
Data Synchronization Architectural Pattern for Ubiquitous
Learning Systems∗

Samah Gad
Department of Computer Science and Applications

2202 Kraft Drive, Blacksburg, VA 24060
Virginia, USA

samah@vt.edu

ABSTRACT

This paper presents a domain specific architectural pattern
for ubiquitous learning systems developers. The pattern pro-
vides inexperienced developers with guidelines and the main
building blocks to build ubiquitous learning systems. The
pattern will enable them to develop reliable systems with-
out having much background in data synchronization and
ubiquitous learning systems infrastructures. There are two
main data synchronization problems targeted by the pre-
sented pattern; maintaing data consistency at anytime and
detecting and resolving conflicts in data. A full description
and a case study are presented to illustrate the type of tar-
geted ubiquitous learning systems. An implementation and
evaluation of the pattern are done based on the introduced
case study.

Categories and Subject Descriptors

D.2.11 [Software Engineering]: Software Architectures—
Patterns, Domain Specific Applications, Adaptive Systems,
Distributed Architectures

General Terms

Software, Patterns, Data, Learning

Keywords

Synchronization Pattern, Data Synchronization, Data Shar-
ing, Architectural Patterns, Distributed Database, Distributed
Systems, Mobile Learning, Ubiquitous Learning

∗Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this
notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

PSI EtA’10, 17-OCT-2010, Reno, USA Copyright 2010
ACM 978-1-4503-0544-0/10/10. $10.00

1. INTRODUCTION

Most users have multiple devices nowadays and some appli-
cations need multiple devices to work on. Users have the
ability to access their data anywhere, anytime and from any
device they are using. All these advances in technology and
data sharing abilities lead to a revolution in ubiquitous and
mobile learning. Using mobile devices in learning is some-
thing that has been done several years ago, but now the at-
tention is going towards adapting learning materials based
on data sensed from real life environments.

These type of systems needs to collect sensed data and store
it locally on mobile devices used by students. The data
should then be synchronized from students to some kind of
a server to be shared among other students. All students
who uses the system should have a consistent copy from the
sensor data on their mobile devices. This is because some
learning materials will be displayed based on it. To assure
the consistency of data in all the participating devices in the
system, a reliable data synchronization algorithm is needed.

Patterns are software engineering designs that have been ob-
served to work well. They can be found in different contexts
and provide a solution for a well-defined problem area. Pat-
terns are classified into different groups based on their level
of abstraction. This is a definition of patterns that were
introduced by Tarkoma [11] pp.103.

Researchers classified patterns into different categories and
levels. Examples of pattern categories that were introduced
by Tarkoma [11] are; communication, resource management
and synchronization, and distribution design patterns. Other
researchers like Teale [12] divided the data synchronization
patterns into three different levels: architectural, design, and
implementation patterns.

There are number of researchers in different areas who stud-
ied different mobile applications to come up with patterns
for data synchronization. These patterns can help general
developers of similar systems in solving data synchronization
issues. Roth proposed in [10] a mobility patterns hierarchy.
It was claimed that the mobility patterns presented covers
mobile applications scenario problems. The focus in the pa-
per was on two design patterns, synchronization and remote
proxy patterns. Another research by Teale [12], focused on
data movement patterns. Patterns were shown from differ-
ent abstraction levels, architecture, design, and implementa-
tion. Because Teal introduced these patterns while working

at Microsoft, the implementation level was focused on imple-
menting the design specifically using Microsoft SQL Server.

Data synchronization is considered one of the key concepts
behind most computing systems and networking protocols
available nowadays. Data synchronization can appear in
many research fields, like distributed systems, mobile database
[7], pervasive computing [5], mobile learning [14], data grids
[13], and peer-to-peer content distribution [4].

There are two high-level choices when designing a data syn-
chronizer for mobile applications. These choices are; when
to synchronize and how to synchronize. There are two ways
to know when to synchronize; manually by the user and au-
tomatically by the synchronizer. In the presented pattern it
will be done automatically.

For how to synchronize, there are two styles of synchroniza-
tion; pessimistic and optimistic. Pessimistic style means
that there are several copies of the data, but only one can to
be modified. Synchronization of the modifications is done
by copying the modified copy. Modifiability status may also
be transferred in the synchronization. The optimistic style
means that there are several copies of data each can be inde-
pendently modified[11]. It is used more than the pessimistic
one. One of the major issues in using this style is how to
keep track of data updates. There is a number of mecha-
nisms which are used to do this like, version vectors [8] [9],
hash histories [6], version stamps [3], interval tree clocks [2],
and bounded version vectors [1]. In the presented pattern
the optimistic synchronization where used because each mo-
bile device will have a copy of the data stored locally and
it can be modified by the user which in this case will be a
student.

