
The ODMG Object Model: Does it Make Sense? *

Suad Alagik
Department of Computer, Science

Wichita State University, Wichita, KS 67260-0083, U$A
e-mail: alagic@cs.twsu.edu 1 .’

Abstract

The ODMG Object Model is shown to have a num-
ber of problems. A major confusion is caused by
the intended type of polymorphism and the way it is
expressed in the Model. Dynamic type checking is
required even in situations when static type checking
is possible. There are situations in which there is
no way that type checking can determine whether a
particular construct is type correct or not. The model
of persistence in the ODMG Standard is not orthog-
onal, which has undesirable pragmatic consequences
on complex objects. The discrepancies between the
ODMG Object Model and the particular language
bindings of the ODMG Standard are non-trivial. This
paper presents solutions to some of these problems
together with the associated formal system. With-
out such a formal system the recommended ODMG
bindings are open to a wide range of different, and
sometimes confusing interpretations. The criticism
expressed in the paper is intended to be helpful in
developing future releases of the ODMG Standard.

‘This material is based upon work supported in part
by the U.S. Army Research Office under grant ‘number
DAAH0496-1-0192.

Permission to make digital/hard copy of part or all this work for
personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advan-
tage, the copyright notice, the title of the publication and its date
appear, and notice is given that copying is by permission of ACM,
Inc. To copy otherwise, to republish, to post on servers, or to
redistribute to lists, requires prior specific permission and/or a fee.
OOPSLA ‘97 IO/97 GA, USA
0 1997 ACM 0-89791-9084/97/0010...$3.50

1 Introduction

The ODMG Object Model is the core of the ODMG
Standard [Cat96]. As the Standard has been de-
veloped by the major vendors of object-oriented
database management systems, the model deserves
careful attention. Indeed, we may have to live with
it for many years to come.

In this paper we show that the ODMG Object
Model is behind the current state of object-oriented
research. -We reveal a number of problems in the
Model and propose their solutions. We naturally
hope that future releases ,will not have the problems
reported in this paper.

The paper was written when the Release 1.2
[Cat961 was available. In the phase of the final prepa-
ration of the paper for the proceedings, ODMG 2.0
appeared [CBB97]. It was very difficult to make a
careful account of the effects of all the changes in the
new version of the Standard. Every attempt has been
made to do so within the severe time constraints.
Some differences between the two versions of the
ODMG Standard will be pointed out in the paper.
We were very pleased to see that the new version of
the ODMG Standard seemed to recognize some of
the problems reported in this paper.l But ODMG 2.0
is still far enough from a consistent standard. The
core of our criticism still applies to the 2.0 version of
the ODMG Standard just as well.

This paper also presents the core of a formal system
which may be used to specify the intended bindings
of the ODMG Object Model. Without such a formal
system those bindings are open to a wide range of

‘The f&t version of this paper was completed in Oc-
tober of 1996.

253

sometimes very confusing interpretations.

The difficulties in coming up with a good object
model for the ODMG Standard are understandable.
This paper thrives toward conceptual and even for-
mal clarity. It aims to show that it-is possible(,to
achieve these goals, and at the same time meet the
very pragmatic goals of the Standard.

A major confusion exists in the ODMG Object

an orthogonal model of persistence. This leads to
specific pragmatic problems related to complex ob-
jects. We offer an orthogonal solution for a model
of persistence which is tied with the proposed formal
system.

Model regarding the polymorphic facilities which the
Model is actually supporting. The Model has a very
inappropriate way of expressing situations requiring
parametric polymorphism, which causes major prob-
lems in the underlying type system. ’ ’

A related group of problems in me ODMG’ Ob-

A ’ closely related fact is that object-oriented
database type systems necessarily require dynamic
checks in some situations. It is essential to make
those situations explicit, and not to confuse them
with situations in which dynamic checks are not nec-
essary. Our analysis is intended to eliminate such a
confusion from the ODMG Object Model.

ject Model covers situations in which dynamic type
checking is required in spite of the fact that static
type checking is possible. Excessive dynamic checks
affect efficiency and reliability of database transac-
tions. It is unacceptable to carry out a dynamic check
every time a transaction is executedifthe check could
have been performed once and for all when the trans-
action was compiled. Perhaps worse, expensive re:
covery procedures may have to be invoked only be-
cause of run-time type errors which could have been
detected at compile time.

When introducing desirable features of a typed
object-oriented model, one should have in mind what
kind of demands those features place on the type
system, and what kind of type technology is required
to guarantee efficiency and reliability. This paper
reveals some of such hidden subtleties in the ODMG
Standard. They require advanced typing techniques,
aswell as a variety of reflective techniques elaborated
to some extent in the paper.

Yet another group of problems are those coming
from the rigidity of the ODMG Object Model which
makes it impossible to express frequently occurring
situations in a natural way. This forces database pro-
grammers to use techniques which bypass the type
system. A very likely and frequent consequence is
undetected type errors that may cause database trans-
actions to fail at run time.

This paper consists of two parts. The first part
of the paper (sections l-7) is informal. It presents
the problems in the ODMG Object Model and our
solutions to these problems. The second part of the
paper (sections 8 - 14) presents the core of a formal
system for a family of ODMG Object Models.

A further class of problems are those in which it
appears that type safety has been established by static I
type checking, and yet a transaction fails at run time
due to a type error. Perhaps the most embarrass-
ing are situations in which there is no way that type’
checking can determine whether a particular con-
struct is type correct, no matter how sophisticated
the checker may be. Such situations do exist in the
ODMG Object Model. But they can be avoided, and
we show how.

Many of the problems in the ODMG Object Model
come from the fact that it is intended to be com-
mon for programming languages such as C-H- and
Smalltalk. But the underlying paradigms of these
two languages are so different: C++ is strongly and
mostly,statically typed, and Smalltalk is mostly un-
typed (or dynamically typed). A reflective paradigm
which treats classes as objects ([Feb89], [OPS95])
is truly object-oriented, but it defeats the whole pur-
pose of a type system. It is thus hard to imagine
that the requirement of, the ODMG Standard to have
a unified type system across the database and the
programming language can ever be satisfied.

Particularly. important are those aspects of the
ODMG Object Model which are related to the model
of uersistence. The ODMG Standard does not have

This paper shows that it is in fact possible to define
a family of ODMG Object Models of increasing level
of sophistication. Unlike the existing ODMG Object
Model, each model in this family may be well and
even formally defined, without any of the confusing

-- r---------- ~~ points in the current ODMG Object Model.

254

2 The top class interface

All class interfaces in the ODMG Object Model are
derived by inheritance from the interface Object.
But in addition, the ODMG Object Model contains
a mysterious type any. any stands for any type and
it is used in situations where a type parameter is in
fact required. This produces a type system which is
not sound. Since the ODMG Object Model contains
Object, any is redundant, and should be identified
with Object, as illustrated below.

interface Collection : Object (
unsigned long cardinalityo;
boolean is,empty();
void insert-element(in Object element);

//ODMG: void insert,element(in any element);
void remove,elem&nt(in Object element);
boolean contains,element(in Object

element);

//ODMG: void contains -element(in any
I

Iterator create_iteratorO;

3;

element);

With exception handling omitted, this is how the
iterator class should look lie:

interface Iterator: Object { _
void reset();
boolean not,done();
boolean next(out Object next-obj);

//ODMG: boolean next(out any next-obj);
void advanceo;
Object get,element();

//ODMG: any get,elemento;

3;

The usage of any leads to obvious type errors that
cannot be detected at compile time. Here is an ex-
ample:

Iterator p;
p.resetO;
select p.get~element().salary();

In our model the select clause fails a static type
check. But what happens in the ODMG Object
Model? The result type of get-element is any,
where any stands for any type. Thus it is impos-
sible for the type checker to determine whether the

select clause is type correct. Does any have a method
salary? All the types certainly do not.

