over-
all dynamic set of artifacts, distributed in workspaces, part
of which are available by default to provide basic func-
tionalities. For instance, in each workspace there is a con-
sole artifact providing a println operation (action) to write
on the console. Basic functionalities include the creation or
disposal of artifacts, lookup for existing artifacts satisfying
some criteria, and many other management aspects that are
not discussed in this paper – including security.

As mentioned in previous sections, an artifact can be con-
ceived as a module encapsulating the implementation and
execution of sets of operations as actions that the artifact
makes it available to agents, and a set of observable prop-
erties that agents using the artifact may perceive. Besides,
an artifact contains also some hidden (not observable) state
variables, useful for implementing artifact functionalities,
and possibly also internal operations, which can be executed
by other operations of the artifact and are not part of the us-
age interface.

Analogously to the agent case, we separate the abstract
description of the artifact functionalities from their concrete
implementation defining artifact structure behavior. The for-
mer is specified in artifact models, defining the usage inter-
face of all the artifacts implementing that model. The defi-
nition of a usage interface includes a name of the interface,
a set of observable properties and the declaration of a set
of operations. Figure 8 (top) shows a very simple example
of model of a counter artifact, providing a count observable
property and a inc operation. Observable properties are sim-
ilar to variables, characterized by a name, a value and a type.
The parameters declared by operations are keyword based—
for instance, inc has a parameter called delta.

The artifact implementation is defined in artifact tem-
plates. Like classes in OOP, artifact templates are a blueprint

167

for creating instances of artifacts. The definition of an arti-
fact template includes a name, the declaration of the imple-
mented artifact model, the concrete implementation of oper-
ations – including internal operations – and the definition of
those internal variables that are used in operation implemen-
tations. Figure 8 (bottom) shows an example of template,
implementing the Counter model.

Operation behavior is given by a simple sequence of
statements, in pure imperative style, using classic control
flow constructs, assignment operators, etc. As mentioned
previously Java is used as a language for defining data struc-
tures. So objects as well as primitive values can be used in
expressions and as value of variables and observable proper-
ties, and method invocation appears among the statement of
the language.

A main aspect of the model is that operation execution is
transactional, in the sense that (i) changes to the observable
state of the artifact (properties) are done atomically, (ii)
changes are perceived by agents observing the artifact only
when the operation completes (with success). The execution
of an operation can fail: this causes the failure of the action
on the agent side, on on the artifact side the observable state
is rolled back to the value before executing the operation.

4.1 Typing Artifacts
Artifact models are used to define the type of artifacts. This
makes it possible to: (i) check errors in agent scripts—each
time an artifact identifier is used either to define explicitly
the target of action execution or the source of a belief related
to an observable property, we can check that the specified ac-
tion or observable property is actually defined for that type of
artifact; (ii) check errors in artifact templates—by checking
that every operation declared in the model is implemented
then in the template; (iii) defining a sub-type relationship
so as to enjoy substitution property for artifacts. That is: if
an agent needs to use an artifact implementing a model M ,
then it can actually use any artifact implementing a model
M ′ which is a subtype of M . (iv) exploiting polymorphism
also at the artifact level. That is: two artifact (templates) im-
plementing the same model M can provide different imple-
mentation and finally behaviors for the same operation (ac-
tion). So, on the agent side, different kind of artifacts imple-
menting the same model are used in the same way, without
the need of knowing the specific implementation of the ar-
tifact, yet possibly obtaining different specialized behaviors
depending on the specific template.

Finally, implementation reuse and incremental develop-
ment is enabled by exploiting inheritance among artifact
templates. In particular, an artifact template can be defined
by extending/refining an existing artifact template: in that
case it inherits the implementation of operations, observable
properties, state variables, which can be extended by defin-
ing new operations or refining existing ones.

orgmodel MyOrgModel {

workspace w1 {

console: Console;

c1: Counter;

}

workspace w2 {

console: Console;

bb: Blackboard;

}

agents {

agent0: MyRoleA;

agent1: MyRoleB;

}

}

agentscript MyScript implements MyRoleA

in MyOrgModel {

plan MyPlan... using: bb @ w2 {

putNote note: new Note("hello").