1.1 Problem Description and Motivation

There are a lot of similarities between sensor based ubiqui-
tous learning systems, because most of them need to collect
data and store it locally on mobile devices and synchronize
this data to a server. some of the problems attached to
this process are unknown by inexperienced developers. The
developers end up using some naive solutions to solve these
problems and in this kind of learning systems a reliable data
synchronization algorithms is needed.

There are few domain specific patterns available in litera-
ture. The available patterns are too general to give guidance
for developers and designers. The need for a domain spe-
cific design pattern will cut the time spent in the software
development and design in upiquitous learning systems.

This pattern is targeting two main problems. The first prob-
lem is about how to maintaing data consistency between the
mobile device and the server at anytime. The second prob-
lem is designing a synchronization engine that detects and
resolves conflicts in data while transmitting it from the mo-
bile device to the server and vice versa, when the same repli-
cation set is possible to be updated at both mobile devices
and servers.

The rest of this paper is structured as the following; section
two will be about the proposed solution and a full descrip-
tion of the pattern. Section three will present a case study.

Section four, is about the implementation and evaluation of
the pattern. Finally, section five concludes the paper and
give an idea about the future plans and possible extensions
for this research.

2. PROPOSED SOLUTION AND PATTERN

DESCRIPTION

In this paper, the focus is on an architectural patterns that
is independent from any programming language and devel-
opment tools. The main contribution in this paper is intro-
ducing a domain specific architectural pattern for ubiquitous
learning systems that adapts learning contents based on col-
lected sensor data. The pattern synchronization engine will
be based on optimistic synchronization. It will detect con-
flicts based on a modified version of Version Stamps [3]. It
was modified to fit the types of system targeted here in this
paper.

The presented pattern inherits some of the strengths from
two Microsoft patterns, Master-Master row level replication
pattern and Master-Subordinate Snapshot Replication. It
appears that these two patterns inherits the basic building
blocks of the data synchronization pattern introduced by
Tarkoma [11] pp.103.

Master-Subordinate Snapshot replication pattern features
will be used when a new student is joining the class. This
decision was taken because this pattern can create a point-
in-time copy of defined data. The copy consists of the entire
set of data that is to be replicated, not just the changes since
the last replication.

Master-Master Row level synchronization pattern features
were used, because here the mobile device and server are
able to change in replication sets and mobile devices can
add data to the replication set while not connected to the
server.

2.1 Pattern Elements

The pattern consists of five main elements; sensors, commu-
nication layer, mobile device, another communication layer,
and server. The mobile device and the server both have
a database and a learning application that contains a syn-
chronization engine. One of the communication layers is
responsible for the communication, sending data, between
the sensors and the mobile device. The other one is respon-
sible for the communication between the mobile device and
the server, see Figure 1.

Each one of the synchronization engines in both the mo-
bile device and server have a specific role for each side at
the beginning. The server database contains the replication
set that is to be transmitted. The mobile device has the
database where the transmitted replication set to be written.
Both server and mobile device have databases that contains
a replication set. The schema of the server database and
the mobile device database are the same in both the mobile
device and the server. The database in both has only one
table that has all the sensor data, which means that there is
no referential integrity enforcement needed by the database,
and there are no follow-up operations, such as triggers or
cascade deletes during the replication.

Mobile Device

Server

Database

Database

Communication Layer

Sensors

Receive/Send

Receive/Send

Learning Application
Insert/Retrieve

Learning Application

Synchronization
Engine

Insert/Retrieve

Communication layer

Synchronization
Engine

Figure 1: Building Blocks of the Pattern.

The sync engine in this pattern is no difference than a stan-
dard data synchronization pattern. It has the following basic
responsibilities; keep track of the changes in the local copy of
the data, exchange data with other synchronization engines
when connectivity is available, detect conflicts, and resolve
them. The major difference is that it initiates the synchro-
nization automatically based on the user location and follow
the domain specific policies.

2.2 Pattern Applicability

There are specific situations and problems when a developer
will need this pattern. Data that needs to be replicated
should be a row in a table. The replication set is a table in
the database, this table consists of sensor data. The repli-
cation set is to be copied from a single source to a mobile
device, and possibly to more than one mobile device. The
data consists of entire rows, not just changes that have oc-
curred to rows since the last replication. Any changes made
to the replication set at the mobile device that may have
occurred since the last transmission will be overwritten by
a new transmission. The replication set is possible to be
updated at both the mobile device and the server. Data
on all the participating mobile devices including the server
should have the same copy of the data. Conflicts needs to
be detected and resolved at a specific time and place.

Based on the specific application domain targeted here, there
are some design consideration the developer should take in-
consideration. The transmission frequency and the initia-
tion of the transmission will be based on where the student
is. The initiation of the synchronization from server to mo-
bile device will be done automatically whenever the student
reaches school. The initiation of the synchronization from
the mobile device to the server will also done automatically
when the student leaves a specific place.