In order to introduce a dynamic check one would
havetowrite ((Person)(p.get-element()).

salary(). But the class indicator is intended
to be used for going down the inheritance hier-
archy ‘and Person is not derived by inheritance
from any. It is thus unclear whether this solu-
tion is even possible and correct according to the
ODMG Object Model. ODMG 2.0 has an ex-
ception InvalidCollectionType in the interface
iterator. When any is identified with Object, the
problem disappears.

This simple change produces a model which re-
quires usage of Object where one would use a
type parameter in a model which supports parametric
polymorphism. Using Object in place of a type pa-
rameter, as one would do in JavaTM, requires down-
casting, which means dynamic checking. This is
contrary to parametric polymorphism, which can be
implemented with static type checking. In addition,
quite contrary to the intent of parametric polymor-
phism, using Object implies heterogeneity of types
of collection elements. But at least the model is
consistent, unlike the current ODMG Object Model.
And in fact, this basic model corresponds to the Java
binding which appears in the ODMG 2.0 Standard.

3 Persistence

A model of persistence is orthogonal if objects of
any type may be persistent or transient [ABD89],
[AM95]. In a type system with orthogonal persis-
tence, there may exist both persistent and transient
objects of any type. The model of persistence in
the ODMG Standard is not orthbgonal. It is based
on persistence capable classes. Objects of persis-
tence capable classes may be persistent or transient.
Objects of other classes are always transient.

.

In Release 1.2 persistence capable classes must be
declared as such in the schema. In ODMG 2.0 per-
sistence capable classes are eliminated from ODL,
but then they reappear both in the C++ and the Java
bindings (but not in the Smalltalk binding). Intrigu-
ing examples of classes the are not persistent capa-
ble according to the ODMG 2.0 are Transaction

255

(this rules out long transactions), Database (!?) and This paper offers a truly orthogonal, object-
d-Extent (used for managing extents of persistence oriented model of persistence. The model is based
capable classes in the C-H- bind&g). on inheritance and on message passing, This last

In the C++ binding of the ODMG Standard per- feature makes persistence in our model per object

sistence capable classes, in addition to being derived based. The class interface Object is extended by a

from other classes, must also be derived from a distin- method persists and a test is-persistent. Both

guished class dab j ect which enables persistence. are thus inherited by all other classes, and none of

But d-Object is not the top of the inheritance hi- this disturbs any of the properties of the type system,

erarchy. In fact, there is no such class in the Ct+
type system. The model of persistence is thus not interface Object*
orthogonal. Similar techniques are used in several

boolean same-as(in Object anobject);
boolean is-persistent (> ;

extensions of C++ supporting persistence [AG89]. Object copy0 ;
There are in fact even less flexible solutions. For ex-

I
void deleteo;

ample, E [RCS93] makes a clear distinction between void persists (in string name) ;
database classes, whose objects are always persistent, 1;
and other classes, whose ,objects are transient.

ODMG 2.0 Java binding does not specify how a
Th.e message persists promotes the receiver ob-

class becomes persistence cabable.
ject to longevity and makes the argument string the

The lack of orthogonal@ has its disadvantages.
name of this object in the currently valid persistent

For example, consider a class Shape for which persis-
scope

’
In a model ‘with single, flat name space

tence capability has not been declared in the schema.
per database, this scope would correspond to the

If we now have a complei persistent object which
currently opened database. This binding thus cor-

has a shape, an awkward situation occurs. A per-
responds to the effect of the method bind of the
Database interface that follows.

sistent object has a’ component which cannot be’
persistent. Of course, we can define a new class

Persistence capabilities are thus associated with

Persistent-shape, equipped with persistence ca-
the top of the inheritance hierarchy. This technique

pabilities. But does it really make sense to have both
works well with Java, Smalltalk and Eiffel. In fact,

Shape and Persistent-shape in the model?
we would argue that there is probably no other more
natural way of supporting generic and orthogonal

The Java binding of the ODMG 2.0 struggles with
this issue trying to reconcile non-&hog&& persis-

persistence capabilities in object-oriented systems.
In spite of that, we are not aware of a single object-

tence with persistence by reachability. Butthe whole oriented model of persistence that’is based on this
point is that persistence.by reachability requires or- simple obse~ation.

thogonal persistence. Persistence by reachability An extension of the interface Object in ODMG
is essential for object-oriented database technology,

since it allows proper handling of complex objecti.

2.0 associates locking primitives with his interface,

Support for complex objects is one of the key ad-
This is just yet another point of disagreement that
we. have with the ODMG Standard. Messages for

vantages of the object-oriented database technology promoting an object to longevity belong to the user
over the relational database technology. interface. Locking is merely an implementation tech-

For the sake of completeness and fairness, we
would also like to mention a database architecture
which is object-oriented,. largely untyped and re@ec-
tive, and which does not spppc$persistence by reach-
ability [OPS95]. At the, same time, a very active re-
search and developmenf work is under way to extend
Java with orthogonal persistence. A representative
project is PJava [ADJ96].

nique and should not be placed in the user model, just
as persistence implementation techniques do not be-
long there.

Another component of a model of persistence is a
binding mechanism for names of persistent objects,
The ODMG Standard supports a, single, flat name
space which corresponds to the entire database. This
is very impractical and it is expected to be changed

256

in future revisions of the Standard. In fact, ODMG must be adopted. The compile-time type of the right-
2.0 has a very elaborate me&level support which in- hand side must be a subtype of the compile-time type
eludes schemas, scopes and modules. We still have of the left-hand side.
not been able to understand how this elaborate addi- Jn the model proposed in this paper two solutions
tion, and a single, flat name space, coexist in a single are possible. Both apply to situations in which dy-
model. namic type checking is required when retrieving a

The binding mechanism for names of persistent persistent object. One is based on the reverse assign-
objects is given in the Database class interface. As ment ?= as in Eiffel, which necessarily involves a
in other models of persistence, this is an instance dynamic type check:
where explicit dynamic type checking is required.

interface Database: Object (
p ?= d.lookup("John Doe");

void open(in string database-name);
void close0 ;
void bind(in Object an-object,

in string name);

If ordinary assignment were used above, it would
not have type checked. The type of the right-hand
side is not derived by inheritance, nor is it a subtype

Object lookup(in string objec&ame)j of the left-hand side. But the reverse assignment
// ODMG 1.2: type checks, because it generates a mandatory run-
// any lookup(in string object-name);. time check. Such a check is not generated with the

3; ordinary assignment. If the fetched object is indeed

Note that the above mechanism leads naturally to
orthogonality of persistence. Named objects are per-
sistent (these are called persistence roots), and so are
alI their components, direct or indirect (reachabil-
ity). This is essentially the approach taken in PJava
[ADJ96]. Persistence by reachability or transitive
persistence also appears at several places in ODMG
2.0, but it is somehow combined with persistence
capable classes.

The confusion about the type any in the ODMG
Object Model applies to this situation as well. Here
is an illustration which shows how object lookup may
be performed.

