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Abstract 

The ODMG Object Model is shown to have a num- 
ber of problems. A major confusion is caused by 
the intended type of polymorphism and the way it is 
expressed in the Model. Dynamic type checking is 
required even in situations when static type checking 
is possible. There are situations in which there is 
no way that type checking can determine whether a 
particular construct is type correct or not. The model 
of persistence in the ODMG Standard is not orthog- 
onal, which has undesirable pragmatic consequences 
on complex objects. The discrepancies between the 
ODMG Object Model and the particular language 
bindings of the ODMG Standard are non-trivial. This 
paper presents solutions to some of these problems 
together with the associated formal system. With- 
out such a formal system the recommended ODMG 
bindings are open to a wide range of different, and 
sometimes confusing interpretations. The criticism 
expressed in the paper is intended to be helpful in 
developing future releases of the ODMG Standard. 
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1 Introduction 

The ODMG Object Model is the core of the ODMG 
Standard [Cat96]. As the Standard has been de- 
veloped by the major vendors of object-oriented 
database management systems, the model deserves 
careful attention. Indeed, we may have to live with 
it for many years to come. 

In this paper we show that the ODMG Object 
Model is behind the current state of object-oriented 
research. -We reveal a number of problems in the 
Model and propose their solutions. We naturally 
hope that future releases ,will not have the problems 
reported in this paper. 

The paper was written when the Release 1.2 
[Cat961 was available. In the phase of the final prepa- 
ration of the paper for the proceedings, ODMG 2.0 
appeared [CBB97]. It was very difficult to make a 
careful account of the effects of all the changes in the 
new version of the Standard. Every attempt has been 
made to do so within the severe time constraints. 
Some differences between the two versions of the 
ODMG Standard will be pointed out in the paper. 
We were very pleased to see that the new version of 
the ODMG Standard seemed to recognize some of 
the problems reported in this paper.l But ODMG 2.0 
is still far enough from a consistent standard. The 
core of our criticism still applies to the 2.0 version of 
the ODMG Standard just as well. 

This paper also presents the core of a formal system 
which may be used to specify the intended bindings 
of the ODMG Object Model. Without such a formal 
system those bindings are open to a wide range of 

‘The f&t version of this paper was completed in Oc- 
tober of 1996. 
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sometimes very confusing interpretations. 

The difficulties in coming up with a good object 
model for the ODMG Standard are understandable. 
This paper thrives toward conceptual and even for- 
mal clarity. It aims to show that it-is possible(,to 
achieve these goals, and at the same time meet the 
very pragmatic goals of the Standard. 

A major confusion exists in the ODMG Object 

an orthogonal model of persistence. This leads to 
specific pragmatic problems related to complex ob- 
jects. We offer an orthogonal solution for a model 
of persistence which is tied with the proposed formal 
system. 

Model regarding the polymorphic facilities which the 
Model is actually supporting. The Model has a very 
inappropriate way of expressing situations requiring 
parametric polymorphism, which causes major prob- 
lems in the underlying type system. ’ ’ 

A related group of problems in me ODMG’ Ob- 

A ’ closely related fact is that object-oriented 
database type systems necessarily require dynamic 
checks in some situations. It is essential to make 
those situations explicit, and not to confuse them 
with situations in which dynamic checks are not nec- 
essary. Our analysis is intended to eliminate such a 
confusion from the ODMG Object Model. 

ject Model covers situations in which dynamic type 
checking is required in spite of the fact that static 
type checking is possible. Excessive dynamic checks 
affect efficiency and reliability of database transac- 
tions. It is unacceptable to carry out a dynamic check 
every time a transaction is executedifthe check could 
have been performed once and for all when the trans- 
action was compiled. Perhaps worse, expensive re: 
covery procedures may have to be invoked only be- 
cause of run-time type errors which could have been 
detected at compile time. 

When introducing desirable features of a typed 
object-oriented model, one should have in mind what 
kind of demands those features place on the type 
system, and what kind of type technology is required 
to guarantee efficiency and reliability. This paper 
reveals some of such hidden subtleties in the ODMG 
Standard. They require advanced typing techniques, 
aswell as a variety of reflective techniques elaborated 
to some extent in the paper. 

Yet another group of problems are those coming 
from the rigidity of the ODMG Object Model which 
makes it impossible to express frequently occurring 
situations in a natural way. This forces database pro- 
grammers to use techniques which bypass the type 
system. A very likely and frequent consequence is 
undetected type errors that may cause database trans- 
actions to fail at run time. 

This paper consists of two parts. The first part 
of the paper (sections l-7) is informal. It presents 
the problems in the ODMG Object Model and our 
solutions to these problems. The second part of the 
paper (sections 8 - 14) presents the core of a formal 
system for a family of ODMG Object Models. 

A further class of problems are those in which it 
appears that type safety has been established by static I 
type checking, and yet a transaction fails at run time 
due to a type error. Perhaps the most embarrass- 
ing are situations in which there is no way that type’ 
checking can determine whether a particular con- 
struct is type correct, no matter how sophisticated 
the checker may be. Such situations do exist in the 
ODMG Object Model. But they can be avoided, and 
we show how. 

Many of the problems in the ODMG Object Model 
come from the fact that it is intended to be com- 
mon for programming languages such as C-H- and 
Smalltalk. But the underlying paradigms of these 
two languages are so different: C++ is strongly and 
mostly,statically typed, and Smalltalk is mostly un- 
typed (or dynamically typed). A reflective paradigm 
which treats classes as objects ([Feb89], [OPS95]) 
is truly object-oriented, but it defeats the whole pur- 
pose of a type system. It is thus hard to imagine 
that the requirement of, the ODMG Standard to have 
a unified type system across the database and the 
programming language can ever be satisfied. 

Particularly. important are those aspects of the 
ODMG Object Model which are related to the model 
of uersistence. The ODMG Standard does not have 

This paper shows that it is in fact possible to define 
a family of ODMG Object Models of increasing level 
of sophistication. Unlike the existing ODMG Object 
Model, each model in this family may be well and 
even formally defined, without any of the confusing 

-- r---------- ~~ points in the current ODMG Object Model. 
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2 The top class interface 

All class interfaces in the ODMG Object Model are 
derived by inheritance from the interface Object. 
But in addition, the ODMG Object Model contains 
a mysterious type any. any stands for any type and 
it is used in situations where a type parameter is in 
fact required. This produces a type system which is 
not sound. Since the ODMG Object Model contains 
Object, any is redundant, and should be identified 
with Object, as illustrated below. 

interface Collection : Object ( 
unsigned long cardinalityo; 
boolean is,empty(); 
void insert-element(in Object element); 

//ODMG: void insert,element(in any element); 
void remove,elem&nt(in Object element); 
boolean contains,element(in Object 

element); 

//ODMG: void contains -element(in any 
I 

Iterator create_iteratorO; 

3; 

element); 

With exception handling omitted, this is how the 
iterator class should look lie: 

interface Iterator: Object { _ 
void reset(); 
boolean not,done(); 
boolean next(out Object next-obj); 

//ODMG: boolean next(out any next-obj); 
void advanceo; 
Object get,element(); 

//ODMG: any get,elemento; 

3; 

The usage of any leads to obvious type errors that 
cannot be detected at compile time. Here is an ex- 
ample: 

Iterator p; 
p.resetO; 
select p.get~element().salary(); 

In our model the select clause fails a static type 
check. But what happens in the ODMG Object 
Model? The result type of get-element is any, 
where any stands for any type. Thus it is impos- 
sible for the type checker to determine whether the 

select clause is type correct. Does any have a method 
salary? All the types certainly do not. 

