
Medic: Metaprogramming and Trace-Oriented Debugging

Xiangqi Li

University of Utah, USA

xiangqi@cs.utah.edu

Matthew Flatt

University of Utah, USA

mflatt@cs.utah.edu

Abstract

Modern programmers enjoy a wealth of high-level and

graphical tools for understanding and debugging programs.

Nevertheless, programmers often resort to the simple and

the time-honored technique of inserting print statements

into programs to reveal progress and to expose intermedi-

ate values. This trace debugging (a.k.a. printf debugging)

technique persists because it has many advantages. Tradi-

tional trace debugging also has several drawbacks, including

the need to modify the source program and the need for ad-

ditional tools when trace output becomes too voluminous.

Medic, our new debugging and program-exploration tool

for Racket, augments the traditional examination of control

and state with output processing, metaprogramming, and vi-

sualization features. Medic allows programmers to leverage

the benefits of trace debugging while addressing many of its

drawbacks.

Categories and Subject Descriptors D.3.3 [Programming

Languages]: Language Constructs and Features

Keywords Metaprogramming, trace debugging, visualiza-

tion

1. Introduction

Many different techniques can help a programmer find bugs

or understand the execution of a program. A programmer

can set breakpoints, step through the program, check the

call stack and values of local variables, and add print

statements to produce traces of program states and values.

That last technique of adding print statements is called

trace debugging or printf debugging.

Trace debugging offers many benefits compared to other

techniques. Print statements are lightweight, and they are

convenient for exposing specific values of interest or exam-

ining specific behaviors of programs. However, trace debug-

ging in practice has changed little since the early days of pro-

gramming. Programmers continue to work with text-based,

linear traces, while a variety of data visualizations are possi-

ble, and textual output is awkward for representing tree and

graph-structured relationships among data. Traditional trace

debugging is good for generating data with local (to the im-

plementation) filters, but it offers little support for process-

ing the output data in a non-local way.

The necessity of modifying a program’s source to insert

print commands creates other obstacles. Debugging code

is mingled with the original code, which obscures the orig-

inal code during debugging; after debugging is complete,

further work is needed to recover the clear, original source.

Removing debugging code wholesale, meanwhile, discards

work that is useful for understanding or further debugging

of the code in the future. Finally, code written for debugging

purposes rarely enjoys the organizational and reuse proper-

ties of most other code, because the debugging code must be

tightly bound to the details of the main implementation.

Medic addresses these two sets of trace-debugging prob-

lems through a pair of complementary strategies. The first

strategy is to separate debugging code from the main im-

plementation through a metaprogramming language that can

weave—in the sense of aspect-oriented programming (Kicza-

les et al. 1997)—print commands into the main program.

The second strategy is to provide a set of print replace-

ments and post-processing tools that better organize and

present the printed output. While the code-weaving and

data-visualization features of Medic are not new in iso-

lation (Czyz and Jayaraman 2007; Lienhard et al. 2009;

Stamey et al. 2005; Usui and Chiba 2005), Medic demon-

strates how to combine those pieces into a more effective

debugging tool.

Medic’s language for describing and integrating print

statements into a program is similar to AOP systems and the

advising facility in PILOT (Teitelman 1966), but tailored to

the specific needs of trace debugging. Similarly, with spe-

cific data-visualization techniques in mind, Medic supports

four kinds of traces:

• Log traces: Similar to traditional print statements,

log traces are linear and text-based, but they include

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.

FPW’15, October 26, 2015, Pittsburgh, PA, USA
c© 2015 ACM. 978-1-4503-3905-6/15/10...$15.00

http://dx.doi.org/10.1145/2846656.2846658

7

conveniences for recording the source context, function

behavior, and filterable layers in trace output.

• Graph traces: A tracing graph presents a new means of

recording relationships among traced values, ultimately

allowing programmers to visually understand the spatial

relationship between trace elements. Graph traces are

complementary to text-based traces, which cannot easily

represent connective relationships.

• Aggregate traces: Aggregate traces enable grouping

multiple trace elements together. Programmers can scrub

through the accumulated steps of data—seeing one step

of data at one time—and enable data comparisons by

specifying the two comparing data points.

