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Abstract
The JastAdd Extensible Java Compiler is a high quality Java
compiler that is easy to extend in order to build static analy-
sis tools for Java, and to extend Java with new language con-
structs. It is built modularly, with a Java 1.4 compiler that is
extended to a Java 5 compiler. Example applications that are
built as extensions include an alternative backend that gen-
erates Jimple, an extension of Java with AspectJ constructs,
and the implementation of a pluggable type system for non-
null checking and inference.

The system is implemented using JastAdd, a declarative
Java-like language. We describe the compiler architecture,
the major design ideas for building and extending the com-
piler, in particular, for dealing with complex extensions that
affect name and type analysis. Our extensible compiler com-
pares very favorably concerning quality, speed and size with
other extensible Java compiler frameworks. It also compares
favorably in quality and size compared with traditional non-
extensible Java compilers, and it runs within a factor of three
compared to javac.

Categories and Subject Descriptors D.3.4 [Programming
Languages]: Processors

General Terms Design, Languages

Keywords OOP, Compilers, Extensibility, Declarative Fra-
meworks, Modularity, Java

1. Introduction
This paper presents the JastAdd Extensible Java Compiler,
JastAddJ. It is built using the metacompiler tool JastAdd
which provides advanced support for constructing modular
and extensible compilers [HM03, Ekm06]. When using Jast-
AddJ as is, it works in the same way as a normal Java com-
piler, generating class files from source code. What is new
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about JastAddJ is the way it can easily be extended with
language constructs as well as with static analyses. As an
example of language extension, JastAddJ itself is built as a
base part supporting Java 1.4, and an extension that adds the
new features in Java 5: enums, the enhanced for statement,
autoboxing, varargs, static imports, and generics with wild-
cards. As an example of static analysis, modules for non-null
type checking and type inference have been implemented as
extension modules to JastAddJ [EH07]. Both of these exam-
ples illustrate highly non-trivial extensions.

The key to the extensibility of JastAddJ is the declarative
foundation of the underlying system JastAdd, which is based
on object-orientation, inter-type declarations [KHH+01],
declarative rewrites [EH04], and attribute grammars, includ-
ing support for reference attributes [Hed00], nonterminal
attributes [VSK89] and circular attributes [MH03]. These
declarative features allow extensions to be built without in-
teracting unduly with each other, and thereby making them
easy to combine.

Writing a compiler for a complex language such as Java
is notoriously hard and there are numerous subtle details that
all need to be handled correctly to support the full language.
In contrast to the other extensible Java compilers that we
know of, JastAddJ is highly compliant with the language
specification, actually passing a slightly higher number of
tests in the Jacks test suite [jac07a] than popular compilers
like javac and the Eclipse compiler.

To be of practical use, an extensible compiler needs to be
able to handle large programs and also to be reasonably fast.
JastAddJ can handle large programs, more than 100K LOCs,
and it runs well within a factor of three as compared to
javac. This is reasonably fast considering the main applica-
tion area: to do experiments in language design, to add plug-
gable type systems [Bra04], and to build specialized analysis
or transformation tools. JastAddJ is open source [jas07] and
we have used it extensively in our own research projects.

The rest of this paper is structured as follows. In section 2
we discuss the main architecture of JastAddJ, the modules it
consists of, and examples of how these modules have been
reused and combined with extension modules in different
projects. Section 3 discusses the major design ideas we have
developed in building JastAddJ. Sections 4-7 discuss key as-

1



pects of compilation and how they are handled in JastAddJ
to support extensibility: name analysis, type analysis, and
definite assignment. Section 8 evaluates JastAddJ, providing
performance measures, etc., and comparing to other com-
pilers or similar tools (both extensible and non-extensible).
Finally, section 9 discusses related work and section 10 con-
cludes the paper.

2. Architecture
2.1 Main components
JastAddJ consists of four main components: a Java 1.4 fron-
tend and backend, and a Java 5 frontend and backend. Each
component is represented as a directory of reusable source
files (JastAdd files and parser generator input files), a main
program (in Java), and a build file. The backends are ex-
tensions of the frontends: they reuse source files from the
frontend components. Similarly, the Java 5 components are
extensions of the Java 1.4 components, defining only what is
needed to extend the Java 1.4 implementation to Java 5. New
extended languages, analyzers or backends can be built by
defining components that similarly extend the existing Jast-
AddJ components.

The main programs in the frontends are error checking
prettyprinters: they parse Java source files, read dependent
class files, print compile-time error messages and print nor-
malized versions of the files. These tools serve as examples
for how to build source-to-source translating tools and anal-
ysis tools such as pluggable type checkers. The main pro-
grams in the backends are normal Java compilers that parse
Java files, print compile-time error messages and produce
class files.

Figure 1 shows the main components in JastAddJ. The
numbers represent the total number of lines of source code
(LOC) in the component measured using using SLOCCount
[Whe07].

Figure 1. Main components of JastAddJ

2.2 Example extensions
We have made several different extensions to JastAddJ. One
example is a pluggable type system for checking and infer-
ring non-null annotations [EH07]. The main implementation
of the non-null checker is built as an extension to the Java
1.4 frontend. It can be run as a pure checker (without com-
piling to bytecode) or as an extended compiler, combining

it with the Java 1.4 backend. The extension can furthermore
be combined with the Java 5 frontend and backend. Only a
few attributes need to be refined when combining the non-
null type system extension with the generic type system ex-
tension. Figure 2 depicts the different components and how
they extend each other.

Figure 2. A pluggable non-null checker for JastAddJ

We are currently collaborating with the AspectBench
compiler team in implementing an AspectJ frontend as an
extension to the Java 1.4 frontend. As part of that work we
have also implemented a backend that generates Jimple code
for the Soot bytecode manipulation framework [VRHS+99].
These two components are replacing the polyglot-based
frontend of the abc AspectJ compiler [ACH+06] by Jast-
AddJ. Advice weaving is performed on the Jimple represen-
tation while inter-type declarations are woven in the Jast-
AddJ-based frontend for AspectJ. A major benefit from this
change is the automatic scheduling of attribute computa-
tions rather than relying on manual scheduling of more than
45 different passes in the polyglot-based frontend.

Other extensions include an alternative backend for Pal-
VM, a Smalltalk-based virtual machine intended for low
memory pervasive systems, developed in the EU integrated
project PalCom [Pal07]; a Java to C compiler for hard real-
time systems [Nil06], and a system for automatic hardware
compilation for Java [And05].

2.3 Generation architecture
A JastAddJ component is specified by four principal parts:
an abstract grammar defining the structure of abstract syn-
tax trees (AST), behavior specifications defining the behav-
ior of the AST, a context-free grammar, defining how text
is parsed into ASTs, and a main program that reads the in-
put file, runs the parser to build the AST, and uses the AST
behavior to generate output.

The abstract grammar and the behavior are specified us-
ing the JastAdd language. The JastAdd tool takes these spec-
ifications and generates an object-oriented class hierarchy in
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Java for the AST. For parsing, a traditional parser genera-
tor is used which also generates Java code. A component
can reuse other components by simply including their ab-
stract grammars, behavior, and context-free grammars into
the generation process. Figure 3 illustrates this generation
architecture. The generated Java code is placed in two local
packages: AST and parser.