}

}

org MyOrg implements MyOrgModel {

workspace w1 {

c1 Counter startValue: 10

...

}

...

agents {

agent0 script: MyScript task: MyTask(aParam: 10);

...

}

}

Figure 9. Definition of an organization model, of an agent
script specifying also the organizational model, and of an
organization implementing the model.

5. The Organization Abstraction
The “main” of a simpAL program corresponds to defini-
tion of the concrete (initial) configuration of an organiza-
tion. Also for this aspect we separate the model part from
the concrete implementation one. The organization model
defines abstractly the structure of the overall program, which
includes the set of workspaces and possibly the name (iden-
tifier) and type of some agents and artifacts that are known
to be part of the organization.

Figure 9 shows a simple example: MyOrgModel defines a
model of organization composed by two workspaces called
w1 and w2. The workspace w1 hosts a console artifact of
type Console and a c1 artifact of type Counter. A console
artifact is declared also in w2, along with a Blackboard ar-
tifact. In this case c1, console, bb are the names (iden-
tifiers) of the artifacts—actually the full identifier is given
by the name and the name of the workspace (e.g., bb @
w2), since artifacts with the same name can be run in dif-
ferent workspaces. Then, inside the organization agent0 and

168

agent1 are declared as the identifiers of two agents playing
the roles MyRoleA and MyRoleB. It is worth remarking that
the declared agent/artifact instances are not meant to be the
unique instances of agents and artifacts inside the program:
only those whose name and type must known at the orga-
nizational level. The declarations are useful to define global
symbols that can be resolved and checked in scripts that ex-
plicitly declared to play inside an organization of this type
(see Figure 9). By doing so, the symbols and identifiers de-
clared in the organization model can be referred also in the
script (e.g., bb @ w2 in using: attribute) and then checked at
compile time.

Then, the definition of a concrete organization accounts
for specifying the concrete instances of agents and artifacts
declared in the org model (see Figure 9). For artifacts, the
artifact template is specified, possibly including also the
value of some initialization parameter. For agents, the script
must be specified, along with the initial task to do and task
initial parameters. Actually, it is not necessary to specify the
instantiation of all the agents and artifacts declare in the org
model: some can be also instantiated dynamically.

The definition of the organization can include also infor-
mation about its distributed deployment (not discussed here
for lack of space), so specifying the organizational nodes
hosting the execution of workspaces and of agents. Organi-
zational nodes are bound to physical network nodes when
launching the program.

6. The simpAL Platform: A Sketch
The simpAL platform is being developed in Java and is
available as an open-source project at http://simpal.

sourceforge.net. The platform includes:

• an Eclipse-based IDE organized in plug-ins, currently
including an xtext-based editor;

• a compiler, to compile simpAL programs into executables
that can be run by a launcher, which loads the program
on the runtime infrastructure to execute it;

• a distributed runtime infrastructure (called simpAL OS),
which must be in execution in every node / host which
may need to execute (a part of) a simpAL organization;

• libraries, including a system library – with artifacts pro-
viding basic system functionalities related to I/O, GUI,
file system access – and a utility library – with artifacts
providing coordination functionalities (e.g. blackboards,
tuple spaces, etc).

Besides the editor, an important part of the future develop-
ment of the IDE concerns the development of: (i) an inter-
active programming environment, to visualize and interact
with simpAL programs while developing them; (ii) a debug-
ger, and a (iii) profiler. These front-end tools will be neces-
sarily integrated with proper backends, part of the runtime
infrastructure.

