
Panel

Celebrating 40 Years of Language Evolution:
Simula 67 to the Present and Beyond

Steven Fraser
Director (Engineering)
Cisco Research Center

Cisco Systems, San Jose

James Gosling
VP and Sun Fellow
Sun Microsystems

Menlo Park

Anders Hejlsberg
Technical Fellow

Microsoft
Redmond

Ole Lehrman Madsen
Professor

Computer Science
Aarhus University

Bertrand Meyer
Professor and Advisor

ETH Zurich

Guy Steele
Sun Fellow

Sun Microsystems
Burlington

Abstract
Simula 67 (SIMple Universal LAnguage 67) is considered
by many as one of the earliest – if not the first – object-
oriented language. Simula 67 was developed by Ole-Johan
Dahl and Kristen Nygaard in Oslo, Norway and has greatly
influenced object-oriented language development over the
past 40 years. This panel brings together leading program-
ming language innovators to discuss and debate past,
present, and future language evolutions.

Categories & Subject Descriptors:
D.3 Programming Languages
K.0 Computing Milieux
K.4.3 Organizational Impacts

General Terms: Languages

Keywords: Simula67, Java, C#, BETA, Eiffel, Scheme, C

1. Steven Fraser (panel impresario), sdfraser@acm.org

STEVEN FRASER recently joined the Cisco Research Center
in San Jose California as a Director (Engineering) with re-
sponsibilities for developing and managing university re-
search collaborations. Previously, Steven was a Senior
Staff member of Qualcomm’s Learning Center in San Di-
ego leading software technical learning and development
programs and creating the corporation’s internal technical
conference – the QTech Forum. Steven also held a variety
of technology management roles at Nortel/NT/BNR includ-
ing: Process Architect, Senior Manager (Disruptive Tech-
nology and Global External Research), and Design Process
Engineering Advisor. In 1994 he spent a year as a Visiting
Scientist at the Software Engineering Institute (SEI) colla-
borating with the Application of Software Models project
on the development of team-based domain analysis (soft-

ware reuse) techniques. Fraser is the Corporate Support
Chair for OOPSLA’07 and was the General Chair for
XP2006. Fraser holds a doctorate in EE from McGill Uni-
versity in Montréal – and is a member of the ACM and a
senior member of the IEEE.

2. James Gosling, James.Gosling@sun.com

JAMES GOSLING received a B.Sc. in Computer Science
from the University of Calgary, Canada in 1977. He re-
ceived a Ph.D. in Computer Science from Carnegie-Mellon
University in 1983. The title of his thesis was The Alge-
braic Manipulation of Constraints. He has built satellite da-
ta acquisition systems, a multiprocessor version of Unix,
several compilers, mail systems and window managers. He
has also built a WYSIWYG text editor, a constraint based
drawing editor and a text editor called 'Emacs' for Unix
systems. At Sun his early activity was as lead engineer of
the NeWS window system. He did the original design of
the Java programming language and implemented its origi-
nal compiler and virtual machine. In February 2007, James
was named an officer of the Order of Canada.

It's tempting, at a conference like OOPSLA, to focus on the
design of programming languages. Languages arise from a
context. They are driven by the needs of developers, the
problems they are trying to solve, and the systems they are
trying to put together. Simula 67 was driven by simula-
tion. Java was driven by networking. What are the trends
that will drive the next generation of languages? High on
my list of forces is the march of Moore's law and its transi-
tion from increasing clock rates to increasing core counts
and specialized cores (will programming GPUs ever be-
come mainstream?). Moore's law will also push computing
over some threshold's where some interesting problems
crumble: for example, will programming change if speech
recognition and AI become more generally usable? The
problem domains also drive languages. We currently have
a generation of web languages optimized for rapid flexible

Copyright is held by the author/owner(s).
OOPSLA’07 October 21–25, 2007, Montréal, Québec, Canada.
ACM 978-1-59593-865-7/07/0010.

1021



development. On the other hand, the scale of software that
deals with "real reality" (as opposed to "virtual reality") is
exploding, and here, testability and reliability are far more
important than RAD.

3. Anders Hejlsberg, andersh@microsoft.com

ANDERS HEJLSBERG is a Technical Fellow in the Developer
Division at Microsoft. Hejlsberg is recognized as an in-
fluential creator of development tools and programming
languages. He is the chief designer of the C# programming
language and a key participant in the development of the
Microsoft .NET Framework. Before his work on C# and
the .NET Framework, Hejlsberg was an architect for the
Visual J++ development system and the Windows Founda-
tion Classes. Before joining Microsoft in 1996, Hejlsberg
was one of the first employees of Borland International Inc.
As principal engineer, he was the original author of Turbo
Pascal, a revolutionary integrated development environ-
ment, and chief architect of its successor, Delphi. Hejlsberg
co-authored The C# Programming Language, published by
Addison Wesley, and has received numerous software pa-
tents. In 2001, Hejlsberg was the recipient of the presti-
gious Dr. Dobbs Excellence in Programming Award.
Hejlsberg studied engineering at the Technical University
of Denmark.

Thoughts about the future:
The next generation of programming languages will fuse
ideas from dynamic, static, functional, and domain specific
languages. We are already seeing the beginnings of this to-
day: Dynamic languages are adopting static typing, static
languages are incorporating implicit typing, concepts from
functional languages are seeing mainstream adoption, and
domain specific languages such as HTML, SQL, XAML,
and XSLT are an integral part of today’s applications.