Figure 3. Generation architecture

2.4 Modularization
The abstract and context-free grammars can be modularized
in a rather simple way, drawing on their similarity to object-
oriented class hierarchies that can be extended with new
subclasses. The real key to the extensibility of JastAddJ is
the way the behavior can be specified in a declarative way,
using the constructs in JastAdd.

The modular extension of Java 1.4 into Java 5 is a very
challenging case. In particular, generics in Java 5 crosscuts
aspects of compilation like name and type analysis in an
intricate way. Due to the declarativeness of JastAdd, these
aspects can be described as separate modules.

Because of the declarativeness, specification order is ir-
relevant, and the reason for grouping a set of attributes and
equations together into a module is to promote reuse and un-
derstandability. JastAddJ is decomposed at two levels. At the
coarse-grained component level, the decomposition is done
based on what large components (directories) that are ex-
pected to be reused, e.g., a Java 1.4 frontend. At the finer-
grained module level, a component is decomposed into indi-
vidual modules (files), each consisting of a set of attributes,
equations, etc. This decomposition is based primarily on un-
derstandability.

Figure 4 shows the decomposition of the Java 1.4 and
Java 5 frontend components into modules, and illustrates
how different criteria can be used for the modularization.
The Java 1.4 frontend is decomposed according to the dif-
ferent kinds of analyses performed in the compiler, such as
name analysis, type analysis, definite assignment, etc. This
decomposition is largely based on the structure of the Java

language specification (JLS) [GJSB00]. For example, name
analysis is described in section 6 in the JLS. The Java 5
frontend is instead decomposed according to the new lan-
guage constructs: the enhanced-for statement, autoboxing,
etc. The module for enhanced-for describes how all the anal-
yses (name analysis, type analysis, etc.) are extended in or-
der to handle the enhanced-for construct. Because of the
declarative specification, many other decompositions would
have been possible as well.

Java 1.4 frontend LOC Java 5 extension LOC
Abstract grammar 261 47
Behavior Behavior

Name analysis 2 481 Enhanced for 65
Type analysis 1 387 Autoboxing 197
Definite assignment 1 054 Static imports 110
Exception handling 208 Generics 2 394
Constant expressions 467 Varargs 141
Anonymous classes 124 Enums 339
Class files 475 Annotations 369
Unreachable statements 127
Prettyprinter 788
Misc 659

Bytecode reader 1157 689
Context-free grammar 1053 538
Main program 111 20
total 10 352 4 909

Figure 4. Modules in the Java 1.4 and 5 frontends

3. Design principles
The JastAdd system allows the behavior of compilers to be
specified declaratively, using equations and other declarative
constructs. While declarative, these constructs can easily be
understood in terms of normal object-oriented programming,
and the result of a JastAdd specification is an object-oriented
framework that can be either used as is, by normal Java code,
or it can be further extended using JastAdd constructs. In this
section we will discuss these design ideas and how they have
been applied in JastAddJ.

3.1 The attributed AST
A program is represented inside the compiler as an abstract
syntax tree (AST). The tree nodes are objects of AST classes
that are generated from the abstract grammar which defines
both a class hierarchy and a composition hierarchy. For
example, While is defined as a subclass of Statement, and
as having two children: one Expression for the condition
and one Statement for the body.

Compilation problems are cast into problems of defining
attributes of the AST nodes. For example, the goal of name
analysis is to associate each use of an identifier with the
appropriate declaration, according to the scope rules of the
language. This problem is cast into the problem of defining
a decl attribute of identifier access nodes, such that the
value is a reference to the appropriate declaration node. This
problem can be further decomposed into subproblems that
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are also defined by attributes. For example, the scope rules
that define the visibility of declarations can be defined using
additional attributes.

Attributes that are references to AST nodes are called
reference attributes [Hed00], and make many problems
straightforward to express declaratively. This is in contrast
to traditional Knuth-style attribute grammars [Knu68] that
usually result in very cumbersome specifications for other
than very simple problems.

While the attributes are defined declaratively by equa-
tions in JastAdd, they are accessible to ordinary program-
mers as methods on the AST classes. For example, the at-
tribute decl will be represented as a method Declaration
Access.decl() where Access and Declaration are AST
classes modelling identifier accesses and declarations re-
spectively.

3.2 Graphs superimposed on the AST
The AST tree structure gives a basic hierarchical represen-
tation of the program, traversable through methods gen-
erated as part of the AST class hierarchy, for example,
getCondition() and getBody() for accessing the chil-
dren of a While node. For many compilation problems, ad-
ditional graph structures are useful, for example inheritance
graphs, method call graphs, etc. The use of reference at-
tributes, like decl, results in a superimposed graph structure
on the AST.

Such graphs may well be cyclic. Consider two mutually
dependent classes A and B, where A has a variable of type B
and B has a variable of type A. The resulting graph, consid-
ering both child edges and the decl reference attributes, is
cyclic. In practice, many graphs are cyclic, so it is very use-
ful that the declarative underlying system allows them to be
expressed.

Specific graphs can be defined by defining additional at-
tributes. For instance, suppose we want to define a type
graph, capturing the subtype relation. The essential infor-
mation for this graph can be found in the decl attributes
of the extends and implements clauses in the class decla-
rations. An explicit graph can be defined by adding an at-
tribute supertypes to the ClassDeclaration, defined as the
set of declarations referred to in the extends and implements
clauses.

3.3 The AST as the only data structure
The use of an attributed AST, and using reference attributes
to superimpose graphs onto the AST, makes it straightfor-
ward to use the AST as the only data structure. For exam-
ple, instead of using the separate symbol tables of traditional
compilers, the corresponding information is cast as attributes
in the AST. This is useful, because it allows the extension
mechanisms that apply to ASTs and attributes to be applied
to the compilation data structures too.

JastAdd attributes can have parameters, making it possi-
ble to define suitable APIs to the AST. For example, instead

of using the traditional symbol tables for looking up decla-
rations of identifiers, many AST nodes are equipped with an
attribute Declaration lookup(String identifier)
that will return the appropriate declaration that is visible
at that particular node. Through tree edges and reference at-
tributes, subproblems can be delegated to other nodes and
their attributes. For example, the lookup attribute for an
ordinary identifier access may be defined in terms of other
lookup attributes in the enclosing class and its superclasses.

3.4 Declarative frameworks
The generated result of a JastAdd specification is an object-
oriented framework: a set of collaborating AST classes with
a method API that is generated from the attribute definitions.
The framework can be used as is by client Java code: con-
structing an AST by instantiating the concrete AST classes
(typically using a parser), and calling the attributes in the
API to query the AST for information. For example, we
could query the decl attribute of an identifier access in order
to find its declaration.

The framework can also be extended with new behavior.
Such extensions are made in JastAdd, resulting in a gener-
ated extended Java framework. The extensions can be made
both along the syntactic dimension, adding new AST classes,
and along the behavior dimension, adding new attributes to
the AST classes.

The framework is declarative in that the behavior is de-
fined through equations. From the usage perspective this
means that once an AST has been constructed (for exam-
ple, via a parser), all its attributes automatically have values
such that all equations hold. The client code does not have to
worry about in which order the attributes are given values;
this is part of the implementation of the attribute methods
and is automatically generated by JastAdd. In fact, this eval-
uation is done on-demand, as attribute values are used, and
many values are cached for efficiency.