7. Related Work
The work presented in this paper is strongly related to exist-
ing agent programming languages introduced in the (D)AI
literature, in particular to those based on the BDI model—
interested readers can refer to [4, 6, 7] as comprehensive
surveys. As mentioned in the introduction, differently from
these languages simpAL has not been designed with AI
and DAI problems in mind, but as a language to explore
agent-oriented programming as a mainstream programming
paradigm for software development. For this reason, on the
one hand simpAL has features that are typically not interest-
ing from a AI point of view – such as a well-defined notion
of type for agents, mechanisms for incremental development
and reuse, etc.; on the other hand, it does not have features
that are important when an AI context is chosen instead, such
as using first-order logic to represent beliefs, goals and re-
lated inference rules.

Besides existing agent programming languages in (D)AI
context, our work is related to existing frameworks and plat-
forms that allow for developing agent-oriented programs ex-
ploiting existing programming languages. A main example
is JADE [3], one of the most used Java-based FIPA com-
pliant platform for developing agent-based software. JADE
makes it possible to write agent programs in Java, where
agents communicate using FIPA ACL as a standard high-
level agent communication language. The model adopted for
defining agent is based on behaviors, which share some sim-
ilarities with the notion of plan adopted in simpAL. Besides
agents, recently JADE model has been extended with a no-
tion of service which is quite similar to the notion of artifact
used in simpAL and in A&A, as non-autonomous compo-
nents providing operations to agents.

In the context of concurrent programming, the agent-
oriented abstractions in simpAL can be seen as a high-level
extension of the concept of actors, active objects, processes
and similar concepts – introducing specific first-class con-
cepts to improve the structuring of autonomous behaviors
(tasks, plans), the integration of task-oriented and event-
driven behaviors, the separation of concerns related to au-
tonomous (agents) and non-autonomous (environment) enti-
ties.

Actually, in concurrent programming the notions of ac-
tor and agent are often used as synonyms, to generically
refer to active entities that exchange asynchronously mes-
sages and are reactive, in particular react to messages re-
ceived in input by other agents. An example is given by re-
cent works exploiting the F# functional language – and its
asynchronous programming model – to implement agent-
based concurrency and agent-oriented programs on top of
functional programs [19]. Always in the context of concur-
rent programming, a notion of agent is used also in the Clo-
jure language [10], as a state-full, reactive, non-autonomous
entity which is used as a simple concurrency mechanism
to manage the execution of asynchronous I/O operations. A

169

common issue which is considered very important by these
approaches as well as in simpAL is the the availability of
some programming support for easily integrating active and
reactive behavior, to build software components that are able
to react to events coming from the environment (which in the
case of actors are given by messages sent by the other actors)
while they are running. This is a central point tackled also in
the implementation of actors as a library on top the Scala
language [8].

Finally, simpAL is related to our previous work
simpA [16], a Java-based framework for developing concur-
rent concurrent programs using agent-oriented abstractions.
simpAL can be considered an evolution of that work, (i) in-
troducing a new language instead of relying on a framework
based on existing technologies – this is essential to inves-
tigate aspects such as typing, and (ii) adopting a different
model for defining agents, based on BDI, not exploited in
simpA.

8. Conclusion and Future Work
The investigation of agent-oriented programming as general-
purpose programming paradigm calls for the development of
languages and platforms that make it possible to exploit the
level of abstractions, concepts and features that are already
found in many existing agent programming languages, but
extending them so as to be effective for the theory and
practice of programming. This is the objective of the simpAL
project, and in this paper we presented a first frame about
the essential concepts that characterize the language, along
with some sketch about the development of its platform and
infrastructure.

simpAL is not meant to be conceived as the umpteenth
agent-oriented programming language introduced in DAI
context or as an extension or improvement over existing lan-
guages in that context. Instead, it is meant to be a first com-
prehensive approach to explore in theory and practice agent-
orientation as a mainstream paradigm for programming and
developing software systems, as an evolution of the object-
oriented one.