• Timeline traces: Each individual trace element is rep-

resented by a timeline, which shows an overview of the

evolution of values over time. A timeline slider enables

step-wise exploration in an abstract execution time view

or a clock-based view, and a tooltip window allows dis-

playing an individual value.

In the remainder of this paper, we describe the design of

Medic’s trace-oriented metaprogramming language and its

four kinds of traces and their visualizations. In each section

on a specific tracing facility, we show how the tracing facility

is useful for finding bugs and understanding program behav-

ior. Finally we discuss the implementation of the debugging

system, including the interpretation of the Medic language,

the weaving of debugging code, and the generation and rep-

resentation of traces.

2. A Trace-Oriented Metaprogramming

Language

Medic’s metaprogramming facilities start with the ability to

describe the placement of debugging instructions. Program-

mers must specify the locations in the source program where

the debugging instructions are added. We provide three cat-

egories of scope specification of locations: module-level

(through the (in #:module module-name match-form ...) form),

function-level (through the each-function and (f ...) forms),

and expression-level (through the at form).

After the scope of location is identified in the source pro-

gram, debugging code can be inserted either on entry to the

identified code or on exit using the [on-entry source-expr ...]

or [on-exit source-expr ...] form. While some AOP systems

constrain inserted code so that it preserves modularity and

encapsulation properties of the original program, Medic im-

poses no constraints, as is appropriate for debugging pur-

poses. Medic thus allows an inserted form to access any

identifier that is visible in the source program at the inser-

tion point.

Medic also provides a means of modularity and abstrac-

tion. A Medic program consists of different layers, where a

layer modularizes debugging code for a specific functional-

ity and groups traces produced by the log form. A layer

is declared by (layer layer-id layer-form ...) with an optional

#:enable specification that can enable or disable a layer’s

output. Within a layer, we can enable abstraction and ab-

straction and parameterization of a fragment of code, which

can be either run-time code or a fragment of metaprogram-

ming specification.

Besides allowing access to elements of a source pro-

gram in debugging instrumentation, Medic reflects addi-

tional information for use in certain debugging forms. The

function-name variable is bound to the enclosing function

or a function being called. For example, instead of te-

diously annotating each function f, g, etc., with (print

"f function entered"), (print "g function

entered"), etc., Medic lets a programmer write

[each-function [on-entry @log{@function-name function entered}]]

The string-template notation here using @ is an alternate

representation of an S-expression, and is the same as used

for Scribble (Barzilay 2009; Flatt et al. 2009). Through

(with-behavior f template), a programmer can define the

logging behavior, represented by template, of the f function.

Inside template, we allow the @arg and @ret escapes to access

a function’s argument and return value.

3. Trace Debugging

Medic supports four kinds of tracing (i.e., variants of print)

with associated visualizations, each of which is useful for

different debugging tasks. All traces are directed to an in-

teractive graphical user interface, a trace browser. The trace

browser consists of four panes that correspond to the four

kinds of traces: a Log pane, a Graph pane, an Aggregate

pane, and a Timeline pane.

The syntax and semantics of each tracing form are as

follows:

• Log forms. (log e), (log form v ...), @log

{template}: Add a log entry in the Log pane. For

the second log form, where form is a string containing

„as, log substitutes the value from the vs correspond-

ing to the positions of „as. The last log form allows the

use of @expr inside template.

• Graph forms. (node v [node-label color]),

(edge from to [edge-label color from-

label to-label]): The node form creates a node

associated with v in the graph visualization, and edge

creates an edge between the node associated with from

and the node associated with to. The square brackets

specify optional arguments. When there exists no ex-

plicit node creation from from or to, edge creates a

corresponding node.

• An aggregate form. (aggregate v ...): Add an

aggregate entry in the Aggregate pane.

• Timeline forms. (timeline v), (assert pred),

(same? v): Add a timeline entry in the Timeline pane.