Database d; Person p;
p=d.lookup("John Doe':);

According to the ODMG C++ binding d. lookup (
It John Doe") returns a reference of type any. The
object is then fetched and its type checked. If that
type is not Person, a run-time error occurs. One
problem with this is that it appears that assignments
cannot be statically type checked. But that is not
true. The usual rule in object-oriented languages is
that the compile-time type of the tight-handsidemust
be derived by inheritance from the compile-time type
of the left-hand side. In order to guarantee type safety

of the type Person, its identity will be assigned to p.
Otherwise, p will be assigned a nil identifier. Testing
p after the assignment reveals what happened.

The other solution is more in the spirit of the
ODMG Standard. According to the Database in-
terface, all that can be specified for the type of an ’
object with a given name fetched from the database
is that its type is any. In our type system that type is
Object. In either case, very little can be done with
such an object. A dynamic type check asserts that
the fetched object is of a specific, expected type.

Database d; Person p;
p=(Person)(d.lookup("John Doe"));

But the above solution does not work according
to the ODMG Standard 1.2. The class indicator
(Person) should not be applied to the result of the
method lookup. Indeed, the result type of lookup is
any, and Person is not derived by inheritance from
any. If any is identified with.Ob j ect, the problem
disappears.

To prove our point, in ODMG 2.0 the result type
of the method lookup is indeed Object, as it should
be. But then a new interface Dictionary is intro-
duced in ODMG 2.0 with a method lookup whose
result type is again any.

by static type checking, a more restrictive discipline

257

interface Dictionary: Collection (
exception KeyNotFound(any key);
void bind(in any key, in any value);
void unbind(in any key)

raises(KeyNotFdund);
any lookup(in any key)

raises(KeyNotFound);
boolean contains-key(in auy value);

3;

Our criticism applies just the same to this new in-
terface, as well as to the retrieve methods of interfaces
List and Array of both versions of the ODMG Stan-
dard. Furthermore, in the C++ binding of the ODMG
2.0 the result type of the method lookup-object of
the class dDatabase is dRef4ny, which causes
even worse problems. At the same time, the class
dDictionary of the C++ binding makes proper us-
age of parametric polymorphism in specifying the
result type of the method lookup.

Iii the conclusion of this section we point out a
major controversial issue related to persistence: ob-
ject identifiers. It appears that in the ODMG Object
Model these identifiers are hidden from the users, as
they should be, But in the C++ binding of the ODMG
Standard object references are explicitly present in
the language.

This is contrary to years of research and experi-
ence in database systems. It is also contrary to the
intent of the object-oriented data model as presented
in [ABD89]. It is hard to imagine a type system that
can deal with all the problems caused by the explicit
availability of object identifiers to the users. We hope
that this dangerous feature is not a consequence”of
the ideas behind the ODMG Object Model. Rather,
it is a consequence of compliance with C-H, which
has references explicitly in the language. Regret-
tably, other C-I-+ database programming languages
suffer from the same problem. An example is 0++
[AG89].

Java does not have this problem, and neither does’
the ODMG 2.0 Java binding.

.’

4 Self types i

In this section we show that the ODMG Object Model
is in fact too rigid. This problem is not specific to

the ODMG Object Model alone. This rigidity guar-
antees type safety in most situations. But then there
are situations in which a database programmer must
bypass completely the type system in order to accom-
plish perfectly natural tasks. The consequences may
be very serious. A more flexible model is obtained
.by using self types [BCM93], [BSG95], [AC96], as
illustrated below:

interface Object{
boolean same-as(in Object anobject);

MyType copy0 ;
// ODMG: Object copy(>;
void delete0;

3;

This definition differs from the ODMG Object
Model only in the result type of the copy method. But
this seemingly small difference has major implica-
tions. MyType is a distinguished type variable denot-
ing thetype of object executing the message. MyType
allows more flexible typing discipline in comparison
with the ODMG Object Model since it changes its
interpretation in a derived class. For example:

interface Person: Object<
unsigned short age(>;

3;
interface Employee: Person C
float salaryo;

3;
Person John; Employee Doe;
. . .
select John.copyO.ageO;
select Doe.copy().salary();

In the class Person, MyType as the result type
of the method copy0 stands for Person, and in
the class Employee, MyType stands for Employee,
Because of that both select clauses type check. But
according to the ODMG Object Model, neither one
of them would. The reason is that the result type
of copy is Object, which is not equipped with a
method age, nor with a method salary.

One could argne that the problem may be solved
using the class indicator as follows:

select ((Person)John.copyO>.ageO;
select (@mployee)Doe.copyO).salaryO;

258

But according to the ODMG Object Model, the
class indicator implies a dynamic check, which is
not necessary in a model with self types. Besides,
what is the point in making a copy of an object in such
a way that the copy apparently contains only the fea-
turesoftheclassObject. Ifacopyofapersonobject
is created, presumably the copy should.be a person
object as well. Thus it appears that copy should
be redefined in the derived classes accordingly. Al-
though the ODMG Object Model is not specific on
this point, it appears that such a redefinition is not
possible. It is certainly forbidden in the Java and the
C++ bindings of the ODMG Standard. Yet, if it were
allowed, such a redefinition would have been known
at compile time, and then the check could be static.
This is an instance which shows the rigidity of the
type system underlying the ODMG Object Model.

A closely related issue is the thorny problem of
object creation which yas completely avoided in
ODMG 1.2. ODMG 2.0 attempts to deal with it,
as illustrated by the following two interfaces.

interface ObjectFactory{
Object new();

3;

interface CollectionFactory: ObjectFactory

the parameter of new, and the type name is passed
at run-time as a string. If a programmer makes a
mistake, the consequences may be disastrous. The
whole point about the operator new in C++ is that
it is meant to be type safe. ODMG 2.0 has an un-
acceptable explanation for how anomalies would be
avoided in the above situation [CBB97].

In a type system Which is ,based on self types, ,a
distinction must be made between inheritance and
subtyping. If an interface B is derived by inheri-
tance from an interface A, contrary to the ODMG
Object Model, it does not follow that B is a subtype
of A. Substituting an instance of B where an instance
of A is expected is. allowed only if B is in fact a
subtype of A. Otherwise, type safety cannot be guar-
anteed by static type checking. Multiple dispatch
techniques must be used (see, for example, [BC96],
[Ala97]) in order to guarantee type safety. A more
expressive model is thus obtained at the expense of
a strictly more sophisticated type technology, and
even more sophisticated run-time technology. The
tradeoffs must be well understood.

For example, covariant extensions of the signa-
tures of the inherited methods are ‘allowed in 02.
With single dispatch this produces a system which is
not type safe.

-I
Collection new,of,size(in long size);

3;

The formal rules for inheritance and subtyping are
specified starting with section 9.

ODMG 2.0 states that the operation new inherited
by ColJ.ection from the interface Object creates 5 Parametric interfaces
a Collect ion object with system-dependent default
amount of storage for its elements. But the result

Unlike Eiffel and C++, the ODMG Object Model

type of new is Object, and not Collection!
does not offer general support for parametric classes.

The C++ binding of the ODMG 2.0 contains spec-
It has a roundabout way of supporting it only for col-

ification of new based on overloading which com-
lection classes, via l’type generators”. This view is

pletely bypasses the type system: shared by 02. The most likely reason for this con-
troversial issue is the factthat the ODMG Standard

class d-Object C defines bindings forboth C-H- and Smalltalk, as well
. . . as for Java in ODMG 2.0. The latter two of course do
void* operator new(size-t size, .