2.2.1 Conflicts Detection and Resolution
In the pattern there are two synchronization engines, one is
at the mobile device side and the other one is at the server
side. These two synchronization engines work together to

Is the row
unique

Mobile Device
DB

Start/Stop

Start/Stop

Retrive and
Send row

compare the
time/date and

sensor id of the
row with the
server DB

Server
DB

Insert Update

Yes No

Mobile Device
Side

Server Side

Figure 2: Algorithm for Conflict Detection and Res-
olution.

achieve two synchronization cases. First case is Terminal-
To-Host, which is synchronizing changes in replication set
from the mobile device to the server.

Conflicts should be detected before actually changing any-
thing in the data on the server. The conflicts will be a result
of inserts on the mobile device side. Inserts here means that
new data was collected from sensors through mobile devices.
These conflicts will occur when two or more mobile devices
actually read from the same sensor at the same time, which
will cause a uniqueness problem. Conflicts that result from
update and deletion will not appear here since students and
teachers are not allowed to delete or update the data that
have been collected from sensors.

To detect conflicts in this case, the sensor id in addition
to the time and date values of the rows coming from the
mobile device will be compared to the rows in the server
and if it matches any row in the server database the policy in
this case would be that the incoming data will overrules the
server data and so, the row sent to the server will overwrite
the one stored on the server. In case the row coming from the
mobile device did not match any row in the server database,
it will be inserted into the server database directly. See the
flowchart of this algorithm in Figure 2.

The second case is Host-to-Terminal, which is synchroniz-
ing a copy of the data from the server to the mobile de-
vice. This case of synchronization does not need conflict
detection and resolving because in this case the mobile de-
vice need a replica from the data stored on the server. The
data coming from the server will overwrite the data stored
locally on the mobile device. With the server updated by
the last Terminal-to-Host synchronization, all mobile devices
will pull a unified copy from the server.

3. CASE STUDY

In this section a real life case study is presented. The system
is a ubiquitous learning system that will be used in a K-12

Server

Students in the
 Farm with
Ipod touch

(mobile device)

Sensor Node

Sensor Node
 working as a Gateway

10

40

Internet

30
40

56
40

Figure 3: Case Study.

soil management class. In this class, the students should
learn about how they can determine if the soil is healthy for
the plant or not. Data about soil can be read using special
sensors. Usually, teachers take student to farms and start
showing them how to read data about soil and what this
data means.

What the learning system will do in this case would be facil-
itating the learning process by using mobile devices to an-
alyze and visualize the sensor data. Sensors that can sense
data about soil like, soil moisture, ph level was planted in
a farm that the student can visit later. Each one of the
students will have a mobile device with him or her. When
a student come close to a gateway sensor node, the mobile
device will start reading soil data that were gathered by soil
sensors. Each time the mobile device receives data it will
store it locally in a database, see Figure 3.

The data collected by each student should be synchronized
to a server in order to have all the data collected in one place
(database). The data stored on the server database, will be
shared among all the students later and used as an example
in classroom.

There are some challenges that should be taken into con-
sideration for this system to work successfully without in-
terrupting the learning process. First, all students should
have consistent replicas from the sensor data on their mo-
bile devices, because in the classroom they will visualize the
data using some applications and the teacher will give some
explanation on this visualization. It is like the book the stu-
dents use to study in classroom, all students should have the
same version of the book otherwise they will not follow the
teacher correctly.

Second, conflicts in sensor data should be taken care of be-
cause if more than one student reads sensor data from the
same sensor node at the same time there will be redundancy
in the data stored on the server and this will make it hard
to visualize multiple versions of the same data.

SqLite
Database

MySql
Database

Web
Server

(Apache)

Iphone
App

 PHP App

Conflict
Detector
resolver
module

Insert row Retrive row Retrive rowInsert row

Send data row
HTTP Request

Receive data row
HTTP Request

Send data row

Receive data row

Data

Data

Figure 4: Implementation Architecture.

4. IMPLEMENTATION AND EVALUATION

For the implementation of this pattern, the case study men-
tioned before was used. An iPod touch will be used by stu-
dents and the server will be an Apache web server. The
communication between the mobile device and the server
will be through the internet using the HTTP protocol, see
Figure 4.

IPod touch was chosen because other capabilities in the
iPhone and iPad with obviously higher cost are not needed.
The database engines that were used were SqLite on iPod
touche and MySQL at the web server end.

The mobile device synchronization engine is an iPhone appli-
cation built using Objective C. The server synchronization
engine is a PHP application that is running on an Apache
web server. The communication between the iPod and the
Apache server will be based on HTTP protocol requests and
responses.