In order to introduce a dynamic check one would 
havetowrite ((Person)(p.get-element()). 

salary(). But the class indicator is intended 
to be used for going down the inheritance hier- 
archy ‘and Person is not derived by inheritance 
from any. It is thus unclear whether this solu- 
tion is even possible and correct according to the 
ODMG Object Model. ODMG 2.0 has an ex- 
ception InvalidCollectionType in the interface 
iterator. When any is identified with Object, the 
problem disappears. 

This simple change produces a model which re- 
quires usage of Object where one would use a 
type parameter in a model which supports parametric 
polymorphism. Using Object in place of a type pa- 
rameter, as one would do in JavaTM, requires down- 
casting, which means dynamic checking. This is 
contrary to parametric polymorphism, which can be 
implemented with static type checking. In addition, 
quite contrary to the intent of parametric polymor- 
phism, using Object implies heterogeneity of types 
of collection elements. But at least the model is 
consistent, unlike the current ODMG Object Model. 
And in fact, this basic model corresponds to the Java 
binding which appears in the ODMG 2.0 Standard. 

3 Persistence 

A model of persistence is orthogonal if objects of 
any type may be persistent or transient [ABD89], 
[AM95]. In a type system with orthogonal persis- 
tence, there may exist both persistent and transient 
objects of any type. The model of persistence in 
the ODMG Standard is not orthbgonal. It is based 
on persistence capable classes. Objects of persis- 
tence capable classes may be persistent or transient. 
Objects of other classes are always transient. 

. 

In Release 1.2 persistence capable classes must be 
declared as such in the schema. In ODMG 2.0 per- 
sistence capable classes are eliminated from ODL, 
but then they reappear both in the C++ and the Java 
bindings (but not in the Smalltalk binding). Intrigu- 
ing examples of classes the are not persistent capa- 
ble according to the ODMG 2.0 are Transaction 
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(this rules out long transactions), Database (!?) and This paper offers a truly orthogonal, object- 
d-Extent (used for managing extents of persistence oriented model of persistence. The model is based 
capable classes in the C-H- bind&g). on inheritance and on message passing, This last 

In the C++ binding of the ODMG Standard per- feature makes persistence in our model per object 

sistence capable classes, in addition to being derived based. The class interface Object is extended by a 

from other classes, must also be derived from a distin- method persists and a test is-persistent. Both 

guished class dab j ect which enables persistence. are thus inherited by all other classes, and none of 

But d-Object is not the top of the inheritance hi- this disturbs any of the properties of the type system, 

erarchy. In fact, there is no such class in the Ct+ 
type system. The model of persistence is thus not interface Object* 
orthogonal. Similar techniques are used in several 

boolean same-as(in Object anobject); 
boolean is-persistent (> ; 

extensions of C++ supporting persistence [AG89]. Object copy0 ; 
There are in fact even less flexible solutions. For ex- 

I 
void deleteo; 

ample, E [RCS93] makes a clear distinction between void persists (in string name) ; 
database classes, whose objects are always persistent, 1; 
and other classes, whose ,objects are transient. 

ODMG 2.0 Java binding does not specify how a 
Th.e message persists promotes the receiver ob- 

class becomes persistence cabable. 
ject to longevity and makes the argument string the 

The lack of orthogonal@ has its disadvantages. 
name of this object in the currently valid persistent 

For example, consider a class Shape for which persis- 
scope 

’ 
In a model ‘with single, flat name space 

tence capability has not been declared in the schema. 
per database, this scope would correspond to the 

If we now have a complei persistent object which 
currently opened database. This binding thus cor- 

has a shape, an awkward situation occurs. A per- 
responds to the effect of the method bind of the 
Database interface that follows. 

sistent object has a’ component which cannot be’ 
persistent. Of course, we can define a new class 

Persistence capabilities are thus associated with 

Persistent-shape, equipped with persistence ca- 
the top of the inheritance hierarchy. This technique 

pabilities. But does it really make sense to have both 
works well with Java, Smalltalk and Eiffel. In fact, 

Shape and Persistent-shape in the model? 
we would argue that there is probably no other more 
natural way of supporting generic and orthogonal 

The Java binding of the ODMG 2.0 struggles with 
this issue trying to reconcile non-&hog&& persis- 

persistence capabilities in object-oriented systems. 
In spite of that, we are not aware of a single object- 

tence with persistence by reachability. Butthe whole oriented model of persistence that’is based on this 
point is that persistence.by reachability requires or- simple obse~ation. 

thogonal persistence. Persistence by reachability An extension of the interface Object in ODMG 
is essential for object-oriented database technology, 

since it allows proper handling of complex objecti. 

2.0 associates locking primitives with his interface, 

Support for complex objects is one of the key ad- 
This is just yet another point of disagreement that 
we. have with the ODMG Standard. Messages for 

vantages of the object-oriented database technology promoting an object to longevity belong to the user 
over the relational database technology. interface. Locking is merely an implementation tech- 

For the sake of completeness and fairness, we 
would also like to mention a database architecture 
which is object-oriented,. largely untyped and re@ec- 
tive, and which does not spppc$persistence by reach- 
ability [OPS95]. At the, same time, a very active re- 
search and developmenf work is under way to extend 
Java with orthogonal persistence. A representative 
project is PJava [ADJ96]. 

nique and should not be placed in the user model, just 
as persistence implementation techniques do not be- 
long there. 

Another component of a model of persistence is a 
binding mechanism for names of persistent objects, 
The ODMG Standard supports a, single, flat name 
space which corresponds to the entire database. This 
is very impractical and it is expected to be changed 
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in future revisions of the Standard. In fact, ODMG must be adopted. The compile-time type of the right- 
2.0 has a very elaborate me&level support which in- hand side must be a subtype of the compile-time type 
eludes schemas, scopes and modules. We still have of the left-hand side. 
not been able to understand how this elaborate addi- Jn the model proposed in this paper two solutions 
tion, and a single, flat name space, coexist in a single are possible. Both apply to situations in which dy- 
model. namic type checking is required when retrieving a 

The binding mechanism for names of persistent persistent object. One is based on the reverse assign- 
objects is given in the Database class interface. As ment ?= as in Eiffel, which necessarily involves a 
in other models of persistence, this is an instance dynamic type check: 
where explicit dynamic type checking is required. 

interface Database: Object ( 
p ?= d.lookup("John Doe"); 

void open(in string database-name); 
void close0 ; 
void bind(in Object an-object, 

in string name); 

If ordinary assignment were used above, it would 
not have type checked. The type of the right-hand 
side is not derived by inheritance, nor is it a subtype 

Object lookup(in string objec&ame)j of the left-hand side. But the reverse assignment 
// ODMG 1.2: type checks, because it generates a mandatory run- 
// any lookup(in string object-name);. time check. Such a check is not generated with the 

3; ordinary assignment. If the fetched object is indeed 

Note that the above mechanism leads naturally to 
orthogonality of persistence. Named objects are per- 
sistent (these are called persistence roots), and so are 
alI their components, direct or indirect (reachabil- 
ity). This is essentially the approach taken in PJava 
[ADJ96]. Persistence by reachability or transitive 
persistence also appears at several places in ODMG 
2.0, but it is somehow combined with persistence 
capable classes. 