8

f.rkt

(define (f x y)

 (+ (sqr x) (sqr y)))

f-medic.rkt

(layer layer1

 (in #:module "f.rkt"

(with-behavior f

 @{f: @x squared plus @y squared is @ret})

[on-exit (log (f 3 4))

(log (f 4 5))]))

Figure 1: Showing the behavior of data

3.1 Log Tracing

Log tracing with Medic’s log form is similar to traditional

trace debugging with printf, but Medic’s logging facili-

ties simplify the construction and browsing of printed out-

put. The log form not only produces traces sequentially in

execution order, but it also augments traces with useful con-

text information.

For example, suppose that the value of x is 3. The expres-

sion (log x) produces a trace entry

in the Log pane of a trace browser. Unlike the traditional

print statement, which merely prints out x’s value, log

produces extra context information about the value: the

name of the variable under inspection. This automatic ad-

dition of context by log relieves the programmer of tedious

string-templating work for simple logging output.

The log form recognizes function calls as well as vari-

able references, and it cooperates with Medic statements

that adjust the format of output for function calls. Using

(with-behavior f template), a programmer can control the

way that log output is written for f calls. This central-

ized control provides an alternative to duplicating template

constructions at each logging site. Furthermore, the with-

behavior form provides access to the result of the func-

tion calls, as well as the arguments, which allows the log

form to more completely expose the behavior of the func-

tion.

For example, suppose that we write a program in the mod-

ule "f.rkt". We can log the behavior of calls to the f

function by writing a Medic program in "f-medic.rkt"

as shown in Figure 1. The with-behavior clause in "f-

medic.rkt" changes the output produced by log when-

ever a function call to f is logged. Instead of printing just

the result of calling f, log displays the customized behav-

ior of f— “f: @x squared plus @y squared is

@ret”—with @x, @y, and @ret replaced by arguments’

values and the return value of f function call. After start-

ing a debugging session by running "f-medic.rkt" and

find-path-medic.rkt

(layer left-path

(in #:module "find-path.rkt"

[at (if left-p _ _)

[on-entry

(log "left branch: ~a, ~a" (cadr t) left-p)]]))

(layer right-path

(in #:module "find-path.rkt"

[at (if right-p _ _)

[on-entry

(log "right branch: ~a, ~a"

(caddr t) right-p)]]))

Figure 2: Showing the layer of interest

"f.rkt", we get the following log entries (traces showing

the behavior of data are highlighted in blue):

One of the most difficult aspects of trace debugging is

determining the right amount of data to log. Logging too lit-

tle data defeats the point, but logging too much data makes

the interesting information difficult to find, and the right

amount of logging is not always clear from the start. Sim-

ilar to the layers in Adobe Photoshop, Medic’s layers help

programmers organize output so that layers of output can

be selected interactively, which helps balance the needs of

showing enough information and limiting the amount of in-

formation to inspect.

Figure 2 shows an example of defining layers for traces.

To see the traces produced by (log "left branch:

„a, „a" (cadr t) left-p), the programmer can

click the “Log View” button, which opens a layer-view win-

dow listing the layers of traces: left-path and right-

path. After selecting the left-path layer, the Log pane

updates the display of traces immediately, highlighting the

traces that belong to the selected layer:

Seeing traces in layers enables a programmer to make better

comparisons of relevant trace elements among all mixed

traces, while the execution order of traces is preserved.

3.2 Graph Tracing

Traces produced by log are linear and text-based. They

print primitive values in a typical form, and by preserving the

execution order of traces, they enable analysis of the evolu-

tion of a value in a program. Textual traces, however, provide

a poor view of certain relationships among trace elements

that could become immediately apparent in a graph view.

With conventional logging tools, converting textual output

9

doubly-linked-list-medic.rkt

(layer dlist

(in #:module "doubly-linked-list.rkt"

[[at (values next (cons (get-field datum temp) lst))

[on-entry

(when next

 ; visualize the temp node's next link

 (edge temp next "" "Red" (get-field datum temp)

(get-field datum next))

(when prev

 ; visualize the temp node's previous link

 (edge temp prev "" #f (get-field datum temp)

(get-field datum prev))))]]]))

Figure 3: Graph tracing

Figure 4: The graph view of a doubly linked list

to a graph view requires additional tools, careful formatting

of output to fit the tools’ input formats, and isolation of that

output from other debugging output.