.d-Database *database,
not support parametric polymorphism. C-I-+ supports

const char *typename);
parametric polymorphism and thus the C++ binding
of the GDMG Standard does not have many of the

. . .
3;

problems discussed in this paper. But the C++ bind-
ing,has problems of its own. .They include a model

As if the result type void was not enough, the of persistence which is not orthogonal, and explicit
physical size of the newly created 0bject.appear.s as presence of object identifiers in the language.

259

A clean solution from the viewpoint of the type
system is to have explicit support for generic or para-
metric classes, as specified below:

/II< .-
interface Collection <T> (
//ODMG: interface Collection: Object (
. . . .

IteratorCT> create,iteratoro;
// ODMG.' Iterator create-iteratoro;

3;

Explicit support of parametric polymorphism al-
lows type safe iterators, as illustrated below. A
point of ,confusion in the ODMG Standard is that
the ODMG Object Model does not define Iterator
as a parametric class and its C++ binding does.

interface Iterator<T> C
//ODMG: interface Iterator: Object (

. . . .
T get-elemento;

110~~~: any get,elementO;

3;

‘Qpe safety can now be accomplished with static
type checking, as illustrated below:

Iterator<Person> p;
//ODMG: Iterator p;
. . . .

select p.get-element().ageO;

The select clause type checks. In a model without
parametric polymorphism one would have to intro-
duce a dynamic check. One of the advantages of
parametric classes is that they can be handled with
static type checking. ,I

The problems with the lack of parametric poly-
morphism and the rigid typing discipline for binary
methods come up in deriving class interfaces Set
and Bag from Collection. This is howit works
in a type system with parametric polymorphism and
self types:

interface Set CT> : Collection<T> (
// ODMG: interface Set: Collection (,)
MyType union-with(in MyType other);
// ODMG: Set union-with(in Set other);
MyType intersectionyith(in MyType other);
MyType difference-with(in MyType other);
boolean is-subseLof(in MyType other-set);

//ODMG:
//boolean is,subset,of(in Set other-set);
boolean is-proper-subset-of(

in MyType other-set);
boolean is,superset,of(

in MyType other-set);
boolean is-proper-subset,of(

in MyType'other,set);
3;

Consider now an example involving a class inter-
face derived by inheritance from Set. It is unclear
how one would accomplish this with type genera-
tors available in the ODMG Object Model for the
collection classes Collection, Set, Bag, List
and Array. There is no provision in the model to de-
rive one type generator from another. This problem
does not appear in the C++ binding of the ODMG
Standard.

interface Bounded-Set CT> : SetCT> I
unsigned long boundo;
void set,bound(in unsigned long

new-bound);

3; .
Bounded-Set<Person> Employees, Candidates;
. . .
select
Employees.union-with(Candidates).bound();

According to the ODMG Object Model the expres-
sion JZmployees.unionwith(Candidates).bound()
fails to type check. The type of the result of
union-withis Set<Person> and thus does not have
a bound. In our more flexible type system the type
check succeeds, as one would naturally expect. Us-
ing the class indicator leads to the issues already
discussed.

It is essential to note that Bounded-Set as derived
above by inheritance from Set is not a subtype of
Set. This is caused by the appearance of MyType
in the argument position, and follows from the rules
given in sections from 9 onwards. The remarks given
in section 4 on the required technology which handles
properly this situation apply.

6 Higher-order typing

The C-H binding of the ODMG Standard reveals fur-
ther subtleties of the type system required by the in-

260

tended ODMG Object Model. The type of elements bounded quantitication (constraint generic@ in Eif-
of a collection cannot be just any type. Elements of a fel Wey92]). To obtain this particular case, F-
collection are required to be equipped with methods bound is replaced with a fixed class, for example
for the copy semantics. The type of polymorphism T subtype-of Ordered-element.

is thus not even parametric, it is more complicated. A collection type whose elements are equipped
An example of an element type that satisfies this re- both with the copy semantics and a comparison func-
quirement is given below: tion is defined as follows:

interface Person (
unsigned short ageo;
Person copy0;
boolean equal(in Person e);

3;

interface Ordered-collection
<T i T subtype-of Ord-element<T> >{

3; **-

The type of polymorphism which captures the
intent of this ODMG requirement is either match-
ing [BSG95] or F-bounded polymorphism [CCH89],
[Ala94]. Parametric polymorphism is: its particular
case. This is how it works. Define the element type
of a collection type as:

Note that Person now does not satisfy the condi-
tion Person subtype-of Ord-element<Person>.

F-bounded poIymorphism is not just an exotic typ-
ing notion. It is in fact required for typing some very
fundamental components of most database system
architectures. Consider what is involved in typing
the index abstraction:

interface Element<T> C

T copyo;
boolean equal(in T e);

interface Order<T> (
boolean less-than(in T element);

3; - 3;

According to the ODMG Standard elements of interface Index <T,To I T inherits-from To,

ordered collections are also required to be equipped
To subtype-of Order<To>>

with a comparison method. Because of that, we
(void build(Collection<T> collection);

also define the element type of ordered collections as
Iterator<T> iteratoro;
T find(To key);

follows: void assign-iterator(Iterator<T>'
iterator);

interface Ord-element<T> : ElementcT> { 3;
boolean less-than(in T e);

3; Index has two type parameters. T stands for

A generic collection type whose elements are
the type of elements of the underlying collection,

equipped with the copy semantics is now defined
and To for the type of the indexing (key) attributes.

as follows:
There are two type constraints. The first one re-
quires that the set of features of To is a subset of

interface Collection
<T I T subtype-of Element<T> >c
. . .

the set of features of T, hence T inheritsfrom
To. The other constraint on To guarantees that To
is equipped with the comparison function, hence To

3; subtype-of Order<To>.
Similar subtleties are involved in typing keyed col-

An F-bounded condition on the type parameter lections and dictionaries that appear in ODMG 2.0.
T is T subtype-of ElementCT>. For example, Among the existing typed object-oriented program-
person as defined above satisfies this condition. ming languages, Eiffel is the closest to being able to
A particular case of F-bounded polymorphism is deal with these subtleties.

261

7 Reflection 8’

There are both hidden and explicit reff ective features
in the ODMG Standard. An elaborate meta-level
extension in ODMG 2.0 is likely to be relevant to the
discussion in this section. However, due to the time
constraints, we have not been able to evaluate fully
this new development in the Standard.

structure types objects, then a type becomes ‘a run-
time notion. It is hard to imagine a type system that
would offer a resolution to this confusing situation.
To prove our point, this interface has been eliminated
from ODMG 2.0.

7.1 Type reflection ’

‘Iype reflection treats types as objects of computation.
This is possible only in a very restrictive fashion in
order not to defeat the whole.purpose of the type
system. A conservative approach proposed-m this
paper is to allow only construction of new types at
compile time. The approach is not only type safe,
but also based,on static type checking,

The simplest form of type computation carried out
at compile time is type substitution required for para-
metric interfaces. Type reflective facilities in the
ODMG Object Model appear in the form of type gen-
erators. The ODMG Object Model has type genera-
tors forcollectionclasses Collection<T>, Set<T>,

Bag<T>,List<T> and Array<T> asaroundaboutway
of providing kited parametric polymorphic. fea-
tures. -’

According to the ODMG 1.2 Object Model
Struct is a type generator which allows definition
of application oriented structures. ,. Methods appli-
cable to such structures are defined &I the following
interface.