The confusion about the type any in the ODMG 
Object Model applies to this situation as well. Here 
is an illustration which shows how object lookup may 
be performed. 

Database d; Person p; 
p=d.lookup("John Doe':); 

According to the ODMG C++ binding d. lookup ( 
It John Doe") returns a reference of type any. The 
object is then fetched and its type checked. If that 
type is not Person, a run-time error occurs. One 
problem with this is that it appears that assignments 
cannot be statically type checked. But that is not 
true. The usual rule in object-oriented languages is 
that the compile-time type of the tight-handsidemust 
be derived by inheritance from the compile-time type 
of the left-hand side. In order to guarantee type safety 

of the type Person, its identity will be assigned to p. 
Otherwise, p will be assigned a nil identifier. Testing 
p after the assignment reveals what happened. 

The other solution is more in the spirit of the 
ODMG Standard. According to the Database in- 
terface, all that can be specified for the type of an ’ 
object with a given name fetched from the database 
is that its type is any. In our type system that type is 
Object. In either case, very little can be done with 
such an object. A dynamic type check asserts that 
the fetched object is of a specific, expected type. 

Database d; Person p; 
p=(Person)(d.lookup("John Doe")); 

But the above solution does not work according 
to the ODMG Standard 1.2. The class indicator 
(Person) should not be applied to the result of the 
method lookup. Indeed, the result type of lookup is 
any, and Person is not derived by inheritance from 
any. If any is identified with.Ob j ect, the problem 
disappears. 

To prove our point, in ODMG 2.0 the result type 
of the method lookup is indeed Object, as it should 
be. But then a new interface Dictionary is intro- 
duced in ODMG 2.0 with a method lookup whose 
result type is again any. 

by static type checking, a more restrictive discipline 
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interface Dictionary: Collection ( 
exception KeyNotFound(any key); 
void bind(in any key, in any value); 
void unbind(in any key) 

raises(KeyNotFdund); 
any lookup(in any key) 

raises(KeyNotFound); 
boolean contains-key(in auy value); 

3; 

Our criticism applies just the same to this new in- 
terface, as well as to the retrieve methods of interfaces 
List and Array of both versions of the ODMG Stan- 
dard. Furthermore, in the C++ binding of the ODMG 
2.0 the result type of the method lookup-object of 
the class dDatabase is dRef4ny, which causes 
even worse problems. At the same time, the class 
dDictionary of the C++ binding makes proper us- 
age of parametric polymorphism in specifying the 
result type of the method lookup. 

Iii the conclusion of this section we point out a 
major controversial issue related to persistence: ob- 
ject identifiers. It appears that in the ODMG Object 
Model these identifiers are hidden from the users, as 
they should be, But in the C++ binding of the ODMG 
Standard object references are explicitly present in 
the language. 

This is contrary to years of research and experi- 
ence in database systems. It is also contrary to the 
intent of the object-oriented data model as presented 
in [ABD89]. It is hard to imagine a type system that 
can deal with all the problems caused by the explicit 
availability of object identifiers to the users. We hope 
that this dangerous feature is not a consequence”of 
the ideas behind the ODMG Object Model. Rather, 
it is a consequence of compliance with C-H, which 
has references explicitly in the language. Regret- 
tably, other C-I-+ database programming languages 
suffer from the same problem. An example is 0++ 
[AG89]. 

Java does not have this problem, and neither does’ 
the ODMG 2.0 Java binding. 

.’ 

4 Self types i 

In this section we show that the ODMG Object Model 
is in fact too rigid. This problem is not specific to 

the ODMG Object Model alone. This rigidity guar- 
antees type safety in most situations. But then there 
are situations in which a database programmer must 
bypass completely the type system in order to accom- 
plish perfectly natural tasks. The consequences may 
be very serious. A more flexible model is obtained 
.by using self types [BCM93], [BSG95], [AC96], as 
illustrated below: 

interface Object{ 
boolean same-as(in Object anobject); 

MyType copy0 ; 
// ODMG: Object copy(>; 
void delete0; 

3; 

This definition differs from the ODMG Object 
Model only in the result type of the copy method. But 
this seemingly small difference has major implica- 
tions. MyType is a distinguished type variable denot- 
ing thetype of object executing the message. MyType 
allows more flexible typing discipline in comparison 
with the ODMG Object Model since it changes its 
interpretation in a derived class. For example: 

interface Person: Object< 
unsigned short age(>; 

3; 
interface Employee: Person C 
float salaryo; 

3; 
Person John; Employee Doe; 
. . . 
select John.copyO.ageO; 
select Doe.copy().salary(); 

In the class Person, MyType as the result type 
of the method copy0 stands for Person, and in 
the class Employee, MyType stands for Employee, 
Because of that both select clauses type check. But 
according to the ODMG Object Model, neither one 
of them would. The reason is that the result type 
of copy is Object, which is not equipped with a 
method age, nor with a method salary. 

One could argne that the problem may be solved 
using the class indicator as follows: 

select ((Person)John.copyO>.ageO; 
select (@mployee)Doe.copyO).salaryO; 
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But according to the ODMG Object Model, the 
class indicator implies a dynamic check, which is 
not necessary in a model with self types. Besides, 
what is the point in making a copy of an object in such 
a way that the copy apparently contains only the fea- 
turesoftheclassObject. Ifacopyofapersonobject 
is created, presumably the copy should.be a person 
object as well. Thus it appears that copy should 
be redefined in the derived classes accordingly. Al- 
though the ODMG Object Model is not specific on 
this point, it appears that such a redefinition is not 
possible. It is certainly forbidden in the Java and the 
C++ bindings of the ODMG Standard. Yet, if it were 
allowed, such a redefinition would have been known 
at compile time, and then the check could be static. 
This is an instance which shows the rigidity of the 
type system underlying the ODMG Object Model. 

A closely related issue is the thorny problem of 
object creation which yas completely avoided in 
ODMG 1.2. ODMG 2.0 attempts to deal with it, 
as illustrated by the following two interfaces. 

interface ObjectFactory{ 
Object new(); 

3; 

interface CollectionFactory: ObjectFactory 

the parameter of new, and the type name is passed 
at run-time as a string. If a programmer makes a 
mistake, the consequences may be disastrous. The 
whole point about the operator new in C++ is that 
it is meant to be type safe. ODMG 2.0 has an un- 
acceptable explanation for how anomalies would be 
avoided in the above situation [CBB97]. 