Medic directly supports the construction of graph output

to help programmers see the otherwise hidden relationships

among values. To generate a graph, instead of using log,

the programmer uses the node and edge forms. To create a

simple and aesthetically pleasing visualization, Medic uses

force-directed algorithms to layout the output (Eades 1984;

Fruchterman and Reingold 1991).

To illustrate Medic’s graph tracing facilities, suppose that

we have a correct implementation of a doubly linked list

with support for common accessing, inserting, and removing

operations. The remove method takes an argument, i, and

removes the ith element from the list starting from index

0. We can create a bug in the remove implementation by

commenting out the line of code that updates the previous

link of a node, temp-next, to point to the node, temp-

prev, when the node, temp, is to be deleted.

To test the broken library, we add ten numbers from 0

to 9 to the doubly linked list dlist and then remove five

successive elements 3, 4, 5, 6, 7 from the list by calling

(send dlist remove 3) five times. We can first use

fact-iter.rkt

(define (fact x a)

 (if (zero? x)

a

(fact (sub1 x) (* x a))))

(fact 3 1)

fact-iter-medic.rkt

(layer fact

(in #:module "fact-iter.rkt"

[(fact) [on-entry (aggregate x a)]]))

Figure 5: Aggregate tracing

log to print out the elements at each step, and we notice

we get a faulty list after the removal operation—the final list

should be the sequence 0, 1, 2, 8, 9, instead of a sequence of

0, 1, 2, 4, 5. However, the tracing log gives us little insight

into the cause of the problem. If we use edge to visualize

the doubly linked list (see Figure 3), we can see the problem

instantly. As shown in Figure 4, the doubly linked list is

broken with a unidirected edge between nodes 2 and 4.

In our example, the test and edge declarations were

part of the metaprogram. When the library might have its

own tests, Medic’s metaprogramming facilities can be used

to weave node and edge declarations into the library’s

implementation to track down the source of a test failure.

3.3 Aggregate Tracing

A programmer can use linear traces with multiple values in

each entry to detect a relationship between values and how

they change together. A manual inspection of linear output,

however, can make those changes difficult to extract from

the layout and noise of traces. Medic’s aggregate form

presents trace output in a way that makes related output

values easier to inspect and compare.

Consider the source and Medic programs shown in Fig-

ure 5. In the source program, the x and a values change to-

gether across calls to the function, and inspecting them as a

pair can help a programmer understand how they work to-

gether. Specifically, using (aggregate x a) produces a

result that is more organized than a linear trace:

When (aggregate x a) is evaluated many times, as

in (fact 1000 1), the resulting large number of traces

must be pruned to expose the values at each step and enable

comparison at different steps. Clicking the red button to

the left of the aggregate trace view opens a scrub-view

window, which allows the programmer to inspect the traces

step-by-step (currently at step 3):

10

The scrub view provides two slider handles; the window

displays the current step of traces indicated by the second

slider handle, but it compares that value to the one selected

by the first slider handle. For example, moving the orange

slider handle to step 3 and right-clicking on it turns the

slider red, which marks the step for later comparison. Then,

moving the green slider handle to step 4 compares the values

at step 4 to the values at step 3. The difference between two

steps is highlighted in pink:

3.4 Timeline Tracing

When traces involve changes over time, programmers need

to see the overview of data in a temporal fashion. There are

a few possible ways to present traces such as using a slider

to “time travel,” using “timeline” views, and using “stro-

boscopic” views (McDirmid 2013). Inspired by the time-

line view of data of Victor (2012), which helps program-

mers understand data with visual context, instead of "peek-

ing through a pinhole," Medic provides three forms for time-

line tracing: timeline, assert, and same?. These three

forms all generate traces with a view similar to a timeline

view, where each trace element is arranged along the verti-

cal axis, while the changing values of each trace element are

displayed along the horizontal axis. By default, the timeline

view’s horizontal axis corresponds to an abstract execution

time reflecting the order of logged events, but not the delays

between events. A clock-based view is available in a separate

window.

As a further refinement over aggregate tracing, the time-

line view automatically determines a graphical presentation

mode for some logged values. For a given element v in a

trace, if all occurrences of v are numbers, a line plot is ren-

dered on the timeline (where each point is arranged in the

square unit according to its numeric value). For boolean val-

ues, each square unit represents a value with false values col-

ored red and true values colored blue. For other data types, a

textual form is displayed.