The ODMG Object Model is intended to subsume
the relational model. In ODMG 1.2 Table (al : ti ,
a2: t2,..., an: tn) is defined to be equivalent
toBagCStruct<altl,a2 tl,...,an tn>>. ODMG
2.0 states that Table is semantically equivalent to
a collection of structures. But the ODMG Standard
does not say anything about relational operators that
Table should be equipped with, in addition to the op-
erators on bags. Quite contrary to the ODMG Stan-
dard, a natural and truly object-oriented approach
leads to-a definition of Table as a class derived by
inheritance from the class Bag.

With proper usage of parametric polymorphism
and self types, a collection class Bag of the ODMG
Object Model can now be defined as follows:

interface Bag <T> : Collection<T> {
// ODMG: interface Bag: Collection f.
unsigned long occurrences(in T element);
MyType union-with(in MyType other);
// ODMG: Bag union-with(in Bag other);
MyType intersection-with(in MyType other);
MyTy$e differenc&with(in MyType other);

3;
‘- .

A class Table can now be derived from Bag as
follows:

interface StructC
unsigneci long size0;
void set-element(in any field,

in any value);
any get,element(in any field);
void clear-element(in any field);
Struct,copy();
void delete();

interface Table CT> : Bag<T> (
Table<T*R> natural-join(TableCR>);

3;

In ordeyto illustrate the issues, only one specific
database operator has been introduced in the interface
Table: the natural join.

Typing a generic natural join function causes well-

3; known difficulties [SFSBO], [OBB89]. The solution
presented above is based on type computation carried

Apart from the fact that the above interface in- out at compile time. This computation is expressed
eludes the usual confusion related to the type any, in terms of operators on types [Car88]. ‘Ike such
it also raises a question whether structures are ob- operators are meet, denoted *, and join of types, de-
jects. The intent of the ODMG Object Model is that noted +. Interestingly enough, typing joins requires
structures are not objects, but according to the above meets of types. Type computations are necessarily
ODMG interface they are. If the idea is to make very restrictive, so that they always terminate.

262

7.2 Linguistic reflection q.construct("select p from Person p

A major step toward more general reflective facili-
ties which typically cannot accommodate static type
checking is in treating programs (transactions and
queries) as objects. This is exactly what the ODMG
Object Model does. Transactions are defined as ob-
jects of a particular class. The C++ binding of the
ODMG Standard also treats queries as objects. In
order not to obscure the main idea by C++ specifics,
we will maintain the style of presentation of this pa-
per. In our view queries may be viewed as objects of
a class with the following interface:

where p.age > $1 and p.salary >= $2");
.
q.pass,int-erg(40);
q.pass,float3rg(75,000.00);
q.execute();
.
q.pass,inLarg(55);

interface query<T> (.
void construct-query(in string query);
void pass,int-arg(in unsigned short arg);
void pass-float-arg(in float arg);
void pass-string-arg(in string arg);
CollectionCT> executeo;

q.pass,float~arg(l00,000.00);
q.execute(); -_

Run-time reflection based on a callable compiler .
has been a part of the technology of persistent’pro-
gramming Ianguages such as Ps-algol @A871 and
Napier wC88]. However, expressing it in a for-
malism of typing rules presents a real challenge.
A further point is that type checking of the above
argument query requires type inference [OBSS],
[OBB89], because of the usage of $1 and $2, as
required by the ODMG Standard.

8 Schemas .
The corresponding class in the C++ binding of

the ODMG Standard is not parametric, which only
causes further unnecessary dynamic checks. The
method construct-query takes a string represent-,
ing a query and associates this query with the
object executing this message. Actual parame-
ters can then be passed to the query using meth-
ods such as passint-arg, passfloatarg,
pass-string-arg, etc. This amounts toreconstruct-
ing a query at run time.

We now proceed with a’formal development. Names
in a schema are bound to classes, objects and class ex-
tents. Every schema should contain at least a binding
for the class Ob j ect . We thus have:

(interface Object Ro) schema

The method execute applied to a query object re-
turns a collection which is the result of the query.
It requires a compiler that can be called at mn-
time. Type checking will be thus carried out by
the compiler as usual. But it will happen at run time.
This technique is called run-time reflection [SSS92],
[AM95]. The type parameter T stands for the type
of elements selected by the query. Type checking
involved in the execute message ensures that the ar-
gument query of this method indeed has this property.
Here is a specific example of usage of this parametric
class:

A statement of the form S schema asserts that S
is a schema. &m(S) denotes the set of identifiers for
which a binding is specified in a schema S. In addi-
tion to Object , a schema will naturally contain other
predefined bindings from the ODMG Standard, such
as those for predefined simple types and collection

types.

queryCPerson> q;
.

A binding for a class is introduced by a statement
of the form interface C R, where R is a structure
expression containing signatures of methods of the
class C. For example, Ro = {boolean sameas(in
Object anobject); MyType copy();

void delete0 ;}. Every valid structure expression
is formally derived from the empty structure expres-
sion. This relationship is expressed as R 2 {};,
where 5 is the inheritance ordering. The inheritance
ordering for structures is defined in section 10 and
the inheritance ordering for object types in section 9.

,

263

The rule for binding an identifier to an inter-
face presented below is recursive since an interface
(such as Object above) often naturally refers to it-
self, hence the condition C _< Object. The axiom
S schema I- MyTyie 5 Object is naturally a part df
the formal system.

If a schema S contains a binding C a, (i.e.,
(C a) E S), then we can naturally deduce from

S schema, S I- C 2 Object, a ti d~4S)
S U (C a} schema

S schema, C # dum(S),
S,ClObjectl-Rs{);

S U (interface C R) schema ,1

S will always denote a schema, so that the state-
ment S schema will in most cases be abbreviated to
S. Thus S stands for a collktion of assertions about
bindings of identifiers to interfaces (object types),
extents axid objects.

A binding for a class C2 derived by inheritance
from a class Cl is introduced by a statement of the
form interface C2 : Cl R, hence the rule:

S that a is of class (type) C, denoted a : C. This rule
is also a part of the formal system.

The above rules are easily extended to capture
classes with extents as defined in ODMG 2.0. Un-
like interfaces, classes in ODMG 2.0 are object types
whose instances can be directly created. A class C
with an extent E introduces an additional binding of
E to a collection of objects of the type C. Two rules
required to capture this idea are specified below:

S U (class C R) schema, E G d4S)
S U (class C (extent E) R} schema

S schema, class C (extent E) R E S

S schema, interface Cl RI E S,
~72 # do.dS),

S, C2 5 Object I- R2 U RI 5 (};

S;E:Collectkn<C;

S U (interface C2 : Cl R2) schema 9 Inheritance, and subtyping

The expression RBlJRl _< {}; reflects the require-.
The ODMG Object Model identifies inheritance and

ment that no redefinitions of t$e inherited signatures
subtyping. Thus Employee is a subclass and a sub-

are allowed, other than those caused by the change
type of Person. An instance of Employee may

of interpretation of MyType.
be substituted where an instance of Person is ex-

If C is bound to a class C, then C is necessarily
petted. This is a discipline from Eiffel and Ctt

derived by inheritance from the class Object.
and it causes some well-known problems [Coo89].
They do not appear in Ctt because of a rigid type

S schema, interface C R E S
StC<Objed

system. At the same time, this rigidity requires un-
safe features which amount to bypassing the type
system altogether. A more flexible type system re-
r&es a distinction between inheritance and subtyp-
ing ([CHC90], pCM93.J).

Likewise, if a schema S contains a binding
interf ade Ci: Cl R2, then the inheritance rela-
tionship expressed as C2 2 Cl is derivable from
the schema S.