In a type system Which is ,based on self types, ,a 
distinction must be made between inheritance and 
subtyping. If an interface B is derived by inheri- 
tance from an interface A, contrary to the ODMG 
Object Model, it does not follow that B is a subtype 
of A. Substituting an instance of B where an instance 
of A is expected is. allowed only if B is in fact a 
subtype of A. Otherwise, type safety cannot be guar- 
anteed by static type checking. Multiple dispatch 
techniques must be used (see, for example, [BC96], 
[Ala97]) in order to guarantee type safety. A more 
expressive model is thus obtained at the expense of 
a strictly more sophisticated type technology, and 
even more sophisticated run-time technology. The 
tradeoffs must be well understood. 

For example, covariant extensions of the signa- 
tures of the inherited methods are ‘allowed in 02. 
With single dispatch this produces a system which is 
not type safe. 

-I 
Collection new,of,size(in long size); 

3; 

The formal rules for inheritance and subtyping are 
specified starting with section 9. 

ODMG 2.0 states that the operation new inherited 
by ColJ.ection from the interface Object creates 5 Parametric interfaces 
a Collect ion object with system-dependent default 
amount of storage for its elements. But the result 

Unlike Eiffel and C++, the ODMG Object Model 

type of new is Object, and not Collection! 
does not offer general support for parametric classes. 

The C++ binding of the ODMG 2.0 contains spec- 
It has a roundabout way of supporting it only for col- 

ification of new based on overloading which com- 
lection classes, via l’type generators”. This view is 

pletely bypasses the type system: shared by 02. The most likely reason for this con- 
troversial issue is the factthat the ODMG Standard 

class d-Object C defines bindings forboth C-H- and Smalltalk, as well 
. . . as for Java in ODMG 2.0. The latter two of course do 
void* operator new(size-t size, . 

.d-Database *database, 
not support parametric polymorphism. C-I-+ supports 

const char *typename); 
parametric polymorphism and thus the C++ binding 
of the GDMG Standard does not have many of the 

. . . 
3; 

problems discussed in this paper. But the C++ bind- 
ing,has problems of its own. .They include a model 

As if the result type void was not enough, the of persistence which is not orthogonal, and explicit 
physical size of the newly created 0bject.appear.s as presence of object identifiers in the language. 
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A clean solution from the viewpoint of the type 
system is to have explicit support for generic or para- 
metric classes, as specified below: 

/II< .- 
interface Collection <T> ( 
//ODMG: interface Collection: Object ( 
. . . . 

IteratorCT> create,iteratoro; 
// ODMG.' Iterator create-iteratoro; 

3; 

Explicit support of parametric polymorphism al- 
lows type safe iterators, as illustrated below. A 
point of ,confusion in the ODMG Standard is that 
the ODMG Object Model does not define Iterator 
as a parametric class and its C++ binding does. 

interface Iterator<T> C 
//ODMG: interface Iterator: Object ( 

. . . . 
T get-elemento; 

110~~~: any get,elementO; 

3; 

‘Qpe safety can now be accomplished with static 
type checking, as illustrated below: 

Iterator<Person> p; 
//ODMG: Iterator p; 
. . . . 

select p.get-element().ageO; 

The select clause type checks. In a model without 
parametric polymorphism one would have to intro- 
duce a dynamic check. One of the advantages of 
parametric classes is that they can be handled with 
static type checking. ,I 

The problems with the lack of parametric poly- 
morphism and the rigid typing discipline for binary 
methods come up in deriving class interfaces Set 
and Bag from Collection. This is howit works 
in a type system with parametric polymorphism and 
self types: 

interface Set CT> : Collection<T> ( 
// ODMG: interface Set: Collection ( ,) 
MyType union-with(in MyType other); 
// ODMG: Set union-with(in Set other); 
MyType intersectionyith(in MyType other); 
MyType difference-with(in MyType other); 
boolean is-subseLof(in MyType other-set); 

//ODMG: 
//boolean is,subset,of(in Set other-set); 
boolean is-proper-subset-of( 

in MyType other-set); 
boolean is,superset,of( 

in MyType other-set); 
boolean is-proper-subset,of( 

in MyType'other,set); 
3; 

Consider now an example involving a class inter- 
face derived by inheritance from Set. It is unclear 
how one would accomplish this with type genera- 
tors available in the ODMG Object Model for the 
collection classes Collection, Set, Bag, List 
and Array. There is no provision in the model to de- 
rive one type generator from another. This problem 
does not appear in the C++ binding of the ODMG 
Standard. 

interface Bounded-Set CT> : SetCT> I 
unsigned long boundo; 
void set,bound(in unsigned long 

new-bound); 

3; . 
Bounded-Set<Person> Employees, Candidates; 
. . . 
select 
Employees.union-with(Candidates).bound(); 

According to the ODMG Object Model the expres- 
sion JZmployees.unionwith(Candidates).bound() 
fails to type check. The type of the result of 
union-withis Set<Person> and thus does not have 
a bound. In our more flexible type system the type 
check succeeds, as one would naturally expect. Us- 
ing the class indicator leads to the issues already 
discussed. 

It is essential to note that Bounded-Set as derived 
above by inheritance from Set is not a subtype of 
Set. This is caused by the appearance of MyType 
in the argument position, and follows from the rules 
given in sections from 9 onwards. The remarks given 
in section 4 on the required technology which handles 
properly this situation apply. 

6 Higher-order typing 

The C-H binding of the ODMG Standard reveals fur- 
ther subtleties of the type system required by the in- 
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tended ODMG Object Model. The type of elements bounded quantitication (constraint generic@ in Eif- 
of a collection cannot be just any type. Elements of a fel Wey92]). To obtain this particular case, F- 
collection are required to be equipped with methods bound is replaced with a fixed class, for example 
for the copy semantics. The type of polymorphism T subtype-of Ordered-element. 

is thus not even parametric, it is more complicated. A collection type whose elements are equipped 
An example of an element type that satisfies this re- both with the copy semantics and a comparison func- 
quirement is given below: tion is defined as follows: 

interface Person ( 
unsigned short ageo; 
Person copy0; 
boolean equal(in Person e); 

3; 

interface Ordered-collection 
<T i T subtype-of Ord-element<T> >{ 

3; **- 

The type of polymorphism which captures the 
intent of this ODMG requirement is either match- 
ing [BSG95] or F-bounded polymorphism [CCH89], 
[Ala94]. Parametric polymorphism is: its particular 
case. This is how it works. Define the element type 
of a collection type as: 

Note that Person now does not satisfy the condi- 
tion Person subtype-of Ord-element<Person>. 