To illustrate, for the programs shown in Figure 6, the left

panel of Figure 7 presents the resulting timeline view. The

timeline slider on the top can step through the timeline traces

showing multiple values with the same horizontal coordi-

nates at the same time (see the right panel of Figure 7). To

count.rkt

(define (count-length v count)

 (if (null? v)

count

(count-length (cdr v) (+ count 1))))

(count-length (cons 8 (cons 9 '())) 0)

count-medic.rkt

(layer count

(in #:module "count.rkt"

[(count-length)

[on-entry

(timeline count)

(timeline v)

(timeline (null? v))]]))

Figure 6: Timeline tracing

examine an individual value, we can click the corresponding

square unit, which shows the current value as a tooltip.

A timeline element produced by (assert pred) is

similar to pred as a boolean result, but true values are

deemphasized by coloring them in gray, while false elements

are highlighted in red. For example, with (assert (> x

0)) and when values of x over time are 3, 2, 1, and 0,

the assertion fails on the fourth value of x producing the

following timeline:

Although comparisons between two elements of a trace

are sometimes useful, a comparison of one trace element

with its initial value is more often useful. A programmer

could change (through metaprogramming) the source pro-

gram to propagate the old version, but Medic makes the

comparison considerably simpler through a same? form in

a timeline trace. The same? form always produces true for

the initial trace. Afterwards, the result is true only if the trace

element’s value is the same as the initial trace; the same?

predicate compares values like Racket’s equal?, but is ex-

tended to perform a deeper comparison by traversing opaque

structures and objects. Like (assert pred), only false

values produced by (same? v) are highlighted in red in

the timeline.

Clicking the “Time View” button opens a variant of the

timeline view as shown in Figure 8. A programmer can slide

through time to see which events take place at a particular

time, showing not only the relative order for events of inter-

est but also the gaps between events. The programmer can

scale this view to different time granularities (second, mil-

11

Figure 7: Timeline traces for timeline form

Figure 8: Time view

lisecond, or tenths of a millisecond) to explore events at dif-

ferent scales.

4. Implementation

The implementation of Medic leverages Racket’s ability

to support a completely new language, such as #lang

medic, plus Racket’s ability to macro-expand a program

written in any language to a common core language. This

combination means that Medic can offer a specialized lan-

guage for writing metaprograms, and those metaprograms

can introduce debugging annotations on programs written in

any language that compiles to recognizable core forms, such

as definitions and functions.

A debugging session starts by interpreting a Medic pro-

gram, which describes debugging instructions in terms of a

source program and logging instrumentation to add to the

program. Interpretation extracts debugging instructions and

their related debugging information, such as source location

and trace layer id, into debugging tables that drive an in-

strumentation phase. In the instrumentation phase, logging

forms are woven into the source program (a full model of the

instrumentation process available at http://www.cs.utah.

edu/~xiangqi/html/documents.html) . The instrumented

program is then compiled and run, and generated traces are

piped to the front-end trace browser. The trace browser pro-

cesses traces and presents them in a visual way with interac-

tive exploration.

5. Experience

To gauge Medic’s effectiveness for debugging, we have used

it for our own debugging tasks. In addition, we debugged stu-

dent solutions for a programming assignment, which let us

try Medic on a larger selection of programs and with several

kinds of realistic errors made by different programmers.

Student programs, logging, and graph traces. To try Medic

on student programs, we ported programs previously writ-

ten in Java for implementing a vector abstract data type.

The assignment’s underlying data structure made the imple-

mentation of the interface especially error-prone. We per-

formed line-by-line ports of the students’ work from Java

to Racket.1 Using structures and functions instead of meth-

ods was straightforward, since the assignment and solutions

did not rely on inheritance. The assignment was originally

graded by a driver program using print statements to report

test results. We wrote an equivalent driver program in Medic,

and the medic driver proved more effective in meaningfully

detecting errors in students’ implementations. Medic’s sup-

port for reuse of debugging metaprograms made debugging

multiple students’ programs faster and easier.