S schema, interface C2 : Cl R2 E S
St-C25Cl

The rules which allow parametric interfaces to be
declared in a schema are given in section 12.

An identifier a is bound to an object (yet unspeci-
fied) of a class C according to the following rule:

The collection of all object types (classes) is thus
equipped with two orderings: inheritsfrom, de-
noted i, and subtype-of, denoted <:. If Cl < C2
holds, then Cl is derived by inheritance from C2.
However, if Cl <: C2 holds, then an instance (ob-
ject) of Cl may be substituted where an instance of
C2 is expected, with type safety guaranteed by static
type checking.

The class Object is defined in such a way that it
is both the top of the inheritance and the subtyping

264

orderings. Thus any class C derived by inheritance
from Object (C _< Object) will also be a subtype
of Object (C <: O&e&. This explains why the
type of the argument of the method same-as in the
class Object is Object, just as intheODMGObject
Model, Another reason is that sameas is the object
identity test and not the value equality test.

S I- C 5 Object
S I- C <: Object

SI-C<Object
9.1 Inheritance ordering S C- V m; 1; 5 0;

The inheritance ordering is reflexive and transitive.
These properties are expressed in our type system as
follows:

S-l- {Cl ml; C2 m2; . . . ; Ck mk; }; _< {}; ,
SCCl<Object, ml#mifori=1,2 ,..., k

S I- Object 5 Object

i

SI-C3<Object, SI-C2_<C3, SI-Cl-SC2
sl- Cl 5 c3

9.2 Subtyping ordering

The subtyping ordering is also reflexive and transi-
tive:

SI-C_<Objed
Sl-CC:C

S I- C3 5 Object, S I- C2 <: C3, S I- Cl <: C2
SI-Cl<:C3

An important connection between the two order-
ings is expressed by the following rule:

S I- C2 < Ohiect, S I- Cl <: C2
S I- Cl 5 Object

10 Structures

Contrary to Smalltalk and Eiffel, class interface is
not the only type structuring construct in the ODMG
Object Model. A more primitive one is structure
(record), .as in C++ and 02. Instances of structures
are not objects but values. Structures are a natural
starting place for the development of the formal rules
for object types in the ODMG Object Model. The
relationship R 5 {}; @is a valid structure) is defined
inductively as follows:

Two more rules are needed to allow structures
within structures. The only difference from the
above rules is that the condition C 5 Object is re-
pIaced by the condition C < {};, and the condition
Cl 5 Object is replaced by the condition CZ 5 0;.
Similar remarks apply to some of the rules for strut-
lures given in the sequel.

The inheritance relationship among structures is
defined simply as the subset relation:

Sl-R2<(};,St-Rl<(};, RlE:R2
Sl-R2<Rl

This relationship is obviously reflexive and transi-
tive.

The subtyping relationships among structures are
much more subtle. Subtyping is certainly reflexive
and transitive. Formal statements of these properties
follow the pattern in the corresponding rnIes for ob-
ject types. The general subtyping rule for structures
is:

SI-Ci<Object forlsilk,
S I- C’i 5 Object for k < i 5 n,

S I- C’i <: Ci for 15 i 5 k

If Cl _< C2 or Cl <: C2, then an instance of Cl
may be viewed as an instance of C2. In fact, safety
of a type system depends critically on whether this is
allowed for inheritance or subtvnina.

St-{C’lml;...;C’kmk;...;C’nmn;};
<: (CJ ml; . . . ; Ck mk; };

Selecting a field of a structure is governed by the
following familiar typinn rule:

265 .

Sl-e:{Clml;...;Ckmk;};
’ S t e.mi : Ci

In order to define the ‘type rules for class in-
terfaces, we extt%d the type expressions for struc-
tures to allow structure expressions of the form
{Cl ml(C1l,. . .? Clpl); ; Ck mk(Ck1,. . . ,
Ckpk); };. These extended structure expressions al-
low signatures of methods. The first two rules given
below define inheritance as it applies to extended
stictures.

S t Ci 5 Object, for 15 i < k,
SI-CCObject

The condition R 5 {Ci fi; }; guarantees that R
has an attribute f i of type Ci for 15 i 5 n.

As an interface typically refers to itself, the sub-
typing rule for object types is naturally recursive. In
the ODMG Object Model C2 is a subtype of Cl only
if the interface C2 is derived by inheritance from the
interface Cl. In our type system there are additional
requirements, specified in the recursive rule that fol-
lows:

S I- interface Cl Rl E S,
interface C2 : Cl R2 E S,

S, C2 <: Cl I-‘(R2 U Rl) < MyTypef C2 > <:
Rl < MyType/Cl >

SI-C2<:Cl

S t {C ml(C1, C2,. . . , Ck);}; 5 {};

S I- {Cl ml(C1l,. . . , Cl$l); . . . ;
Cb mk(Ck1,. . . , Ckpk); }; 2 {}; ,

S t Cl 2 Object,
S~CliIObjed,forl_<i~pZ,

ml#miforl<i~k

S I- (Cl ml(C11,. . . , Clpl);. . .
Ck mk(Ckl,. . . , Ckpk); CZ mZ(CZ1,. . . , Clpl); } 5

0;

The rule that follows defines subtyping for ex-
tended structures: -; .

SFCi<Objed forlli<k,
S t C’i 5 Object fti k < Z 5 n,

S t C’i <: Ci, for 12 i 5 k,
S I- C’ij 5 Object, for 15 i 5 n, 12 j 5 pn,

SI-Cij<:C’ij forl<ilk, l<j<pk, _
Cij # MyType

In the above rule R < MyType/C > denotes the
structure expression R in which the class C has been
substituted for MyType.

The typing rule for messages is rather tricky.
It will be given on the assumption of static type
checking. The first thing that static type checking
must ensure is that an object o executing a mes-
sageo,m(al,a2,. . . , an) is in fact equipped by an
appropriate method. A further requirement is that
the types of arguments al ,a2, . . ,a.n of the mes-
sage o.m(al,a2,. . . , an) must be subtypes of the
corresponding argument types Cl, C2, . . . , Cn of the
method signature.

S I- interface C R E S,
S t R ,< {Cm m(Cl,C2, Cn); };

stoo:co, stco~c,
S F ai : Cai, S-t Cai <: Ci, 1 < i ,< n

S I- {C’l ‘ml(C’ll, . . . , C’lpl); . . . ;
C’k mk(C’k1,. . . , C’kpk); . . . ; C’n mn(C’n1,. . . ,

C’npn);}; <: {Cl ml(C11,. . . ,
Clpl); . . . ; Ck mk(Ck1,. . . , Ckpk); };

11 Objects and messages

Object creation (as defined in OQL) is now specified
by the following rule:

SFRs{Cifi;];, lsiln,
Steei:Ci,l<isn,

class CR E S

StC(fl:el,f2:e2,...,fn:en):C

S I- o.m(al, a2, an) : Cm < MyTypelCo >

The conditions R 2 {Cm m(C1, C2, Cn);};
and Co 5 C ensure that the type Co of the object o
has the required method signature. And finally, recall
that MyType denotes the type of the object execut-
ing the message. Thus the type of the result is not
just Cm, but rather Cm < MyTypelCo >, which is
the result of substitution of Co for MyType in Cm.

The above rule simplifies if we identify inheritance
and subtyping (and thus there is only one ordering) by
disallowing usage of MyType. Of course, the same
applies to many of the previous and the remaining
rules. This simplified, but also less flexible type

266

system, would correspond to the Java binding of the select projection
.