If the mobile device is trying to synchronize with the server
the changes that have been made to the locally stored repli-
cation set, it will send data to the server through an HTTP
request. The changes here would be rows added to the mo-
bile device replication set, read through the sensors. These
added rows will be sent row by row to the server. When
the row arrives to the server, it will be compared with the
rows in the server database to make sure that it is unique.
The comparison will be based on two columns in the table;
the sensor id and the time and date columns. If the row is
unique, it will be inserted to the server database directly.
If not the new row will overwrite the matched row in the
server database.

A primary evaluation for the implementation of the pattern
was done. It showed that applying the presented pattern to
the case study resulted in a reliable system and a consistent
data on both the mobile device and the server. The eval-
uation was done based on around 100 simulated readings
from sensors and sample possible conflicts were tested. The
conflicts tested were around 15 simulated sensor readings
and 100% of them were detected and resolved based on the
presented conflict detection and resolution algorithm

5. CONCLUSION AND FUTURE WORK

Having a domain specific architectural pattern will definitely
help and guarantee the reliability of the developed systems.
This is because the pattern provides clear and simple guide-
lines. These guidelines will cut time spent in system design
and development by inexperienced developers.

In this paper a design pattern for solving the data synchro-
nization problem associated with ubiquitous learning sys-
tems that uses sensor data in adapting learning contents
was presented. A full description of the pattern elements
and pattern applicability was stated. A case study and im-
plementation of were done to prove the applicability of the
pattern.

In the future, an evaluation of the pattern implementation
from the resource management and time perspectives will
be done. Applying the pattern on similar applications that
is not related to learning is also considered for future work.

6. ACKNOWLEDGMENTS

I would like to thank Eli Tilevich, assistant professor in the
computer science department at Virginia Tech for the valu-
able and broad background he exposed us to in a research
course that I took with him on software abstraction.

7. REFERENCES
[1] J. B. Almeida, P. S. Almeida, S. Almeida, and

C. Baquero. Bounded Version Vectors. DISC:
International Symposium on Distributed Computing,
2004.

[2] P. Almeida, C. Baquero, and V. Fonte. Interval Tree
Clocks. Principles of Distributed Systems, pages
259–274, 2008.

[3] P. S. Almeida, C. Baquero, and V. Fonte. Version
Stamps: Decentralized Version Vectors. In ICDCS ’02:
Proceedings of the 22 nd International Conference on
Distributed Computing Systems (ICDCS’02), page
544, Washington, DC, USA, 2002.

[4] S. Androutsellis-Theotokis and D. Spinellis. A Survey
of Peer-to-Peer Content Distribution Technologies.
ACM Computing Surveys, 36(4):335–371, 2004.

[5] Y.-W. Huang and P. S. Yu. Lightweight Version
Vectors for Pervasive Computing Devices. Parallel
Processing Workshops, International Conference on,
0:43, 2000.

[6] B. B. Kang, R. Wilensky, and J. Kubiatowicz. The
Hash History Approach for Reconciling Mutual
Inconsistency. In ICDCS ’03: Proceedings of the 23rd
International Conference on Distributed Computing
Systems, page 670, Washington, DC, USA, 2003.

[7] Y. Li, X. Zhang, and Y. Gao. Object-Oriented Data
Synchronization for Mobile Database Over Mobile
Ad-hoc Networks. In ISISE ’08. International
Symposium on Information Science and Engieering,
volume 2, pages 133 –138, dec. 2008.

[8] D. S. Parker, G. J. Popek, G. Rudisin, A. Stoughton,
B. J. Walker, E. Walton, J. M. Chow, D. Edwards,
S. Kiser, and C. Kline. Detection of Mutual
Inconsistency in Distributed Systems. IEEE
Transaction on Software Engineering, 9(3):240–247,
1983.

[9] D. Ratner, P. Reiher, and G. J. Popek. Dynamic
Version Vector Maintenance. Technical Report
CSD-970022, UCLA, June 1997.

[10] J. Roth. Patterns of Mobile Interaction. Personal
Ubiquitous Computing, 6(4):282–289, 2002.

[11] S. Tarkoma. Mobile Middleware: Supporting
Applications and Services. John Wiley and Sons Ltd,
2009.

[12] P. Teale, C. Etz, M. Kiel, and C. Zeitz. Data Patterns.
Microsoft Corporation, June 2003.

[13] S. Venugopal, R. Buyya, and K. Ramamohanarao. A
Taxonomy of Data Grids for Distributed Data
Sharing, Management, and Processing. ACM
Computing Surveys, 38(1):3, 2006.

[14] V. Vincent Tam and B. Yin. Investigating Data
Synchronization in a Mobile Learning Network with
Handheld Devices. In ITRE2003: Proceedings of
International Conference on Information Technology:
Research and Education, pages 296 – 300, August
2003.