A consequence of the declarative definition of the at-
tributes is that it is safe for client code to use any attributes
and in any order. There are no hidden assumptions on the
order in which the attributes may be called: their values are
constant for any given AST. For this reason all attributes are
represented as public Java methods in the resulting frame-
work. Nevertheless, when writing a behavior module, there
are typically some attributes that are intended to be used by
clients, others that are intended to be defined when extending
the language, and yet others that are simply help attributes
that solve small subproblems. Informally, we therefore speak
of a client interface and an extension interface to the differ-
ent behavior modules. The client interface simply consists of
classes with methods. The extension interface makes use of
a number of declarative extension mechanisms.

3.5 Declarative extension mechanisms
JastAdd combines ordinary object-oriented programming
extension mechanisms with some declarative mechanisms
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especially targeting tree based computations. They all share
the common purpose to simplify the use of the major design
ideas presented so far.

Language structure is specified by an object-oriented ab-
stract grammar from which JastAdd generates a Java class
hierarchy including constructors and traversal API. This pro-
vides the usual object-oriented opportunities for abstraction
through deep class hierarchies with late bound methods and
reuse through inheritance. Inter-type declarations are used to
allow modular extension to an existing class hierarchy. Jast-
Add takes an extreme approach where no behavior is spec-
ified directly in the abstract grammar, but always through
external behavior modules that introduce new attributes and
equations in AST node classes.

The main mechanism to specify extensible behavior mod-
ules is the use of declarative attributes whose values are de-
fined by equations. The equations are specified in a syntax
directed fashion, solving a problem for each AST node type
in isolation. The order of specifying the equations is irrele-
vant: an attribute evaluation engine automatically combines
the equations into a global solution, ordering the evalua-
tion of individual equations. This makes it trivial to combine
modules—no manual code is needed for ordering the com-
putations.

Synthesized attributes are very similar to virtual meth-
ods without side-effects. An attribute is specified in a class
and equations may be overridden in subclasses. Inherited
attributes propagate information about the current context
downwards in a tree while decoupling the use of an attribute
from its definition. The node reading an attribute value need
not be aware of which node defines that value but only that
there is an ancestral node providing an equation. Circular at-
tributes can be used when there are cyclic dependencies be-
tween equations which are then evaluated using fixed-point
iteration.

When using the AST as the only data structure it is crucial
to be able to incrementally add new information to the AST
to represent data that is not available at parse time. Nonter-
minal attributes are attributes that are subtrees defined using
attributes and grafted into the existing AST. These attributes
may make use of other attributes and provide a means to de-
fine new trees as functions of an existing tree. JastAdd also
supports conditional rewrites that may use attributes to de-
fine context-dependent transformations to the AST. This can,
for instance, be used to rewrite the AST into a form more
suitable for later computations.

3.6 The JastAdd specification language
As a background to the examples in the upcoming sec-
tions, we briefly introduce the JastAdd specification lan-
guage through a simple example language.

The language contains an abstract class A, and four con-
crete classes B, C, D, and E. Classes D and E are subclasses to
A. Class D has two children called myB and myC, of types B
and C respectively. B, C and E have no children.

abstract A;
B;

C;

D: A ::= myB:B myC:C;

E: A;

A declares a synthesized attribute sa of type int and
with a default value 42. D overrides the default with an
equation defining sa to equal 4711. The attribute and the
equation are introduced into the classes A and D using inter-
type declarations:

syn int A.sa() = 42;
eq D.sa() = 4711;

B declares an inherited attribute ia of type int. E declares
an inherited attribute r of type C. Because C is an AST class,
r is a reference attribute. D declares a nonterminal attribute
myNta of type E, and provides a default value, new E():

inh int B.ia();
inh C E.r();
nta E D.myNta() = new E();

The inherited attributes must be defined in an ancestor
node. D defines the ia of its myB child using the sa attribute
of its myNta nonterminal attribute. D also defines the r of
myNta as equal to its myC child reference:

eq D.myB().ia() = myNta().sa() + 1;
eq D.myNta().r() = myC();

Figure 5 shows a class diagram for the language. The
inter-type declarations have been moved into the appropriate
classes. The aggregate relations show the AST hierarchy.

Figure 5. Class diagram for example language

Figure 6 shows an attributed AST for the language. The
unattributed AST with the D, B, and C nodes is created by, for
example, a parser. The attribution, including the E object and
the r, ia, and sa attributes, is then computed automatically
by the attribute evaluator.

4. Name Analysis
The goal of name analysis is to bind each access of an iden-
tifier to its corresponding declaration. While the implemen-
tation is intricate, the resulting client interface in JastAddJ
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Figure 6. Attributed AST for example language

is very simple, as shown in Figure 7. It consists of the single
attribute decl in Access nodes.

Figure 7. Client interface to the name analysis

Java name analysis contains many challenging and inter-
esting problems. While there are many subtleties in the in-
dividual language constructs, there are two main subprob-
lems. First, the visibility rules need to handle different com-
binations of scopes, such as nested scopes, inheritance, and
qualified access to remote members. Second, determining
the meaning of a name is fairly complex: it depends on the
syntactic context and it may also depend on the resolution of
other names in that context.

In a previous article we have shown how name analysis
is solved in our Java 1.4 frontend [EH06]. In this section we
will show how this solution forms two extension interfaces,
one for each of the main subproblems, and we will exem-
plify how these interfaces can be used when extending the
language.

4.1 Visibility rules
The set of visible identifiers at an AST node is defined by
an attribute lookup(string ) which returns the appropri-
ate visible declaration node. Access nodes use the lookup
attribute to define their decl attribute. The lookup attribute
is declared as inherited, meaning that its value is defined by
an ancestor node.1 By declaring an attribute as inherited, we
say that the node captures the value defined by the ancestor.

Figure 8 shows the extension interface to the visibility
rules. In the framework there are some classes that take on
the role of defining lookup for their children. This is done
by an equation that defines the lookup attribute for a given
child of the node. The equation holds for all lookup at-
tributes in the complete subtree of the child, but may be
redefined further down in the subtree, in another node that
defines lookup. Such redefinition can be used, for example,

1 In a traditional attribute grammar [Knu68], the value of an inherited
attribute is defined by the immediate parent node. JastAdd uses a shorthand,
similar to the Eli including feature [KW94], so that it is sufficient if there is
a definition of the attribute somewhere along the ancestor spine of the AST.

to model nested scoping. A language construct that affects
visibility typically redefines lookup for its children. It does
so by capturing its own lookup attribute and combining it
with other specific lookups. The specific lookups are synthe-
sized attributes that model some specific visibility. Examples
include looking up names in a given block, in a given class,
in the inheritance chain of a given class, and so on.

Figure 8. Extension interface to the visibility rules

Classes in the framework take on the roles of defining
lookup, capturing lookup, and providing specific lookups in
order to implement the visibility rules of the different Java
1.4 language constructs. The visiblity definition for fields,
parameters, and local variables, includes 14 classes taking
on the role of define lookup, 7 classes that capture lookup,
and 9 classes that provide specific lookup. The correspond-
ing numbers for types are 9 classes that define lookup, 5
classes that capture lookup, and 5 classes that provide spe-
cific lookup. The reason that type visibilty requires fewer
rules than variable visibilty is that there are fewer language
constructs that may enclose type declarations than variable
declarations. Consequently, method visibilty requires even
fewer rules. The same three roles can be used also when ex-
tending the framework, as will be exemplified in Section 4.3.