To debug some faulty implementations, we used log

to examine variable values. After recognizing an incorrect

value of a suspect variable, we narrowed the problem to a

specific function, and we wrote another layer form with

several function-level log statements. We ran the program

again, and the layer feature of log traces helped us focus

on the traces produced by the second trial of log state-

ments without the distraction of output from other irrelevant

traces. As we debugged the code more, many traces were

produced, and we resorted to layer filtering, which helped

us discover why two identical trace entries were shown in

different places.

In other cases, we used node and edge to expose the

hidden state of the test results. The vector structure was

similar to a doubly-linked list, where each vector element

has a previous and a next reference, and the homework

required returning a new vector if an interface function must

modify the vector. Graph traces allowed us to check whether

a vector is properly constructed by examining the vector’s

head, tail, and references between vector elements. Most

importantly, object identity, which is hard to explore with

1 Many Java programs can run directly in Racket by installing the "profj"

package and prefixing the programs with #lang profj/full. Unfortu-

nately, the macro-driven compilation process from Java to Racket mangles

the source too much for S-expression-based locations to be effective. In the

near future, we plan to refine Medic’s support for expression locations to

provide a more direct path to debugging Java programs.

12

http://www.cs.utah.edu/~xiangqi/html/documents.html
http://www.cs.utah.edu/~xiangqi/html/documents.html

traditional print statements, was clearly exposed by graph

traces; if a student failed to create a new vector as suggested

by a method’s signature, we could easily see that the original

vector shown in the Graph pane had been modified, instead

of seeing a different vector alongside the original.

Aggregate traces. In an unrelated project, we experimented

with a Markov decision process problem to determine which

discount value would result in the convergence of state A and

E utilities. For each state, the value iteration algorithm com-

putes the Q-state values, and it updates the utility value by

choosing the maximum Q-state value at each step. Since we

wanted to know the utility values of both states at each step,

we used Medic to add an aggregate statement to show the

values of discount, step number, state-A utility, and state-E

utility. The program produced an overwhelming number of

aggregate traces, but Medic’s scrub view allowed us to scru-

tinize values at each step. For an occurrence of abnormal

patterns of utility values, we isolated the cause of the prob-

lem by adding a same? statement to ensure that the state-

utility table held a correct initial value for each state; the

trace then revealed the bug of neglecting to reset the table on

entry to the loop iterating through possible discount values.

After fixing the bug, we restarted the program and scrubbed

through the aggregate traces again. By using the data com-

parison feature of the scrub view, we managed to compare

values at two arbitrary steps and look for unchanged values.

Timeline traces. In another use of Medic, we investigated

a buggy GUI application that failed to move objects in re-

sponse to a mouse drag in a window. Three kinds of mouse

events are involved, and a state variable, to-move?, de-

termines the behavior of the window when a mouse-drag

event is received. We added a timeline statement at the

button-press and left-button event handlers to ensure that

each one updated to-move? correctly. We also added sev-

eral timeline statements in the mouse-drag event handler

to check whether the event was fired and to see the coordi-

nates of an object. After running the instrumented program,

the Timeline pane displayed timeline traces, which helped us

to see that each mouse-event handler was called; since the

Timeline pane does not explicitly show the time of events,

however, we could not know whether two events were hap-

pening at the same time. By opening a time-view window,

we were able to slide through the execution time of traces

and see what events were triggered at a particular time. Over-

all, the timeline views proved far more effective than plain

textual logging, since traces for relevant events would be

scattered through the logged output.

Performance. For our debugging tasks, Medic added a negli-

gible overhead to compilation and execution times. The run-

time overhead of Medic is linear in the amount of tracing.

Medic’s space overhead depends on the logged values; since

Medic saves each logged value, logging annotations poten-

tially change the space complexity of a program. For both

time and space, programmers must be aware of these costs,

but the cost model is straightforward.

6. Related Work

Our work is related to several areas: aspect-oriented pro-

gramming for weaving debugging code into source pro-

grams, programmable debugging, visual debugging tech-

niques, and data-visualization techniques to help program-

mers to better understand output traces.