F-bounded poIymorphism is not just an exotic typ- 
ing notion. It is in fact required for typing some very 
fundamental components of most database system 
architectures. Consider what is involved in typing 
the index abstraction: 

interface Element<T> C 

T copyo; 
boolean equal(in T e); 

interface Order<T> ( 
boolean less-than(in T element); 

3; - 3; 

According to the ODMG Standard elements of interface Index <T,To I T inherits-from To, 

ordered collections are also required to be equipped 
To subtype-of Order<To>> 

with a comparison method. Because of that, we 
( void build(Collection<T> collection); 

also define the element type of ordered collections as 
Iterator<T> iteratoro; 
T find(To key); 

follows: void assign-iterator(Iterator<T>' 
iterator); 

interface Ord-element<T> : ElementcT> { 3; 
boolean less-than(in T e); 

3; Index has two type parameters. T stands for 

A generic collection type whose elements are 
the type of elements of the underlying collection, 

equipped with the copy semantics is now defined 
and To for the type of the indexing (key) attributes. 

as follows: 
There are two type constraints. The first one re- 
quires that the set of features of To is a subset of 

interface Collection 
<T I T subtype-of Element<T> >c 
. . . 

the set of features of T, hence T inheritsfrom 
To. The other constraint on To guarantees that To 
is equipped with the comparison function, hence To 

3; subtype-of Order<To>. 
Similar subtleties are involved in typing keyed col- 

An F-bounded condition on the type parameter lections and dictionaries that appear in ODMG 2.0. 
T is T subtype-of ElementCT>. For example, Among the existing typed object-oriented program- 
person as defined above satisfies this condition. ming languages, Eiffel is the closest to being able to 
A particular case of F-bounded polymorphism is deal with these subtleties. 
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7 Reflection 8’ 

There are both hidden and explicit reff ective features 
in the ODMG Standard. An elaborate meta-level 
extension in ODMG 2.0 is likely to be relevant to the 
discussion in this section. However, due to the time 
constraints, we have not been able to evaluate fully 
this new development in the Standard. 

structure types objects, then a type becomes ‘a run- 
time notion. It is hard to imagine a type system that 
would offer a resolution to this confusing situation. 
To prove our point, this interface has been eliminated 
from ODMG 2.0. 

7.1 Type reflection ’ 

‘Iype reflection treats types as objects of computation. 
This is possible only in a very restrictive fashion in 
order not to defeat the whole.purpose of the type 
system. A conservative approach proposed-m this 
paper is to allow only construction of new types at 
compile time. The approach is not only type safe, 
but also based,on static type checking, 

The simplest form of type computation carried out 
at compile time is type substitution required for para- 
metric interfaces. Type reflective facilities in the 
ODMG Object Model appear in the form of type gen- 
erators. The ODMG Object Model has type genera- 
tors forcollectionclasses Collection<T>, Set<T>, 

Bag<T>,List<T> and Array<T> asaroundaboutway 
of providing kited parametric polymorphic. fea- 
tures. -’ 

According to the ODMG 1.2 Object Model 
Struct is a type generator which allows definition 
of application oriented structures. ,. Methods appli- 
cable to such structures are defined &I the following 
interface. 

The ODMG Object Model is intended to subsume 
the relational model. In ODMG 1.2 Table (al : ti , 
a2: t2,..., an: tn) is defined to be equivalent 
toBagCStruct<altl,a2 tl,...,an tn>>. ODMG 
2.0 states that Table is semantically equivalent to 
a collection of structures. But the ODMG Standard 
does not say anything about relational operators that 
Table should be equipped with, in addition to the op- 
erators on bags. Quite contrary to the ODMG Stan- 
dard, a natural and truly object-oriented approach 
leads to-a definition of Table as a class derived by 
inheritance from the class Bag. 

With proper usage of parametric polymorphism 
and self types, a collection class Bag of the ODMG 
Object Model can now be defined as follows: 

interface Bag <T> : Collection<T> { 
// ODMG: interface Bag: Collection f. 
unsigned long occurrences(in T element); 
MyType union-with(in MyType other); 
// ODMG: Bag union-with(in Bag other); 
MyType intersection-with(in MyType other); 
MyTy$e differenc&with(in MyType other); 

3; 
‘- . 

A class Table can now be derived from Bag as 
follows: 

interface StructC 
unsigneci long size0; 
void set-element(in any field, 

in any value); 
any get,element(in any field); 
void clear-element(in any field); 
Struct,copy(); 
void delete(); 

interface Table CT> : Bag<T> ( 
Table<T*R> natural-join(TableCR>); 

3; 

In ordeyto illustrate the issues, only one specific 
database operator has been introduced in the interface 
Table: the natural join. 

Typing a generic natural join function causes well- 

3; known difficulties [SFSBO], [OBB89]. The solution 
presented above is based on type computation carried 

Apart from the fact that the above interface in- out at compile time. This computation is expressed 
eludes the usual confusion related to the type any, in terms of operators on types [Car88]. ‘Ike such 
it also raises a question whether structures are ob- operators are meet, denoted *, and join of types, de- 
jects. The intent of the ODMG Object Model is that noted +. Interestingly enough, typing joins requires 
structures are not objects, but according to the above meets of types. Type computations are necessarily 
ODMG interface they are. If the idea is to make very restrictive, so that they always terminate. 
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7.2 Linguistic reflection q.construct("select p from Person p 

A major step toward more general reflective facili- 
ties which typically cannot accommodate static type 
checking is in treating programs (transactions and 
queries) as objects. This is exactly what the ODMG 
Object Model does. Transactions are defined as ob- 
jects of a particular class. The C++ binding of the 
ODMG Standard also treats queries as objects. In 
order not to obscure the main idea by C++ specifics, 
we will maintain the style of presentation of this pa- 
per. In our view queries may be viewed as objects of 
a class with the following interface: 

where p.age > $1 and p.salary >= $2"); 
. . . . . . . . . . 
q.pass,int-erg(40); 
q.pass,float3rg(75,000.00); 
q.execute(); 
. . . . . . . . . . . 
q.pass,inLarg(55); 

interface query<T> (. 
void construct-query(in string query); 
void pass,int-arg(in unsigned short arg); 
void pass-float-arg(in float arg); 
void pass-string-arg(in string arg); 
CollectionCT> executeo; 

q.pass,float~arg(l00,000.00); 
q.execute(); -_ 

Run-time reflection based on a callable compiler . 
has been a part of the technology of persistent’pro- 
gramming Ianguages such as Ps-algol @A871 and 
Napier wC88]. However, expressing it in a for- 
malism of typing rules presents a real challenge. 
A further point is that type checking of the above 
argument query requires type inference [OBSS], 
[OBB89], because of the usage of $1 and $2, as 
required by the ODMG Standard. 

8 Schemas . 
The corresponding class in the C++ binding of 

the ODMG Standard is not parametric, which only 
causes further unnecessary dynamic checks. The 
method construct-query takes a string represent-, 
ing a query and associates this query with the 
object executing this message. Actual parame- 
ters can then be passed to the query using meth- 
ods such as passint-arg, passfloatarg, 
pass-string-arg, etc. This amounts toreconstruct- 
ing a query at run time. 