4.2 Determine the meaning of names
Names in Java are highly context-sensitive and a Java parser
typically builds general Access nodes for all names, regard-
less of their actual meaning. The JLS defines the specific
rules for how to first classify context-free names according
to their syntactic context and then to refine them by reclas-
sifying contextually ambiguous names. Our Java compiler
follows this implementation scheme [EH06]. While the de-
tails of this implementation are quite intricate, the extension
interface is very simple: a new language construct that has
an Access child needs only provide an equation defining its
initial NameKind which can be a type, a package, an expres-
sion, or ambiguous (either a package or a type, depending on
other context). The further refinement of ambiguous names
is then carried out automatically by the Java 1.4 frontend.

Figure 9 shows the extension interface to determining the
meaning of names. The framework declares the inherited at-
tribute nameType for Access nodes. A new language con-
struct that has an Access child needs to provide an equation
for this attribute.

4.3 Extensions
The complete name analysis framework consists of the two
parts described in sections 4.1 and 4.2. Using this simple

6



Figure 9. Extension interface to determining the meaning
of names

framework it is very easy to define new language constructs
that extend Java with constructs that affect the name analy-
sis.

4.3.1 The enhanced for loop
Consider extending Java 1.4 with the enhanced for loop of
Java 5:

for(Element e : collection) statement

A local variable declaration e is declared and needs to be
included in the set of visible declarations of the contained
statement. The new loop is modelled by a new AST class
EnhancedFor, see Figure 10. It defines lookup for its con-
tained statement by an equation that delegates to a new spe-
cific lookup, matchLocal. The specific lookup first matches
the string with the local variable, and if no match, it dele-
gates to the EnhancedFor’s own lookup attribute, which is
captured by the superclass Stmt.

The abstract syntax for the EnhancedFor is
EnhancedFor: Stmt ::= Access Decl Exp Stmt
Since EnhancedFor is a construct with an Access child

(Element in the example above), it also provides an equa-
tion to define the nameType of that Access as equal to
NameKind.TYPE.

Figure 10. Defining name analysis for the enhanced for
loop

4.3.2 Adding an inspect statement
As another example, consider extending Java with an inspect
statement in which the members of the inspected object are
visible without qualification. This new statement changes the
set of visible declarations for its contained statement:

inspect(obj) statement

The new statement is modelled by a new AST class
InspectStmt. Similarly to the previous example on the
EnhancedFor, the InspectStmt defines the lookup at-
tribute of its contained statement, see Figure 11.

Figure 11. Defining visibility in the inspect statement

The equation reuses the existing specific lookup attribute
matchMembers of the inspected object’s type. A simple
combination of this attribute with the current visibility con-
text, i.e., the lookup attribute of the InspectStmt itself,
yields the desired visibility context for the contained state-
ment. This simple equation will cause all Access nodes in-
side the inspected statement to be automatically bound to the
appropriate declarations.

The example illustrates the reuse of specific lookup at-
tributes in the name analysis framework. The whole Java 1.4
name analysis framework is in fact built up incrementally us-
ing this technique: some language constructs introduce new
specific lookup attributes, others make use of these attributes
to define visibility. For example, Method declarations and
Class declarations provide specific lookup attributes. These
are combined in various ways in different language con-
structs to support block nesting, inheritance, nested classes,
and qualified access to type members.

The example also illustrates that name analysis and
type analysis are mutually dependent: the definition of the
lookup attribute of the InspectStmt uses the type anal-
ysis framework as well (see the next section): it uses the
type attribute of its inspected object. Type analysis on the
other hand requires name binding to find the type of a name
and to bind type names to declarations. Name binding and
type analysis are thus mutually dependent and would re-
quire complex manual scheduling if not using declarative
attributes.
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5. Type analysis
The two main tasks of the type analysis framework are to
compute the type for expressions and to decide whether two
types are in the subtype relation. The way these analyses are
implemented is highly affected by the design principle to use
the AST as the only data structure which is the key to their
extensibility. This requires types to be represented by nodes
in the AST, and the type of an expression is represented
simply by a reference attribute that points to the appropriate
type node. We will use the term binding as a synonym to
a reference attribute, in particular when the attribute binds
together distant parts of the AST.

This design leads to the simple client interface shown
in Figure 12. The attribute type binds each Expr to a
TypeDecl which can then be used to compute the subtype
relation using the subtype attribute.

Extending the language with new kinds of types then
boils down to the following two problems. First, to obtain
AST representations for the new types. Second, to extend
the subtype test so that the instances of the new types can be
compared with each other and with other existing types.

Figure 12. Client interface to the type analysis

5.1 Type representation
Java has both explicitly and implicitly declared types. For
explicitly declared types, like classes and interfaces, we use
their declaration nodes as type representations. For implic-
itly declared types, for example primitive types and arrays,
we add AST nodes as part of the attribute evaluation, i.e., af-
ter parsing. This is done declaratively through the use of non-
terminal attributes. A nonterminal attribute is a child node
that is defined by an equation, rather than constructed by the
parser. In JastAdd, nonterminal attributes are evaluated on
demand, i.e., the nonterminal attribute nodes are constructed
automatically as soon as they are accessed.

Figure 13 shows the extension interface for type repre-
sentation. In the framework there are abstract classes like
expressions and declarations that bind to a type. If the exten-
sion introduces subclasses to these, called concrete binds to
type in the figure, they have to supply an equation for binding
to the desired type node. The type node can be an instance
of an existing TypeDecl subclass in the framework, or of a
new type in the extension. Typically, the equations defining
type bindings make use of the name analysis framework, i.e.
the decl attribute, to find the desired type object.

Suppose the extension introduces new types. In case the
extension also introduces explicit declarations of these types,
the nodes can be automatically built by the parser. But if the
new types are implicitly declared, they need to be built as
nonterminal attributes. In this case they are built as children
to another AST class, a declaration context. The use of inter-
type declarations allows an extension to add attributes and
equations to existing classes in the framework.

Figure 13. The extension interface for type representation

5.2 Extensible subtype tests
The subtype relation is the foundation of object-oriented
type checking and used when implementing other rela-
tions such as assign conversion, method invocation con-
version, casting conversion, etc. We implement the sub-
type relation through a parameterized attribute boolean
TypeDecl.subtype(TypeDecl t) to determine if two
types are in the subtype relation.

All kinds of types are possible to compare using the sub-
type attribute. Not only class and interface types, but also
primitive types and array types. To compare class and inter-
face types, we use a straightforward implementation of the
subtype test that searches the direct supertypes transitively.
Since all types are represented by nodes in the AST, we can
simply follow the reference attributes that bind type declara-
tions to their direct supertypes.

The subtype attribute supports comparison between
two arbitrary types. To allow the modular definition and
extension of this relation, we have used the double dis-
patch pattern [Ing86].2 When comparing two types by
t1.subtype(t2), the subtype attribute dispatches on t1,
and its definition uses another attribute that dispatches on t2.
The combination of double dispatch with inter-type declara-
tions allows extensions to be done modularly, as illustrated
below.