The AOP paradigm expresses cross-cutting concerns in

a separate modular unit, an aspect, which allows tracing

without modification of source programs. Most AOP sys-

tems (Dutchyn 2012; Kiczales et al. 2001) provide limited

join-point models and data access, while an aspect-oriented

system called Bugdel (Usui and Chiba 2005) tries to tackle

the limitations. PILOT (Teitelman 1966) provides an opera-

tion of advising that can modify the source program through

modifying the interfaces between procedures. Medic shares

Bugdel’s support for invasive weaving and unrestricted ref-

erences, but provide more trace-oriented support.

Several debugging systems separate debugging code from

the source program and treat debugging as a programmable

and reusable activity, like MzTake (Marceau et al. 2006),

RAIDE (Johnson 1977), Dalek (Olsson et al. 1990), and

Acid (Winterbottom 1994). In comparison, Medic is tailored

to trace debugging and more specialized visualization tools

and higher-level constructs for instrumenting the source pro-

gram.

JIVE (Czyz and Jayaraman 2007; Gestwicki 2004; Girgis

et al. 2005) is a declarative and visual debugger for Java, us-

ing object diagrams and sequence diagrams to visualize run-

time states. The Compass debugger (Lienhard et al. 2009)

presents an object flow diagram in a fisheye view to assist

tracking down the flow of objects. DDD (Zeller 2004) of-

fers various visual ways of examining data such as 2-D and

3-D plots, and Misha (Papoylias 2010) provides an API for

visualizing language-oriented data types including numbers,

strings, references and containers. Many existing tools pro-

vide timeline views, like DejaVu (Kato et al. 2012), the play-

ground of Swift (Swift 2014), and the timeline display gen-

erator (Karam 1994).

However, Our work considers a more general setting in-

volving many programming language paradigms where log,

graph, aggregate, and timeline views of data are essential,

and synthesizes many of these ideas into an effective debug-

ging tool.

13

7. Conclusion

We have presented a debugging tool, Medic, that employes

a trace-oriented metaprogramming language to describe the

task of debugging and incorporates four kinds of enhanced

tracing statements to improve the trace debugging experi-

ence. We showed the usefulness of the enhanced tracing

statements in various common debugging settings, and we

demonstrated a more programmer-friendly and visual expe-

rience with the Medic debugging system.

There are three promising directions to further enhance

the trace debugging experience. Currently our metaprogram-

ming language is a starting point for facilitating a source pro-

gram’s manipulation, but a more sophisticated model will

be added to support efficient debugging. We also plan to

add more visualization support for trace output such as nav-

igation between trace elements in a trace browser and as-

sociated source locations and live programming features.

Finally some other debugging techniques such as setting

breakpoints, stepping, and reverse execution can be com-

bined to explore trace output more effectively.

Because of the recent popularity of domain-specific lan-

guages (DSLs) and the sparse debugging support for DSLs,

we’ll also investigate facilitating construction of DSL de-

buggers by extending the work in Medic to evolve the sys-

tem into a debugging framework for DSLs.

8. Acknowledgments

We would like to thank Sean McDirmid for sharing his

direction and work in the area of debugging. In addition,

we appreciate the support of the members of the Racket

community and unnamed reviewers for their feedback and

suggestions on the work.

Bibliography

Eli Barzilay. The Scribble Reader. In Proc. Wksp. on Scheme and

Functional Programming, 2009.

Jeffrey K. Czyz and Bharat Jayaraman. Declarative and Visual

Debugging in Eclipse. In Proc. ACM Conf. Object-Oriented

Programming, Systems, Languages and Applications Wksp. on

Eclipse Technology Exchange, pp. 31–35, 2007.

Christopher J. Dutchyn. AspectScheme–Aspects in Higher-Order

Languages. In Proc. Workshop on Scheme and Functional Pro-

gramming, 2012.

Peter Eades. A Heuristic for Graph Drawing. Congressus Numer-

antium 42, pp. 149–160, 1984.

Matthew Flatt, Eli Barzilay, and Robert Bruce Findler. Scribble:

Closing the Book on Ad Hoc Documentation Tools. In Proc.

Intl. Conf. on Functional Programming, pp. 109–120, 2009.

Thomas M.J. Fruchterman and Edward M. Reingold. Graph Draw-

ing by Force-Directed Placement. Software—Practice & Expe-

rience 21(11), pp. 1129–1164, 1991.