For all of their advances, today’s mainstream languages are
very imperative in nature. Sequential statements with expli-
cit control flow and mutation of state lead to over-specifi-
cation of solutions and algorithms. Programs say not just
what they want done, but also, in excruciating detail, how
they want it done. This level of detail makes programming
tedious and error prone. Future progress and innovation in
programming languages will increasingly occur in the area
of declarative programming where you say the “what” but
not the “how”, simply because this style of programming
leaves more room for intelligence in the execution infra-
structure. The LINQ (Language INtegrated Query) capa-
bilities introduced in C# 3.0 are an example of this trend.

Separately, we need to create a better programming model
for concurrent programs. Concurrency is the new reality.
Going forward, computers will have more CPUs rather than
faster CPUs. This is a fact. It is also a fact that existing
concurrent programming models are too complicated for all
but the top echelon of programmers to master. Interes-
tingly, successful concurrent/parallel programming models

characteristically “hide” the concurrency and present a
simpler serial, transactional, and/or functional program-
ming paradigm.

4. Ole Lehrmann Madsen, ole.l.madsen@alexandra.dk

OLE LEHRMANN MADSEN (www.daimi.au.dk/~olm) is a
professor of Computer Science, Aarhus University, and di-
rector of the Alexandra Institute A/S (www.alexandra.dk) –
a joint venture between universities, companies and public
institutions to promote private and public co-operation
within IT research. He is a co-founder and chairman of the
board for Mjølner Informatics (www.mjolner.com). He has
worked with object-technology for more than 25 years
starting with SIMULA programming. He developed the
BETA programming language together with Kristen Ny-
gaard, Birger Møller-Pedersen and Bent Bruun Kristensen,
and he has been a research manager for the Mjølner project
where the first version of the BETA software was devel-
oped. An important part of the BETA project was the de-
velopment of a conceptual framework for object-oriented
programming. The conceptual framework consists of con-
ceptual means such as abstraction, classification and com-
position for understanding and organizing knowledge about
the real world. BETA was presented at the ACM confe-
rence on History of Programming Languages III in San Di-
ego, June 2007.

Language mechanisms like class, subclass, and virtual me-
thod originating from SIMULA are found in most main-
stream object-oriented languages. In addition a number of
new mechanisms such as generics, meta classes, and mul-
tiple inheritance have been proposed. The research litera-
ture contains numerous suggestions for more or less inter-
esting new language constructs. In my opinion the main
challenges for language designers are within the following
areas:

 We need better language mechanisms for concur-
rent and distributed programming, especially in
the context of pervasive and/or ubiquitous compu-
ting

 We need a new form of abstraction mechanisms
that also cover design patterns

 We need an integration of class-based and proto-
type-based languages

We need to reintroduce the importance of a programming
language to be useful for modeling as was the case with
SIMULA.

5. Bertrand Meyer, Bertrand.Meyer@inf.ethz.ch

BERTRAND MEYER is a professor of software engineering at
ETH Zurich and a scientific advisor of Eiffel Software in
California. He is the developer of the Eiffel method and
language, now an ISO standard, and originator of the me-
thod Design by Contract. He has published nine books

1022



translated into a dozen languages, including "Object-
Oriented Software Construction" (Jolt Award 1997). He
has directed the design and implementation of numerous
tools and libraries used in mission-critical applications and
is active on both the academic and industrial scenes as a
speaker and consultant; his scientific contributions include
more than 200 scholarly articles. He is among other awards
the recipient of the first Dahl-Nygaard award for object
technology (2005) and the ACM Software System award
(2007).

Eiffel is rooted in two technologies: Simula 67, which ex-
erted the most directed influence since Eiffel was designed
from the experience of Simula use over many years; and
the methods and languages of formal specification, proof
and verification. To this basis Eiffel has over its twenty-
year history added considerable enhancements, always with
a view to preserving the coherence and simplicity of the
edifice. Many concepts now considered standard in OO
languages were pioneered by Eiffel, from genericity and
the combination of static typing and dynamic binding to ef-
ficient garbage collection and closure-like mechanisms
(agents, delegates) bringing over techniques similar to
those of functional languages. Others present in Eiffel for a
long time, such as Design by Contract constructs, are mak-
ing their way into research languages. Yet others (such as
covariance), used in Eiffel as a matter of course, are still
not widely accepted elsewhere. In addition, novel con-
structs and concepts continue to be explored and are pro-
gressively integrated into newer versions of the language.

6. Guy Steele, Guy.Steele@sun.com

GUY L. STEELE JR. (PhD, MIT, 1980) is a Sun Fellow at
Sun Microsystems, Inc. In 1975 he co-invented the
Scheme programming language at MIT with Prof. Gerald
Jay Sussman. He is author or co-author of four books on
programming languages (Common Lisp, C, High Perfor-
mance Fortran, and the Java programming language). He is
an ACM Fellow and received the 1996 ACM SIGPLAN
Programming Languages Achievement Award. He de-
signed the original EMACS command set and was the first
person to port TeX. At Sun Microsystems he is responsible
for research in language design and implementation strate-
gies, and architectural and software support.

Language evolution has made some progress, but for every
lesson learned, that lesson gets reinvented or rediscovered
three or four times – which is to say that the lesson is for-
gotten three or four times. Maybe there's just too much for
any one language designer or implementer to keep in his
head all at once. Maybe progress is merely an illusion we
layer over the historical sequence of fads that results as we
focus our attention on one detail or another. People nod
their heads when we say that Algol 60 and Simula 67 and
Standard ML are classic, beautiful, well-thought-out de-
signs, but a lot of the world's actual work gets done with C
and Javascript and Perl.

1023