The double dispatch pattern allows us to specify the sub-
type relation with a single equation for each pair of type
kinds. In practice, the number of equations is much smaller
since many types are incompatible, and these combinations
can rely on default equations that simply return false.

2 Binary attributes, analogous to binary methods [BCC+95], could have
been used as an alternative mechanism for achieving extensible implemen-
tation, but are not supported by JastAdd.
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Figure 14 shows the extension interface for subtyping.
The subtype attribute is a synthesized attribute in the ab-
stract class TypeDecl. Each different kind of type is rep-
resented by a subclass to TypeDecl and provides an equa-
tion for subtype. The framework includes a number of
such types, here exemplified with T1 and T2. For each such
type, say T1, there is also an attribute supertypeOfT1 in
TypeDecl, with the default value false.

The framework can be extended by adding a new type,
say NewType, as a subclass of TypeDecl. Its equation for
subtype should do the double dispatch, i.e., it should call
supertypeOfNewType. The declaration of this attribute is
added to the abstract TypeDecl in the framework by means
of an inter-type declaration, also with false as a default
value. The NewType then overrides this equation and pro-
vides the implementation for comparing two NewTypes. If a
NewType can be a supertype of another type, say T1, in the
framework, then an equation for supertypeOfT1 is added
to NewType to capture this relation. And conversely, if a
NewType can be a subtype of a T1, then an equation for
supertypeOfNewType should be added to T1, again using
an inter-type declaration. As seen in Figure 14, the use of
inter-type declarations allows the extension to be expressed
modularly: even the additions to the existing classes in the
framework can be expressed inside the extension module.

Figure 14. The extension interface for subtyping

5.3 Extensions
5.3.1 Non-null types
As an example extension, consider the addition of non-null
types to Java, to prevent null pointer exceptions. We have
implemented such an extension, including non-null type in-
ference for legacy code [EH07], and supporting virtual dis-

patch during object initialization using the concept of raw
types [FL03].

The type system is extended to distinguish between
possibly-null types, and guaranteed non-null types. The Java
1.4 framework includes the AST class ClassDecl which
models possibly-null types. For each ClassDecl node in the
AST, there should be a non-null counterpart. This is mod-
elled by a new class NonNull. Instances of NonNull are
added as nonterminal attributes of ClassDecl. An attribute
possiblyNull is added to NonNull that points back to its
parent ClassDecl. This makes it easy to go back and forth
between a possibly-null type and its non-null counterpart, as
needed in other equations. See Figure 15.

Figure 15. Extending the type representation framework
with non-null types

Equations that extend the subtype relation are shown in
Figure 16. The framework includes, in addition to Class-
Decl, a class NullType that models the type of the null
value. The extension includes two boilerplate equations for
the double dispatch. Of the two remaining equations, one
handles the comparison between two non-null types. This
is computed by comparing the types between their possibly-
null counterparts, using the possiblyNull attribute defined
earlier. The last equation is added by means of an inter-type
declaration to ClassDecl, and compares the ClassDecl
with a NonNull type, by delegating the comparison to the
possibly-null counterpart of the latter. The converse com-
parison, checking if a NonNull type is a supertype of a
ClassDecl, will always be false, and is covered by the de-
fault equation. No additional equations are needed for com-
paring NonNull with NullType because these are never in
the subtype relation and are covered by the default equations.

To handle raw types, the type analysis framework is ex-
tended in a similar way.

5.3.2 Generic types
Java 5 generic types are implemented by extending the Java
1.4 framework in a similar way as for non-null types. Each
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Figure 16. Extending the subtyping framework with non-
null types

parameterization of a generic type is built using a nontermi-
nal attribute. Figure 17 shows a simplified AST for a generic
class Cell and a parameterization using String as the type
argument. The nonterminal attribute is depicted as a dashed
tree edge.

A main difference, as compared to the non-null example,
is that each generic class may have many parameterizations.
The nonterminal attribute therefore takes a list of arguments.
Specific field and method signatures are also built as part
of the nonterminal attribute, where the type parameter T
has been replaced by the type argument String. This way,
much of the other compilation, such as name lookup and
qualified access to members of parameterized types, need
not be aware of generic types.

We also provide access to the erased version of a type and
its members through the erasure() reference attributes.

6. Definite assignment
The JLS prescribes that each local variable and every blank
final field must have a definitely assigned value prior to any
access to its value. A Java compiler must therefore carry
out a conservative flow analysis to make sure that each
control flow path to a variable access contains at least one
assignment to that variable. A similar computation, definitely
unassigned, is needed to ensure that a final variable is only
assigned at most once.

The client interface in Figure 18 provides information
whether a variable is definitely assigned or not in a particular
context. Since variable assignment is an expression in Java,
the flow analysis needs to propagate information not only
through statements but also through expressions.

Figure 17. Simplified AST for representation of generic
types

Figure 18. Client interface to definite assignment

Figure 19 shows the extension interface for definite as-
signment which is centered around the isDAbefore and
isDAafter attributes, both parameterized with the desired
Variable. Each language element that contains children
that are part of the execution flow needs to provide an equa-
tion for the inherited attribute isDAbefore. This attribute
represents the status before the element is executed. Each
execution element needs to provide an equation for the sta-
tus after execution by defining the isDAafter attribute.

Figure 19. Extension interface to definite assignment

These mechanisms for handling definite assignment are
used inside the framework, and can also be used in exten-
sions of the framework. Figure 20 shows how the While
statement is handled, assuming for a moment that it is de-
fined in an extension rather than inside the framework. The
abstract grammar for While is the following.

While: Stmt ::= cond:Expr body:Stmt;
Notice that the While is both an execution element itself

(as are all statements), and it contains other execution ele-
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ments: cond and body. The informal specification of Defi-
nite Assignment in Chapter 16 of the JLS states that:

• A variable is definitely assigned before the condition if it
is definitely assigned before the while statement.

• A variable is definitely assigned before the loop body if
it is definitely assigned after the condition.

• A variable is definitely assigned after a WhileStatement
if it is definitely assigned after the condition.

Notice the similarity between this syntax-directed way of
specifying definite assignment and the equations in Figure
20.

Figure 20. Extension of the definite assignment framework
for While

Definite unassignment provides additional challenges in
that there may be circular dependencies between attributes
as shown by the following example. A variable is only def-
initely unassigned before a loop condition in a while state-
ment if it is definitely unassigned both before the while state-
ment and after the loop body. Moreover, whether a vari-
able is definitely unassigned after the loop body depends
on whether the variable is definitely unassigned before the
loop condition. This leads back to the initial definition which
leads to a circularity. Such attributes can be expressed declar-
atively using circular attributes in JastAdd. The evaluation
is carried out using a fix-point computation, starting at a
start value specified in the declaration of the circular at-
tribute. Because the computation is declaratively expressed,
it is straightforward to extend it for new language constructs,
simply by supplying additional equations for the new lan-
guage construct, analogously to how it was done for the
While statement in Figure 20.