Paul V. Gestwicki. Interactive Visualization of Object-Oriented

Programs. In Proc. ACM Conf. Object-Oriented Programming,

Systems, Languages and Applications, pp. 48–49, 2004.

Hani Z. Girgis, Bharat Jayaraman, and Paul V. Gestwicki. Visual-

izing Errors in Object Oriented Programs. In Proc. ACM Conf.

Object-Oriented Programming, Systems, Languages and Appli-

cations, pp. 156–157, 2005.

Mark Scott Johnson. The Design of a High-Level, Language-

Independent Symbolic Debugging System. In Proc. ACM ’77

Annual Conf. , pp. 315–322, 1977.

Gerald M. Karam. Visualization Using Timelines. In Proc. ACM

SIGSOFT Intl. Sym. on Software Testing and Analysis, pp. 125–

137, 1994.

Jun Kato, Sean McDirmid, and Xiang Cao. DejaVu: Integrated

Support for Developing Interactive Camera-Based Programs. In

Proc. 25th annual ACM Sym. on User Interface Software and

Technology, pp. 189–196, 2012.

Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik Kersten, Jeffrey

Palm, and William G. Griswold. An Overview of AspectJ. In

Proc. European Conf. Object-Oriented Programming, pp. 327–

353, 2001.

Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda,

Cristina Lopes, Jean-Marc Loingtier, and John Irwin. Aspect-

Oriented Programming. In Proc. European Conf. Object-

Oriented Programming, pp. 220–242, 1997.

Adrian Lienhard, Julien Fierz, and Oscar Nierstrasz. Flow-Centric,

Back-In-Time Debugging. In Proc. TOOLS Europe, pp. 272–

288, 2009.

Guillaume Marceau, Gregory H. Cooper, Jonathan P. Spiro, Shri-

ram Krishnamurthi, and Steven P. Reiss. The Design and Imple-

mentation of a Dataflow Language for Scriptable Debugging.

Automated Software Engineering 14(1), pp. 59–86, 2006.

Sean McDirmid. Usable Live Programming. In Proc. Sym. on New

Ideas, New Paradigms, and Reflections on Programming &

Software, pp. 53–62, 2013.

Ronald A. Olsson, Richard H. Crawford, and W. Wilson Ho. Dalek:

A GNU, Improved Programmable Debugger. In Proc. Usenix

Technical Conf. , pp. 221–232, 1990.

Nick Papoylias. High-Level Debugging Facilities and Interfaces:

Design and Development of a Debug-Oriented I.D.E. In Proc.

6th Intl. IFIP WG 2.13 Conf. on Open Source Systems, pp. 373–

379, 2010.

John W. Stamey, Jr., Bryan T. Saunders, and Ryan Watts. Aspect-

Oriented Debugging. In Proc. Intl. Conf. on Aspect-Oriented

Software Development, 2005.

Swift. 2014. https://developer.apple.com/swift/

Warren Teitelman. PILOT: A Step Toward Man-Computer Sym-

biosis. PhD dissertation, Massachusetts Institute of Technology,

1966.

Yoshiyuki Usui and Shigeru Chiba. Bugdel: An Aspect-Oriented

Debugging System. In Proc. Asia-Pacific Software Engineering

Conf. , pp. 790–795, 2005.

Bret Victor. Learnable Programming. 2012. http:

//worrydream.com/LearnableProgramming/

Phil Winterbottom. Acid: A Debugger Built From A Language. In

Proc. Usenix Annual Technical Conf. , pp. 211–222, 1994.

Andreas Zeller. Debugging with DDD. First edition. GNU Press,

2004.

14

https://developer.apple.com/swift/
http://worrydream.com/LearnableProgramming/
http://worrydream.com/LearnableProgramming/

	1 Introduction
	2 A Trace-Oriented Metaprogramming Language
	3 Trace Debugging
	3.1 Log Tracing
	3.2 Graph Tracing
	3.3 Aggregate Tracing
	3.4 Timeline Tracing

	4 Implementation
	5 Experience
	6 Related Work
	7 Conclusion
	8 Acknowledgments
	Bibliography