The finalization and improvement of the language and
of the platform is a main part of our current and future
work, along with a formalization of the language and a
concrete investigation of its effectiveness and limitations by
developing non-toy programs.

References
[1] G. Agha. Actors: a model of concurrent computation in

distributed systems. MIT Press, Cambridge, MA, USA, 1986.

[2] J. Armstrong. Erlang. Commun. ACM, 53:68–75, Sept. 2010.

[3] F. L. Bellifemine, G. Caire, and D. Greenwood. Developing
Multi-Agent Systems with JADE. Wiley, 2007.

[4] R. Bordini, M. Dastani, J. Dix, and A. El Fallah Seghrouchni,
editors. Multi-Agent Programming Languages, Platforms
and Applications - Volume 1, volume 15 of Multiagent Sys-

tems, Artificial Societies, and Simulated Organizations, 2005.
Springer.

[5] R. Bordini, J. Hübner, and M. Wooldridge. Programming
Multi-Agent Systems in AgentSpeak Using Jason. John Wiley
& Sons, Ltd, 2007.

[6] R. Bordini, M. Dastani, J. Dix, and A. El Fallah Seghrouchni,
editors. Multi-Agent Programming Languages, Platforms and
Applications - Volume 2, Multiagent Systems, Artificial Soci-
eties, and Simulated Organizations, 2009. Springer.

[7] R. H. Bordini, M. Dastani, J. Dix, and A. El Fal-
lah Seghrouchni. Special Issue: Multi-Agent Programming,
volume 23 (2). Springer Verlag, 2011.

[8] P. Haller and M. Odersky. Scala actors: Unifying thread-
based and event-based programming. Theoretical Computer
Science, 2008.

[9] D. Harel and A. Pnueli. On the development of reactive
systems, pages 477–498. Springer-Verlag New York, Inc.,
New York, NY, USA, 1985.

[10] R. Hickey. Agents and asynchronous actions (in clojure),
2011. Online document, available at: http://clojure.

org/agents – Last Retrieved: Sept. 1, 2011.

[11] H. Lieberman. The continuing quest for abstraction. In
ECOOP 2006 ? Object-Oriented Programming, volume
4067/2006, pages 192–197. Springer Berlin / Heidelberg,
2006.

[12] A. Omicini, A. Ricci, and M. Viroli. Artifacts in the A&A
meta-model for multi-agent systems. Autonomous Agents and
Multi-Agent Systems, 17 (3), Dec. 2008.

[13] A. S. Rao. AgentSpeak(L): Bdi agents speak out in a logi-
cal computable language. In Proceedings of the 7th European
workshop on Modelling autonomous agents in a multi-agent
world (MAAMAW’96), pages 42–55, Secaucus, NJ, USA,
1996. Springer-Verlag New York, Inc.

[14] A. S. Rao and M. P. Georgeff. BDI Agents: From Theory to
Practice. In First International Conference on Multi Agent
Systems (ICMAS95), 1995.

[15] A. Ricci, M. Piunti, and M. Viroli. Environment program-
ming in multi-agent systems: an artifact-based perspective.
Autonomous Agents and Multi-Agent Systems, 23:158–192,
2011.

[16] A. Ricci, M. Viroli, and G. Piancastelli. simpA: An agent-
oriented approach for programming concurrent applications
on top of java. Sci. Comput. Program., 76:37–62, January
2011.

[17] Y. Shoham. Agent-oriented programming. Artificial Intelli-
gence, 60(1):51–92, 1993.

[18] H. Sutter and J. Larus. Software and the concurrency revolu-
tion. ACM Queue: Tomorrow’s Computing Today, 3(7):54–62,
Sept. 2005.

[19] D. Syme. Async and parallel de-
sign patterns in f#: Agents, 2010.
http://blogs.msdn.com/b/dsyme/archive/2010/02/15/

async-and-parallel-design-patterns-in-f-

part-3-agents.aspx, Last Retrieved: Sept 1, 2011.

170