7. Discussion
The previous sections have demonstrated three key declar-
ative frameworks that can be extended modularly when
adding new language constructs. There are additional frame-
works with similar small extension interfaces in JastAddJ
that deal with unreachable statements, control flow, constant
expressions, error checking, and code generation. Each new

language construct needs to extend some of these frame-
works in order to support error checking and/or class file
generation. For instance, the inspect statement, used earlier
to exemplify name analysis extension, would also need to
extend several of the other frameworks to fully extend the
compiler. New analyses that are added to the compiler can
benefit from using these frameworks and may also define
their own extended reusable frameworks.

Section 3 presented the major design principles that en-
able modular extensions to JastAddJ. The syntax directed
approach to declaratively specify context-sensitive compu-
tations using attributes provides a foundation for extensible
computations. Attributes allow specifications to be broken
down into small problems that are solved for each kind of
node type separately, and then combined into a whole au-
tomatically by the attribute evaluation engine. Synthesized
attributes enable abstraction over the node children while
inherited attributes enable abstraction over the current con-
text. Traditional use of symbol tables break these qualities
by introducing unnecessary dependencies between unrelated
computations that make use of the tables. Mutually depen-
dent analyses must then be scheduled manually as discussed
in the previous sections, e.g., object-oriented name and type
analysis. The extension mechanisms all rely on tree based
computations and the design principle to use the AST as the
only data structure serves to maintain that property through-
out the compiler.

There are three main language features in JastAdd that
enable the use of the AST as the only data structure while
maintaining a loose coupling between different parts of the
AST. First, references to remote nodes allow for abstraction
over distant structures. Attributes may be accessed remotely
through a reference without exposing unnecessary details
about the remote context. Second, inherited attributes with
parameters enables abstraction over the current context with-
out introducing further dependencies besides that there must
be an ancestor that defines the value in the current context.
This kind of abstraction occurs naturally in programming
languages where one can often refer to enclosing elements
implicitly, e.g., break out of the current loop, or explicitly,
a named variable currently in scope. Third, nonterminal at-
tributes can be used to build new subtrees as functions of
existing structures during attribute evaluation which is im-
portant to represent implicitly declared entities that need to
be explicit in the AST.

8. Evaluation
We have evaluated JastAddJ by comparing it to a number
of open source Java compilers, both extensible and non-
extensible ones. The evaluation has been done from several
perspectives: language compliance, performance, and imple-
mentation size. We first present the compilers we compare
with, then the test suites we have run, and finally the results
of the different comparisons.
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All tests were carried out on a ThinkPad T42p Pentium
M 1.7 Ghz with 1 Gbyte memory, running Fedora Core 6
Linux. Unless otherwise noted the tests were executed using
the Java HotSpot Client VM version 1.5.0 02-b09 and we
report the fastest of five runs.

8.1 Compilers overview
We include the most common industrial strength Java com-
pilers as well as a few research compilers that explicitly sup-
port extensibility. If a compiler exists in both a Java 1.4 and
a Java 5 version we include both, the reason being that we
want to use the latest version for compliance comparisons
but the Java 1.4 version when comparing implementation
size. All compilers are implemented in Java unless otherwise
stated. We have only included compilers that are publicly
available including source code. We chose not to include the
GNU compiler for Java (gcj) since they are currently replac-
ing their frontend with the eclipse frontend, which is already
included in the comparison.

Javac Javac is the standard compiler in Sun JDK and also
serves as a reference implementation for the Java Pro-
gramming Language. It is implemented in Java and in
the comparison we include javac 1.4.2 and javac 1.5.0.

Eclipse The Eclipse project contains an incremental Java
compiler based on technology evolved from the Visu-
alAge Java compiler. We have tried to remove all IDE
specific compiler code to allow for a fair comparison to
the stand alone compilers. Version 2.1.3 supporting Java
1.4 only and version 3.1.2 that also supports Java 5 are
included in the comparison.

Jikes Jikes is a high-performance Java 1.4 compiler written
in C++ originally developed by IBM at T. J. Watson
research Center but now maintained by an open source
community. The comparison is based on version 1.22.

Polyglot Polyglot is framework for building Java frontends
using a library that can be extended with new language
features and analyses through inheritance [NCM03]. Ver-
sion 2.2.0 of polyglot is included in the comparison. We
have also included an experimental Java 5 extension, ver-
sion R20061211, which is a modular extension to Poly-
glot 1.3.4 [SM07].

JaCo JaCo is an extensible compiler for Java 1.4 writ-
ten in a slightly extended Java dialect called Keris that
supports extensible algebraic data types with defaults
[jac07b, ZO01a]. Keris is itself implemented as a modu-
lar language extension to JaCo.

8.2 Test suites
The most widely used test suites for Java are probably the
SPECjvm98 and SPECjbb2000. They are not particular suit-
able for evaluating our extensible compiler since they focus
on testing JVMs rather than if the compiler can handle all
language idiosyncrasies. The Java Compatibility Kit (JCK)

is an extensive test suite that can be licensed from Sun to en-
sure compatible implementations of Java. This is an excel-
lent test suite perfectly targeting our domain. However, the
open license is read-only which prevents us from automated
processing of the test suite. Visual inspection reveals that it
is an excellent test suite with many challenges both for static
semantic analysis and code generation including Java 5 fea-
tures. We therefore have to rely on alternative test suites to
validate the correctness of the compilers. We have used the
Jacks test suite, the DaCapo benchmark, and a number of
sample applications, as described below.

8.2.1 Jacks
Jacks is an excellent compiler killing test suite that validates
the static semantic analysis performed by Java 1.4 compil-
ers using a test suite that mimics the chapters from the JLS,
Second Edition. It was originally developed at IBM but is
now maintained by the Mauve project. The suite does unfor-
tunately neither test Java 5 features nor run-time behavior of
the generated code.

8.2.2 DaCapo benchmark
The DaCapo benchmark is a set of general purpose, realistic,
freely available Java applications combined with an evalua-
tion methodology for benchmark suites and a performance
evaluation methodology [BGH+06]. While the main goal of
the DaCapo suite is not to test the frontend part of a com-
piler it provides an automated test harness and result valida-
tor that can be used to verify that the code generated by the
compiler is correct. We have used DaCapo release dacapo-
2006-10-MR2 which includes the following applications in
its test suite:

antlr A parser generator and translator generator.

bloat A byte-code level optimization and analysis tool.

chart A graph plotting toolkit and pdf renderer.

eclipse An integrated development environment.

fop An output-independent print formatter.

hsqldb An SQL relational database engine.

jython A python interpreter.

luindex A text indexing tool.

lusearch A text search tool.

pmd A source code analyzer.

xalan An XSL processor.

8.2.3 Sample applications
The previous benchmarks only test Java 1.4 features. There
are, to our knowledge, no open test suites for Java 5 which
enable the same systematic testing. We therefore handpicked
a few applications that make extensive use of Java 5 features.
We also included older Java 1.4 versions of the same appli-
cations which allow us to compare how the language exten-
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sions affect compilation. The packages we included from the
JDK are particularly challenging in that they make extensive
use of tricky language features such as nested classes, anony-
mous classes, and generic types using wildcards. Finally we
included two substantial applications to verify that the com-
pilers scale to moderate sized applications in the range of
100K LOCs.

junit 3.8.1 JUnit testing framework, 3.6K LOC of Java 1.4
source.

junit 4.1 JUnit testing framework, 3.1K LOC of Java 5
source.

jhotdraw 5.3 JHotDraw GUI framework for structured graph-
ics, 14.6K LOC of Java 1.4 source.

jhotdraw 7.0.8 JHotDraw GUI framework for structured
graphics, 38.7K LOC of Java 5 source.