ODMG 2.0 Standard. It is in fact a particular case of from ei as xl, .e2 as ~2, . . . , en as xn
the type system presented in this paper. where e,’

The from clause deterniines-the types of control

12 Parametric interfaces variables xi, x2 , . . . ,xn. Each ei is required to be
an expression of a collection type Collection<Ci>,

The C++ binding of the ODMG Standard naturally
relies heavily on parametric classes. This section
provides only the basics for developing the formal
rules for parametric interfaces.

The rule that follows allows interfaces with a sin-
gle type parameter to be declared in a schema. A
generalization to a finite number of parameters is
trivial.

hence the type of xi is Ci. In order to make queries
on complex objects possible, each e (i+l> may be a
component of ei for i=l , . . . ,n-1. With the typks
of control variables determined this way, type checlc-
ing of the qualification condition e) must produce
boolean. In addition, if under the-same assumption,
the type of projection is C, .the result of the query
is of type Bag<C>.

-’ S schema, C # dam(S),
S, T 5 Object, C < T >I Object I- R 2 {};

S U (interface C < T > R} schema

A binding for a parametric class C2 derived by in-
heritance from a parametric class Cl is intioduced
by a statement of the form interface C2<T>:
ClCT> R2, hence the rule:

S I- el : Collection < Cl >,
S U Uik,l{Ci xi} I- e(k + 1) :

Collection < C(k + 1) >, 15 k < n,
S U IJE, (Ci 35) f- e’ : boolean,

S U U~Y., (Ci xi) I- projection : C,

S I- select projection from el as xl, en as xn
where e’: Bag< C >

If select distinct option is used in the above

S schema, interface CI < T > RI E S,
query, the result type is Set<C>. The typing rule for

C2 G! do&%
OQL queries of the form:

S,T < Object,C2 < ? >I Object I- select projection .
R2uRli(}; from d as xl, e2 as x2, en as xn

SU{interfaceC2<T>: Cl<T> R2)schema ~~~~ L; e~,,e2,,...,em’,

Instantiation of a parametric interface to a specific’ .’
one is now governed by the following rule:

is just slightly more complex. Each e j ’ must be
available in the result. This means that if the type

S I- A 2 Object, interface C < T > R E S of e j ’ is C’j, and C is the type of projection, we

interfaceC<A>R,<T/A>ES must have C 5 C’j. In addition, the result is ordered
and thus its type is List<@.

The above rule says that if a parametric interface
interface C<T> is declared in a schema, then for
any interface A in the schema, an interface C<A>
R<T/A> is also available in the schema.

13 Queries

S I- el : Collection < Cl >,
S U &{Ci xi} I- e(k + 1) :

Collection < C(k + 1) >, 15 k < n,
S U U~zl {Ci zi} I- e’ : boolean,

S U ULl{Ci xi} I- projection : C,,
S U U~zl{Ci xi} I- ej : C’j,
_ Sl-C<C’j,l<j<m

Space limitations make it impossible to present in S I- select projection from el as xl, en as xn

this paper a complete set of typing, rules for OQL. - where e’ order by el’,ea’,...,em’: List < C >
In this, section we specify only the formal rules for
a few characteristic forms of queries. Consider a Note how parametric polymorphism plays a cru-
typical OQL query of the form: cial role in the above formal rules. ,

267

!4 Reflection -, able to decide whether a particular construct is type
correct or not. One consequence of this conclusion

The typing rules for type reflective facilities pre- is that extensive run-time checks are required, These
sented in this paper pose no particular problem. At checks make transactions less efficient and prone to
the same time, we are not aware Of a collection of for-

ma1 typing rules that would capture all the subtleties

failure at nm time. It is in our opinion unacceptable

to be forced to invoke expensive recovery procedures
involved in the general linguistic reflective facilities

of the kind presented in CSSS921. . . ’
just because of run-time type errors that could have
been detected at compile time.

Given interfaces Cl and C2, we define their meet,
denoted Cl*C2, as an interface such that Cl*C2 5

Our analysis shows that one can define not only a

Cl, Cl*C2 5 C2. Furthermore, if C is an interface
single ODMG Object Model, but a family of models

1
such that both C < Cl and C 5 C2 hold, then C 5.

of the increasing level of sophistication. All the mod-

Cl”C2.
els in the family can be formally defined. These par-

.I titular formal definitions appear as particular cases
S I- Cl < Object, S I- C2 <‘Object of the formal system presented in this paper. Ven-

S I- Cl * C2 5 Object _ dors could start by implementing the basic model,

S I- Cl 6 Object, S I- C2 <’ Object,
gradually moving to the more sophisticated ones as

sl-cccl, sl-ccc2 extensions of the basic model. This approach elimi-
nates the confusion that exists in the current model,

Skc5ccl*c2 and makes clear what level of compliance and so-

The definition of join of types is symmetric and it phistication a particular vendor is actually providing.

is thus omitted. Now we can specify the typing rule The most basic model is obtained by identifying

for the natural-join operator: -’ any with Object. In addition, the Model should

S, T 5 Object I- a : Table < T 5,’

be equipped with orthogonal persistence. Conse-
quently, persistence capable classes should be elim-

S,R<Object I-b:Table<R> inated from the Model. In this model inheritance

S I- a.naturaLjoin(b) : Table < T * R > is identified with subtyping, just as in the ODMG
Object Model.

It is easy to see that the meet ~1~2, with This model corresponds to the type system un-
interface Cl Rl and interface C2 R2, is well- &lying Java. In fact, the ODMG 2.0 Java binding
defined if Rl U R2 < 0;. Likewise, the join Cl+C2 is corresponds to this model, except that it has a model
well defined if Rl n R2 < 0;. of persistence which is not orthogonal. This model

can belmapped to the type.system of C& simply be-

15 Conclusions cause the type system of&+ is more powerful. But
dealing with orthogonal persistence in C-t-+ would

Release 1.2 of the ODMG Object Model contains remain an issue. The model is’also as close as one ‘

major problems revealed in this paper. ODMG 2.0 can get to SmaUtalk.
attempts to avoid some of them, but makes only a The main problem with this model is that it is too

modest step in that direction. In fact,.the core of our rigid. Extensivedowncasting with dynamic checks is

criticism applies to ODMG’ 2.0 as well. The goal required, and even that cannot solve all the problems,

of our critical analysis is to help in making future as illustrated by the problems of cloning objects. But

releases better. Should that ever actually happen, the at least this way the confusion that exists at present

mission of this paper would have been accomplished. in the ODMG Object Model is eliminated, and the

In particular, it is hard to imagine a sound type model is extended with orthogonal persistence.

system for the ODMG Object Model. No matter A strictly more sophisticated and more flexible
how sophisticated a type checker may be, there will model is obtained from the basic one by allowing
always be situations in which the checker will not be limited redefinitions of method signatures using the

268

type variable MyType. This produces a strictly more
powerful type system in which a distinction must be
made between inheritance and subtyping. The ex-
pressibility of the model is significantly increased
at the expense of a strictly more sophisticated type
technology. If substitutability is based pn subtyp-
ing, type safety can be guaknteed by static type
checking. However, if substitutability is based on
inheritance, as in Eiffel, a more sophisticated imple-
mentatidn technology based on multiple dispatch is
required.