We now proceed with a’formal development. Names 
in a schema are bound to classes, objects and class ex- 
tents. Every schema should contain at least a binding 
for the class Ob j ect . We thus have: 

(interface Object Ro) schema 

The method execute applied to a query object re- 
turns a collection which is the result of the query. 
It requires a compiler that can be called at mn- 
time. Type checking will be thus carried out by 
the compiler as usual. But it will happen at run time. 
This technique is called run-time reflection [SSS92], 
[AM95]. The type parameter T stands for the type 
of elements selected by the query. Type checking 
involved in the execute message ensures that the ar- 
gument query of this method indeed has this property. 
Here is a specific example of usage of this parametric 
class: 

A statement of the form S schema asserts that S 
is a schema. &m(S) denotes the set of identifiers for 
which a binding is specified in a schema S. In addi- 
tion to Object , a schema will naturally contain other 
predefined bindings from the ODMG Standard, such 
as those for predefined simple types and collection 

types. 

queryCPerson> q; 
. . . . . . . . . . 

A binding for a class is introduced by a statement 
of the form interface C R, where R is a structure 
expression containing signatures of methods of the 
class C. For example, Ro = {boolean sameas(in 
Object anobject); MyType copy(); 

void delete0 ;}. Every valid structure expression 
is formally derived from the empty structure expres- 
sion. This relationship is expressed as R 2 {};, 
where 5 is the inheritance ordering. The inheritance 
ordering for structures is defined in section 10 and 
the inheritance ordering for object types in section 9. 

, 
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The rule for binding an identifier to an inter- 
face presented below is recursive since an interface 
(such as Object above) often naturally refers to it- 
self, hence the condition C _< Object. The axiom 
S schema I- MyTyie 5 Object is naturally a part df 
the formal system. 

If a schema S contains a binding C a, (i.e., 
(C a) E S), then we can naturally deduce from 

S schema, S I- C 2 Object, a ti d~4S) 
S U (C a} schema 

S schema, C # dum(S), 
S,ClObjectl-Rs{); 

S U (interface C R) schema ,1 

S will always denote a schema, so that the state- 
ment S schema will in most cases be abbreviated to 
S. Thus S stands for a collktion of assertions about 
bindings of identifiers to interfaces (object types), 
extents axid objects. 

A binding for a class C2 derived by inheritance 
from a class Cl is introduced by a statement of the 
form interface C2 : Cl R, hence the rule: 

S that a is of class (type) C, denoted a : C. This rule 
is also a part of the formal system. 

The above rules are easily extended to capture 
classes with extents as defined in ODMG 2.0. Un- 
like interfaces, classes in ODMG 2.0 are object types 
whose instances can be directly created. A class C 
with an extent E introduces an additional binding of 
E to a collection of objects of the type C. Two rules 
required to capture this idea are specified below: 

S U (class C R) schema, E G d4S) 
S U (class C (extent E) R} schema 

S schema, class C (extent E) R E S 

S schema, interface Cl RI E S, 
~72 # do.dS), 

S, C2 5 Object I- R2 U RI 5 (}; 

S;E:Collectkn<C; 

S U (interface C2 : Cl R2) schema 9 Inheritance, and subtyping 

The expression RBlJRl _< {}; reflects the require-. 
The ODMG Object Model identifies inheritance and 

ment that no redefinitions of t$e inherited signatures 
subtyping. Thus Employee is a subclass and a sub- 

are allowed, other than those caused by the change 
type of Person. An instance of Employee may 

of interpretation of MyType. 
be substituted where an instance of Person is ex- 

If C is bound to a class C, then C is necessarily 
petted. This is a discipline from Eiffel and Ctt 

derived by inheritance from the class Object. 
and it causes some well-known problems [Coo89]. 
They do not appear in Ctt because of a rigid type 

S schema, interface C R E S 
StC<Objed 

system. At the same time, this rigidity requires un- 
safe features which amount to bypassing the type 
system altogether. A more flexible type system re- 
r&es a distinction between inheritance and subtyp- 
ing ([CHC90], pCM93.J). 

Likewise, if a schema S contains a binding 
interf ade Ci: Cl R2, then the inheritance rela- 
tionship expressed as C2 2 Cl is derivable from 
the schema S. 

S schema, interface C2 : Cl R2 E S 
St-C25Cl 

The rules which allow parametric interfaces to be 
declared in a schema are given in section 12. 

An identifier a is bound to an object (yet unspeci- 
fied) of a class C according to the following rule: 

The collection of all object types (classes) is thus 
equipped with two orderings: inheritsfrom, de- 
noted i, and subtype-of, denoted <:. If Cl < C2 
holds, then Cl is derived by inheritance from C2. 
However, if Cl <: C2 holds, then an instance (ob- 
ject) of Cl may be substituted where an instance of 
C2 is expected, with type safety guaranteed by static 
type checking. 

The class Object is defined in such a way that it 
is both the top of the inheritance and the subtyping 
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orderings. Thus any class C derived by inheritance 
from Object (C _< Object) will also be a subtype 
of Object (C <: O&e&. This explains why the 
type of the argument of the method same-as in the 
class Object is Object, just as intheODMGObject 
Model, Another reason is that sameas is the object 
identity test and not the value equality test. 

S I- C 5 Object 
S I- C <: Object 

SI-C<Object 
9.1 Inheritance ordering S C- V m; 1; 5 0; 

The inheritance ordering is reflexive and transitive. 
These properties are expressed in our type system as 
follows: 

S-l- {Cl ml; C2 m2; . . . ; Ck mk; }; _< {}; , 
SCCl<Object, ml#mifori=1,2 ,..., k 

S I- Object 5 Object 

i 

SI-C3<Object, SI-C2_<C3, SI-Cl-SC2 
sl- Cl 5 c3 

9.2 Subtyping ordering 

The subtyping ordering is also reflexive and transi- 
tive: 

SI-C_<Objed 
Sl-CC:C 

S I- C3 5 Object, S I- C2 <: C3, S I- Cl <: C2 
SI-Cl<:C3 

An important connection between the two order- 
ings is expressed by the following rule: 

S I- C2 < Ohiect, S I- Cl <: C2 
S I- Cl 5 Object 

10 Structures 

Contrary to Smalltalk and Eiffel, class interface is 
not the only type structuring construct in the ODMG 
Object Model. A more primitive one is structure 
(record), .as in C++ and 02. Instances of structures 
are not objects but values. Structures are a natural 
starting place for the development of the formal rules 
for object types in the ODMG Object Model. The 
relationship R 5 {}; @is a valid structure) is defined 
inductively as follows: 

Two more rules are needed to allow structures 
within structures. The only difference from the 
above rules is that the condition C 5 Object is re- 
pIaced by the condition C < {};, and the condition 
Cl 5 Object is replaced by the condition CZ 5 0;. 
Similar remarks apply to some of the rules for strut- 
lures given in the sequel. 

The inheritance relationship among structures is 
defined simply as the subset relation: 

Sl-R2<(};,St-Rl<(};, RlE:R2 
Sl-R2<Rl 

This relationship is obviously reflexive and transi- 
tive. 

The subtyping relationships among structures are 
much more subtle. Subtyping is certainly reflexive 
and transitive. Formal statements of these properties 
follow the pattern in the corresponding rnIes for ob- 
ject types. The general subtyping rule for structures 
is: 

SI-Ci<Object forlsilk, 
S I- C’i 5 Object for k < i 5 n, 

S I- C’i <: Ci for 15 i 5 k 

If Cl _< C2 or Cl <: C2, then an instance of Cl 
may be viewed as an instance of C2. In fact, safety 
of a type system depends critically on whether this is 
allowed for inheritance or subtvnina. 