JDK 1.4.2 The java.lang and java.util packages from JDK
1.4.2, 35.7K LOC of Java 1.4 source.

JDK 1.5 The java.lang and java.util packages from JDK 1.5,
56.2K LOC of Java 5 source.

ecj 3.2.2 The Eclipse Java compiler, 94.1K LOC of Java 1.4
source.

Jigsaw The official W3C Java-based Web server, 100.8K
LOC of Java 1.4 source.

8.3 Compiler compliance
We compiled the Jacks test suite on all selected Java com-
pilers. Warnings were turned off not to produce warnings
about common programming mistakes which are not con-
sidered errors in the test suite, e.g., a warning that a finally
block can not complete normally. The compilers that sup-
port Java 5 were run in Java 1.4 compatibility mode. The
results are shown in Figure 21 showing number of passed,
skipped, and failed tests. The tests that were skipped are tests
that cause the compilers to get stuck in a never ending loop.
The skipped tests for javac, eclipse, and JastAddJ1.4 are all
caused by the same bug in the standard class library where a
floating point number is converted from a string representa-
tion into its binary counterpart. Although JastAddJ1.4 passes
more tests than any of the other compilers, we do not claim
superiority to either compiler but merely conclude that the
number of failed test cases indicates that the compiler im-
plements the complete static semantic analysis for Java 1.4.

While the Jacks test suite does an excellent job in testing
language idiosyncrasies we use another set of benchmarks to
validate our thesis that most language features are used by
even fairly small real world applications. Figure 22 shows
the success rate for a set of sample programs, described in
Section 8.2.3, ranging from a few thousand to more than
100K LOCs excluding comments and whitespace. Both jaco
and polyglot give numerous false positives and internal com-
piler errors which shows that real applications indeed con-

Compiler % pass # pass # skip # fail
javac1.4 99.0 % 4446 1 44
javac1.5 99.2 % 4455 1 35

eclipse1.4 98.1 % 4409 1 81
eclipse1.5 98.6 % 4429 1 61

jikes 99.3 % 4461 0 30
polyglot2 90.5 % 4065 49 377

jaco 78.0 % 3505 3 983
JastAddJ1.4 99.5 % 4468 1 22

Figure 21. Results from running the Jacks test suite. Tests
that are skipped cause the compiler not to terminate.

tain many of the language details tested by the Jacks test
suite.

Compiler junit jhotdraw JDK ejc jigsaw
javac1.4

√ √ √ √ √

javac1.5
√ √ √ √ √

eclipse1.4
√ √ √ √ √

eclipse1.5
√ √ √ √ √

jikes
√ √ √ √ √

polyglot2
√ √

fail fail fail
jaco

√
fail fail fail fail

JastAddJ1.4
√ √ √ √ √

Figure 22. Results from compiling the Java 1.4 applications
described in Section 8.2.3.

The results from compiling the Java 5 applications de-
scribed in Section 8.2.3 are shown in Figure 23. We have
only included the Java 5 enabled compilers since it is rather
pointless compiling Java 5 code with a Java 1.4 compiler. It
is interesting to notice how challenging it is to compile even
quite small Java 5 applications. One of the major reasons is
the extensive use of generics and wildcards in the collection
framework. Even quite simple usage of these classes may
for instance rely on inference of type parameters for generic
methods.

Compiler junit 4.1 jhotdraw 7.0.8 JDK 1.5
javac1.5

√ √ √

eclipse1.5
√ √ √

polyglot5 fail fail fail
JastAddJ5

√ √ √

Figure 23. Results from compiling the Java 5 applications
described in Section 8.2.3.

The DaCapo test suite is used to check that the compilers
generate correct code and not only perform static semantic
analysis. Figure 24 shows the execution time of the bench-
marks in the suite for code generated by javac, eclipse, and
JastAddJ1.4 . The compilers perform virtually no optimiza-
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tions but rely on dynamic optimization in the virtual ma-
chine. The exact layout of bytecode may still have signifi-
cant effects since the HotSpot compiler is highly optimized
for the particular layout performed by javac. We notice that
there is still some room for improvement in the JastAddJ1.4
backend for bloat and xalan but that the performance is very
similar for the rest of the benchmarks.

Figure 24. Execution time for the DaCapo benchmark suite.

8.4 Compilation time
To evaluate the speed of our generated compiler we have
compared compilation times for the applications described
in Section 8.2.3. Each application was compiled five times
and the shortest compilation time for each Java 1.4 applica-
tion is shown in Figure 25. Jikes is by far the fastest compiler
which is not that surprising since it is implemented in C++
and does not suffer from VM startup time and initial com-
pilation. The results indicate that our generated compiler is
less than three times slower than the fastest java based com-
piler. We also notice that JastAddJ is several times faster
than polyglot, another extensible compiler, on medium sized
applications.

The compile times for the Java 5 applications is shown
in Figure 26. The generated JastAddJ5 based compiler is
less than three times slower than javac which is the fastest
Java 5 compiler. JastAddJ5 is actually narrowing the gap to
javac1.5 compared to the corresonding Java 1.4 implementa-
tions. We believe this stems from the demand-driven creation
of parameterized types used in JastAddJ5 where parameter-
ized body declarations are only built when being used by
client code. This shows that using the AST as the only data
structure is feasable for even quite complex language ex-
tensions. It is also worth noticing that we do not perform
any analysis or optimization of the grammars. We believe

that there are plenty of opportunities for domain-specific
optimizations in this area related to caching and evaluation
strategies. That would hopefully further narrow the gap be-
tween JastAdd generated compilers and hand written com-
pilers.

Figure 25. Compile time for Java 1.4 applications.

Figure 26. Compile time for Java 5 applications.

8.5 Implementation size
The tested compilers are implemented in different language
dialects or sometimes even completely different languages.
We still find it interesting to compare implementation sizes
to get a rough estimate of the implementation effort, and we
have used SLOC-count to count the number of lines of code,
excluding comments and whitespace [Whe07]. We have also
included the number of tokens since the number of lines
can differ quite substantially depending on coding style. Fig-
ure 27 shows the various sizes for the tested compilers. We
are somewhat surprised by the large differences in source
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size, often being more than twice as large as the javac com-
piler. The Eclipse compiler is an incremental compiler nor-
mally used within an IDE which may account for the larger
code size. JastAddJ1.4 and JaCo stand out as being signifi-
cantly smaller than Javac. Both compilers use extended ver-
sions of Java especially targeting compiler implementation
which seems to pay off. However, the poor compliance re-
sults for JaCo makes it hard to draw any definite conclusions.
The JastAdd based implementation shows that the declara-
tive specification technique not only allows for extensibil-
ity but also yields significantly smaller compilers. The lower
half of the comparison contains the Java 5 compilers. Jast-
AddJ5 and Polyglot have modular extensions that can be en-
abled at will while javac and eclipse are later generations of
the compiler. The JastAddJ5 Java 5 extension is roughly 5K
LOC of code while the Polyglot extension is 24K LOC, and
even compared to the base compiler size, the extension for
JastAddJ5 is proportionally smaller than the corresponding
Polyglot extension. Moreover, doing the same comparison
for the modular extension and the delta between javac1.4 and
javac1.5 shows that they are proportionally about the same
size. This indicates that not only is JastAdd based compilers
smaller than handwritten compilers in Java but the modular
extensions scale in the same way as in-place changes to the
code base.