In any case a formal definition of the ODMG Ob-
ject Model is required. We have presented a col-
lection of formal rules that have not been defined as
of yet for the ODMG Object Model. Without such
a formal system the recommended ODMG bindings
are open to a wide range of different and sometimes
contradicting interpretations. If an attempt had been
made earlier to formalize such rules, the problems
reported in this paper would have been discovered.

The importance of parametric polymorphism in
database-oriented object modelt is obvious from the
collection classes prehefined in the OBMG Object
Model. The confusion that currently exists in the
ODMG Object Model regarding parametric polymor-
phism must be eliminated. Either the ODMG Object
Model supports it, or it does not. Ifnot, then Object

must be used consistently instead of a type parame-
ter. A clean solution which produces a third, strictly
more sophisticated model, is to provide full support
for parametric polymorphism.

Whether this family of ODQG Object Models
should be extended further with more advanced fea-
tures is probably a topic for debate. We have demon-
strated that even a more sophisticated type system is
required if we want to type properly essential com-
ponents of any database architekture. Such a type
system would support bounded quantification (as in
Eiffel), and matching or F-bounded polymorphism.

Finally, hidden subtleties in the ODMG Object
Model require all of the above features, as well as
type reflection; This is the most sophisticated model

in this hierarchy. Admittedly, the ODMG Standard
may not want to go this far. But the fact that the
ODMG Object Model is a database object-oriented
model requires these sophisticated features, regard-

less of whether the ODMG Standard wants to be
explicit about them or not. In fact, Java has lim-

ited reflective facilities related to the presence of the
Class class in the language. And ODMG 2.0 has
elaborate meta-level architecture, which is yet to be-
come the focus of our. investigations.

Acknowledgment
’ I would like to thank Kennis Lai for her com-
ments on an earlier version of this paper, and Svetlana

Kouznetsova and Jose Solorzano for their comments
on the final version.

References

[AC961

[AG89]

[Ala941

[Ala971

[ABD89]

[AD J96]

[AM951

M. Abadi and L. CardeIli, On Sub-
typing and Matching, Proceedings of
ECOOP’96, Lecture Notes in Computer
Science, Springer-Verlag, Vol. 1098, pp.
145-167,1996.

R. Agrawal and N. Gehani, Ode: Ob-
ject Database and Environment; Rationale
for the Design of Persistence and Query
Processing Facilities in the Database Pro-
gramming Language O++, Proceedings
of the 2nd International Workshop on
Database Programming Languages, Port-
land, Oregon, 1989.

S. AlagiC, F-bounded Polymorphism for
Database Programming Languages, Pro-
ceedings of the 2nd East-West Database
Workshop, Workshops in Computing,
Springer-Verlag, pp. 125-137,1994.

S. AlagiC, Constrained Matching is Type
Safe, Proceedings of the 6th Int. Database
Programming Language Workshop, to ap-
pear, 1997.

Iv& Atkinson, F. Bancilhon, D. Dewitt,
K. Dittrich, D. and S. Zdonikz The
Object-Oriented Database System Man-
ifesto, Proceedings of the First Object-
Oriented and Deductive Database Confer-
ence, Kyoto, 1989.

M. Atkinson, L. Daynes, M.J. Jordan,
T. Printezis and S. Spence, An Orthogo-
nally Persistent JavaTM. ACM SIGMOD
Record, No. 4, Vol. 25, pp. 68-75, 1996.

M. Atkinson and R. Morrison. Orthogo-
nally Persistent Object Systems, VLDB
Journal, Vol. 4, pp. 319-401, 1995.

269

[BC96]

[BCM93]

[BSG95]

[CCH89]

[CarSS]

[Cat961

[CBB97]

[CHCSO]

[Coo89]

[Feb89]

[GJS96]

J. Boyland and G. Castagna, Type-Safe
Compilation of Covariant Specialization: a
Practicai’Case, Proceedings of ECOOP ‘96
Conference, Lecture Notes in
Science Vol. pp. 3-25,
Verlag, 1996.

Bruce, J. T. P. and
R. Gent, A. and R.
Safe and Type Checking an
Object-Oriented Proceedings of

OOPSLA Conference, 29-46,1993.
K. A. Schuett, R. van

PolyTOIL: a Polymor-
phic Language, Proceed-

of ECOOP Lecture Notes in
Computer Science Vol. 952, pp. 27-51,
Springer-Verlag, 1995.

P. Canning, W. Cook, W. Hill, W. Olthoff
and J.C. Mitchell, F-Bounded Polymor-
phism for Object-Oriented Programming,
Proceedings of the ACM Conference on
Functional Programming Languages and
Computer Architecture, pp. 273-280,1989.
L. Cardeiii, Types for Data Oriented Lan-
guages, In: J.W. Schmidt, S. Ceri and
M. Missikoff (Eds), Advances in Database
Technology - EDBT ‘88, Lecture Notes in
Computer Science, 303, Springer-Verlag,
Berlin, pp. 1988.

R. G. Catteil The Object
Standard: ODMG-93, 1.2, Mor-

Kaufmann, 1996.
G. G. D. Barry, Bartels, M.

J. Eastman, Gamerman, D.
dan, A, H. Strickland, Wade,
The Database Standard:
2.0, Morgan 1997.
W. Cook, W. Hi and S. Canning,

is not In: Proceed-
of the on Principles Pro-

gramming ACM Press,
pp. 125-135.
W. R. A Proposal Making Eii-

Type Safe, Computer Journal,
32, no. 1989, pp.
J. Ferber, Reflection in

Based Object-Oriented
Proceedings of OOPSLA Conference,

317-326,1989.
J. B. Joy G. Steele,
JavaTM Language Addison-
Wesley,

[OPS95]

[OB89]

[Oi96]

[PsA87]

[SSS92]

[MBC88] Morrison, F. R. Connor,
Dearle, The Reference Manual,

of Glasgow St. Andrews,

[Mey92] B. Meyer, Eiffel: Language, Prentice-
1992.

@CS9$ J. E. M. J. Carey and D.
S&h, The Design of the E Programming
Language, ACM Transdctions on Pro-
gramming Languages and Systems, Vol. 15,
pp. 494534,1993.

M. T. Ozsu, R. Peters, D. Szafron,
B. Irani, A. Lipka, and A. Munoz,
TIGUKAT: A Uniform Behavioral Object-
base Management System, VLDB Journal,
Vol. 4, pp. 445-492,1995.,

A. Ohori and P. Buneman, Static Type
Inference for Parametric Classes, Proceed-
ings of the OOPSLA Conference, pp. 445-
456,1989.

A. Buneman and Breazu-
T-en, Programming in
avelli: a Language with

Type Inference, of the
SIGMOD Conference, 46-57,

1989.

C++ Reference 02 Tech-
1996.

The Reference Manual,
tent Programming Report 12,

of Glasgow St. Andrews,
! I*

Stemple, L. T. Sheard
A. Socorro, the Limits Poly-
morphism Database Programming
guages, In: Bancilhon and Thanos
(Eds), in Database
- EDBT Lecture Notes ‘Computer
Science, pp. Springer-Verlag,
1990.

D. Stemple, R. B. Stanton, T. Sheard, P.
Philbrow, R. Morrison, G.N.C, Kirby, L,
Fegaras, R.L. Cooper, R.C.H. Connor, M.
Atkinson, and S. AlagiC, Type-Safe Lin-
guistic Reflection: A Generator Technol-
ogy, ESPRIT Research Report CS/92/6,
Department of Mathematical and Com-
putational Sciences, University of St. An-
drews, 1992.

270