St-{C’lml;...;C’kmk;...;C’nmn;}; 
<: (CJ ml; . . . ; Ck mk; }; 

Selecting a field of a structure is governed by the 
following familiar typinn rule: 
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Sl-e:{Clml;...;Ckmk;}; 
’ S t e.mi : Ci 

In order to define the ‘type rules for class in- 
terfaces, we extt%d the type expressions for struc- 
tures to allow structure expressions of the form 
{Cl ml(C1l,. . .? Clpl); . . . . ; Ck mk(Ck1,. . . , 
Ckpk); };. These extended structure expressions al- 
low signatures of methods. The first two rules given 
below define inheritance as it applies to extended 
stictures. 

S t Ci 5 Object, for 15 i < k, 
SI-CCObject 

The condition R 5 {Ci fi; }; guarantees that R 
has an attribute f i of type Ci for 15 i 5 n. 

As an interface typically refers to itself, the sub- 
typing rule for object types is naturally recursive. In 
the ODMG Object Model C2 is a subtype of Cl only 
if the interface C2 is derived by inheritance from the 
interface Cl. In our type system there are additional 
requirements, specified in the recursive rule that fol- 
lows: 

S I- interface Cl Rl E S, 
interface C2 : Cl R2 E S, 

S, C2 <: Cl I-‘(R2 U Rl) < MyTypef C2 > <: 
Rl < MyType/Cl > 

SI-C2<:Cl 

S t {C ml(C1, C2,. . . , Ck);}; 5 {}; 

S I- {Cl ml(C1l,. . . , Cl$l); . . . ; 
Cb mk(Ck1,. . . , Ckpk); }; 2 {}; , 

S t Cl 2 Object, 
S~CliIObjed,forl_<i~pZ, 

ml#miforl<i~k 

S I- (Cl ml(C11,. . . , Clpl);. . . 
Ck mk(Ckl,. . . , Ckpk); CZ mZ(CZ1,. . . , Clpl); } 5 

0; 

The rule that follows defines subtyping for ex- 
tended structures: -; . 

SFCi<Objed forlli<k, 
S t C’i 5 Object fti k < Z 5 n, 

S t C’i <: Ci, for 12 i 5 k, 
S I- C’ij 5 Object, for 15 i 5 n, 12 j 5 pn, 

SI-Cij<:C’ij forl<ilk, l<j<pk, _ 
Cij # MyType 

In the above rule R < MyType/C > denotes the 
structure expression R in which the class C has been 
substituted for MyType. 

The typing rule for messages is rather tricky. 
It will be given on the assumption of static type 
checking. The first thing that static type checking 
must ensure is that an object o executing a mes- 
sageo,m(al,a2,. . . , an) is in fact equipped by an 
appropriate method. A further requirement is that 
the types of arguments al ,a2, . . ,a.n of the mes- 
sage o.m(al,a2,. . . , an) must be subtypes of the 
corresponding argument types Cl, C2, . . . , Cn of the 
method signature. 

S I- interface C R E S, 
S t R ,< {Cm m(Cl,C2, . . . . Cn); }; 

stoo:co, stco~c, 
S F ai : Cai, S-t Cai <: Ci, 1 < i ,< n 

S I- {C’l ‘ml(C’ll, . . . , C’lpl); . . . ; 
C’k mk(C’k1,. . . , C’kpk); . . . ; C’n mn(C’n1,. . . , 

C’npn);}; <: {Cl ml(C11,. . . , 
Clpl); . . . ; Ck mk(Ck1,. . . , Ckpk); }; 

11 Objects and messages 

Object creation (as defined in OQL) is now specified 
by the following rule: 

SFRs{Cifi;];, lsiln, 
Steei:Ci,l<isn, 

class CR E S 

StC(fl:el,f2:e2,...,fn:en):C 

S I- o.m(al, a2, . . . . an) : Cm < MyTypelCo > 

The conditions R 2 {Cm m(C1, C2, . . . . Cn);}; 
and Co 5 C ensure that the type Co of the object o 
has the required method signature. And finally, recall 
that MyType denotes the type of the object execut- 
ing the message. Thus the type of the result is not 
just Cm, but rather Cm < MyTypelCo >, which is 
the result of substitution of Co for MyType in Cm. 

The above rule simplifies if we identify inheritance 
and subtyping (and thus there is only one ordering) by 
disallowing usage of MyType. Of course, the same 
applies to many of the previous and the remaining 
rules. This simplified, but also less flexible type 
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system, would correspond to the Java binding of the select projection 
. 

ODMG 2.0 Standard. It is in fact a particular case of from ei as xl, .e2 as ~2, . . . , en as xn 
the type system presented in this paper. where e,’ 

The from clause deterniines-the types of control 

12 Parametric interfaces variables xi, x2 , . . . ,xn. Each ei is required to be 
an expression of a collection type Collection<Ci>, 

The C++ binding of the ODMG Standard naturally 
relies heavily on parametric classes. This section 
provides only the basics for developing the formal 
rules for parametric interfaces. 

The rule that follows allows interfaces with a sin- 
gle type parameter to be declared in a schema. A 
generalization to a finite number of parameters is 
trivial. 

hence the type of xi is Ci. In order to make queries 
on complex objects possible, each e (i+l> may be a 
component of ei for i=l , . . . ,n-1. With the typks 
of control variables determined this way, type checlc- 
ing of the qualification condition e) must produce 
boolean. In addition, if under the-same assumption, 
the type of projection is C, .the result of the query 
is of type Bag<C>. 

-’ S schema, C # dam(S), 
S, T 5 Object, C < T >I Object I- R 2 {}; 

S U (interface C < T > R} schema 

A binding for a parametric class C2 derived by in- 
heritance from a parametric class Cl is intioduced 
by a statement of the form interface C2<T>: 
ClCT> R2, hence the rule: 

S I- el : Collection < Cl >, 
S U Uik,l{Ci xi} I- e(k + 1) : 

Collection < C(k + 1) >, 15 k < n, 
S U IJE, (Ci 35) f- e’ : boolean, 

S U U~Y., (Ci xi) I- projection : C, 

S I- select projection from el as xl, . . . . en as xn 
where e’: Bag< C > 

If select distinct option is used in the above 

S schema, interface CI < T > RI E S, 
query, the result type is Set<C>. The typing rule for 

C2 G! do&% 
OQL queries of the form: 

S,T < Object,C2 < ? >I Object I- select projection . 
R2uRli(}; from d as xl, e2 as x2, . . . . en as xn 

SU{interfaceC2<T>: Cl<T> R2)schema ~~~~ L; e~,,e2,,...,em’, 

Instantiation of a parametric interface to a specific’ .’ 
one is now governed by the following rule: 

is just slightly more complex. Each e j ’ must be 
available in the result. This means that if the type 

S I- A 2 Object, interface C < T > R E S of e j ’ is C’j, and C is the type of projection, we 

interfaceC<A>R,<T/A>ES must have C 5 C’j. In addition, the result is ordered 
and thus its type is List<@. 