Compiler # KLOC # KTokens
javac1.4 21 ( 100 % ) 106 ( 100 % )

eclipse1.4 57 ( 271 % ) 288 ( 271 % )
jikes 70 ( 333 % ) 342 ( 322 % )

polyglot2 39 ( 186 % ) 220 ( 207 % )
jaco 16 ( 76 % ) 73 ( 68 % )

JastAddJ1.4 15 ( 71 % ) 58 ( 54 % )
javac1.5 30 ( 100 % ) 155 ( 100 % )

eclipse1.5 83 ( 297 % ) 411 ( 265 % )
polyglot5 63 ( 210 % ) 340 ( 219 % )
JastAddJ5 21 ( 66 % ) 87 ( 56 % )

Figure 27. The source code size of the compilers using
javac as baseline. The upper half compares Java 1.4 com-
pilers while the lower part compares Java 5 compilers.

9. Related work
Traditional compilers may provide well-engineered APIs
for adding additional analyses, e.g., the JDT model in the
Eclipse Java compiler [ecl07], but they are often less suited
for language extensions. For instance, the ajc compiler for
AspectJ [asp07] is an excellent integration of AspectJ ex-
tensions and the Eclipse Java compiler, but the integration
is non-modular and requires manual synchronization of the
two code bases.

There are Java source-to-source translators that pro-
vide support for extensions at the syntactic level but that
do not support extensible static-semantic analysis, e.g.,

JavaBorg/MetaBorg [BV04], the Java Syntactic Extender
[BP01] and the Jakarta Tool Suite [SB02]. These tools trans-
late an extended Java dialect to pure Java and rely on a
separate compiler for the actual compilation to bytecode.
While this approach is attractive for its simple implemen-
tation it has serious drawbacks when it comes to handling
context-sensitive information. The translation can not in-
clude context-sensitive properties such as the type of an
expression in the translation strategies. Since the approach
is based on source-to-source, a separate Java compiler is
needed to perform error checking and bytecode generation.
Error checking is performed on the generated code, and er-
rors are rarely well aligned with the original source code.

There are also approaches that provide support for static-
semantic analysis but more limited support for syntactic ex-
tensions. OpenJava [TCIK00] adds a macro system to Java
that uses a meta-object protocol (MOP), similar to Java’s
reflection API, to manipulate the program structure. Macro
programs can access data structures representing a logical
structure of a program from which much of the semantic
structure of the program is exposed. The MOP can be used
to add additional analyses on top of Java but there is little
support for refining existing analyses or for syntactic exten-
sion.

The most flexible solution for language extensibility
is to provide support for extensions at both the syntactic
and static-semantic analysis level. Polyglot is an extensible
source-to-source compiler framework implemented in Java
that relies on design patterns for extensibility, e.g., abstract
factories, extensible visitors based on delegation, and prox-
ies [NCM03]. The base code is a Java 1.4 frontend which
has been extended successfully for numerous language fea-
tures. The frontend has for instance been extended with the
AspectJ language in the AspectBench project [ACH+06].
The extension is modular and uses the Soot optimization
framework as a backend to form a full AspectJ compiler
[VRHS+99]. The compiler is pass oriented (with extensible
passes) and also supports tree rewriting at the end of each
pass.

JaCo is an extensible Java 1.4 compiler including both
frontend and backend [ZO01b]. The first implementation of
JaCo was done in a Java dialect supporting algebraic types
with defaults [ZO01a]. A set of object-oriented architectural
patterns was used to further support extensibility. JaCo has
later been implemented in Keris, an extension to Java that
supports extensible modules with explicit refinement and
specialization mechanisms. Both compilers are based on
explicit scheduling of multiple passes.

The above compilers all rely on manual scheduling of de-
pendencies between analyses. In contrast, the JastAdd Ex-
tensible Java compiler is implemented in the declarative
ReRAGs formalism, combining the language mechanisms
automatically while supporting modularity and extensibility
as described in the previous sections. ableJ is a declarative
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Java frontend implemented using the Silver attribute gram-
mar system [WKSB07]. The system supports full Java 1.4
concrete syntax and limited semantic analyses such as type
checking. While certainly useful for experimenting with lan-
guage features the lack of support for complete Java 1.4 is
a major drawback when trying to evaluate language features
on real programs rather than small examples. Only a few ex-
perimental Java 5 extensions are available and there are no
published performance measurements or systematic testing.

10. Conclusions
We have presented JastAddJ, the JastAdd Extensible Java
compiler, and demonstrated that it is a practical high-quality
extensible compiler: large programs can be handled, the
specifications are smaller than hand-crafted code, and highly
non-trivial modular extensions can be developed, like adding
generics to a language. The compilation is slower than in
hand-crafted compilers, within a factor of three of Javac.
This is still very reasonable when considering the main ap-
plication area: to build special-purpose analyses and to build
extended languages. Our compiler outperforms all other ex-
tensible compilers for Java that we know of, considering all
measures: Java compliance, compilation speed, specification
size, and the support for non-trivial extensions. We have also
shown that our compiler can handle large programs, over
100K LOCs, and that our modular extensions scale in the
same way as in-place changes to the code base of a non-
extensible compiler.

As a side-result of our experimental evaluation, we have
come to the interesting conclusion that a Java compiler needs
to be extremely compliant with the language specification
in order to be of much practical use: compilers that do
not handle almost all of the special cases of the language
constructs will fail on all except a few small programs. This
is bacuse even using the JDK libraries requires advanced
features such as inference of type parameters for generic
methods.

To demonstrate that the technique is indeed applicable to
practical problems of extending Java, we have built substan-
tial extensions to our Java 1.4 compiler. This includes an ex-
tension to Java 5, an AspectJ frontend, an alternative back-
end that compiles to Jimple, and a pluggable non-null type
checker.

In implementing JastAddJ, we have developed a number
of general design techniques for building extensible compil-
ers, and techniques for dealing with central aspects of com-
pilation, such as name analysis, type analysis, and definite
assignment. We have illustrated how these highly non-trivial
compilation problems can be expressed as declarative frame-
works with small extension interfaces, that allow straight-
forward modular extension. In doing so, we have used a
number of declarative extension mechanisms from the at-
tribute grammar field, such as inherited attributes, reference
attributes, nonterminal attributes, and circular attributes. We

think that this illustrates that these features blend very well
with object-oriented programming.

The design techniques we have developed are general and
can be reused for building extensible compilers for other
languages as well. For example, a current effort involves
building an extensible compiler for a physical modelling and
simulation language, Modelica [ÅEH07]. In principle, the
modules that define the core declarative frameworks could
be refactored into separate components and reused for many
languages. However, these modules are so small that such
implementation reuse is hardly worth the effort. We find it
more important to document the ideas as we have done in
this paper, so that the ideas themselves can be reused.
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