The above rule says that if a parametric interface 
interface C<T> is declared in a schema, then for 
any interface A in the schema, an interface C<A> 
R<T/A> is also available in the schema. 

13 Queries 

S I- el : Collection < Cl >, 
S U &{Ci xi} I- e(k + 1) : 

Collection < C(k + 1) >, 15 k < n, 
S U U~zl {Ci zi} I- e’ : boolean, 

S U ULl{Ci xi} I- projection : C,, 
S U U~zl{Ci xi} I- ej : C’j, 
_ Sl-C<C’j,l<j<m 

Space limitations make it impossible to present in S I- select projection from el as xl, . . . . en as xn 

this paper a complete set of typing, rules for OQL. - where e’ order by el’,ea’,...,em’: List < C > 
In this, section we specify only the formal rules for 
a few characteristic forms of queries. Consider a Note how parametric polymorphism plays a cru- 
typical OQL query of the form: cial role in the above formal rules. , 
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!4 Reflection -, able to decide whether a particular construct is type 
correct or not. One consequence of this conclusion 

The typing rules for type reflective facilities pre- is that extensive run-time checks are required, These 
sented in this paper pose no particular problem. At checks make transactions less efficient and prone to 
the same time, we are not aware Of a collection of for- 

ma1 typing rules that would capture all the subtleties 

failure at nm time. It is in our opinion unacceptable 

to be forced to invoke expensive recovery procedures 
involved in the general linguistic reflective facilities 

of the kind presented in CSSS921. . . ’ 
just because of run-time type errors that could have 
been detected at compile time. 

Given interfaces Cl and C2, we define their meet, 
denoted Cl*C2, as an interface such that Cl*C2 5 

Our analysis shows that one can define not only a 

Cl, Cl*C2 5 C2. Furthermore, if C is an interface 
single ODMG Object Model, but a family of models 

1 
such that both C < Cl and C 5 C2 hold, then C 5. 

of the increasing level of sophistication. All the mod- 

Cl”C2. 
els in the family can be formally defined. These par- 

.I titular formal definitions appear as particular cases 
S I- Cl < Object, S I- C2 <‘Object of the formal system presented in this paper. Ven- 

S I- Cl * C2 5 Object _ dors could start by implementing the basic model, 

S I- Cl 6 Object, S I- C2 <’ Object, 
gradually moving to the more sophisticated ones as 

sl-cccl, sl-ccc2 extensions of the basic model. This approach elimi- 
nates the confusion that exists in the current model, 

Skc5ccl*c2 and makes clear what level of compliance and so- 

The definition of join of types is symmetric and it phistication a particular vendor is actually providing. 

is thus omitted. Now we can specify the typing rule The most basic model is obtained by identifying 

for the natural-join operator: -’ any with Object. In addition, the Model should 

S, T 5 Object I- a : Table < T 5,’ 

be equipped with orthogonal persistence. Conse- 
quently, persistence capable classes should be elim- 

S,R<Object I-b:Table<R> inated from the Model. In this model inheritance 

S I- a.naturaLjoin(b) : Table < T * R > is identified with subtyping, just as in the ODMG 
Object Model. 

It is easy to see that the meet ~1~2, with This model corresponds to the type system un- 
interface Cl Rl and interface C2 R2, is well- &lying Java. In fact, the ODMG 2.0 Java binding 
defined if Rl U R2 < 0;. Likewise, the join Cl+C2 is corresponds to this model, except that it has a model 
well defined if Rl n R2 < 0;. of persistence which is not orthogonal. This model 

can belmapped to the type.system of C& simply be- 

15 Conclusions cause the type system of&+ is more powerful. But 
dealing with orthogonal persistence in C-t-+ would 

Release 1.2 of the ODMG Object Model contains remain an issue. The model is’also as close as one ‘ 

major problems revealed in this paper. ODMG 2.0 can get to SmaUtalk. 
attempts to avoid some of them, but makes only a The main problem with this model is that it is too 

modest step in that direction. In fact,.the core of our rigid. Extensivedowncasting with dynamic checks is 

criticism applies to ODMG’ 2.0 as well. The goal required, and even that cannot solve all the problems, 

of our critical analysis is to help in making future as illustrated by the problems of cloning objects. But 

releases better. Should that ever actually happen, the at least this way the confusion that exists at present 

mission of this paper would have been accomplished. in the ODMG Object Model is eliminated, and the 

In particular, it is hard to imagine a sound type model is extended with orthogonal persistence. 

system for the ODMG Object Model. No matter A strictly more sophisticated and more flexible 
how sophisticated a type checker may be, there will model is obtained from the basic one by allowing 
always be situations in which the checker will not be limited redefinitions of method signatures using the 
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type variable MyType. This produces a strictly more 
powerful type system in which a distinction must be 
made between inheritance and subtyping. The ex- 
pressibility of the model is significantly increased 
at the expense of a strictly more sophisticated type 
technology. If substitutability is based pn subtyp- 
ing, type safety can be guaknteed by static type 
checking. However, if substitutability is based on 
inheritance, as in Eiffel, a more sophisticated imple- 
mentatidn technology based on multiple dispatch is 
required. 

In any case a formal definition of the ODMG Ob- 
ject Model is required. We have presented a col- 
lection of formal rules that have not been defined as 
of yet for the ODMG Object Model. Without such 
a formal system the recommended ODMG bindings 
are open to a wide range of different and sometimes 
contradicting interpretations. If an attempt had been 
made earlier to formalize such rules, the problems 
reported in this paper would have been discovered. 

The importance of parametric polymorphism in 
database-oriented object modelt is obvious from the 
collection classes prehefined in the OBMG Object 
Model. The confusion that currently exists in the 
ODMG Object Model regarding parametric polymor- 
phism must be eliminated. Either the ODMG Object 
Model supports it, or it does not. Ifnot, then Object 

must be used consistently instead of a type parame- 
ter. A clean solution which produces a third, strictly 
more sophisticated model, is to provide full support 
for parametric polymorphism. 

Whether this family of ODQG Object Models 
should be extended further with more advanced fea- 
tures is probably a topic for debate. We have demon- 
strated that even a more sophisticated type system is 
required if we want to type properly essential com- 
ponents of any database architekture. Such a type 
system would support bounded quantification (as in 
Eiffel), and matching or F-bounded polymorphism. 

Finally, hidden subtleties in the ODMG Object 
Model require all of the above features, as well as 
type reflection; This is the most sophisticated model 

in this hierarchy. Admittedly, the ODMG Standard 
may not want to go this far. But the fact that the 
ODMG Object Model is a database object-oriented 
model requires these sophisticated features, regard- 

less of whether the ODMG Standard wants to be 
explicit about them or not. In fact, Java has lim- 

ited reflective facilities related to the presence of the 
Class class in the language. And ODMG 2.0 has 
elaborate meta-level architecture, which is yet to be- 
come the focus of our. investigations. 
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